

 © 2019 Felipe Florencio, Thiago Valença, Edward David Moreno and Methanias Colaço Junior. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Performance Analysis of Deep Learning Libraries:

TensorFlow and PyTorch

1Felipe Florencio, 1Thiago Valença, 1Edward David Moreno and 2Methanias Colaço Junior

1Departamento de Computação, Universidade Federal de Sergipe, São Cristovão, Brazil
2Departamento de Sistema de Informação, Universidade Federal de Sergipe, Itabaiana, Brazil

Article history

Received: 01-01-2019

Revised: 25-02-2019

Accepted: 11-04-2019

Corresponding Author:

Felipe Florencio

Departamento de Computação,

Universidade Federal de

Sergipe, São Cristovão, Brazil
Email: felipe.florencio@dcomp.ufs.br

Abstract: Through the increase in deep learning study and use, in the last

years there was a development of specific libraries for Deep Neural

Network (DNN). Each one of these libraries has different performance

results and applies different techniques to optimize the implementation of

algorithms. Therefore, even though implementing the same algorithm and

using different libraries, the performance of their executions may have a

considerable variation. For this reason, developers and scientists that work

with deep learning need scientific experimental studies that examine the

performance of those libraries. Therefore, this paper has the aim of

evaluating and comparing these two libraries: TensorFlow and PyTorch.

We have used three parameters: Hardware utilization, hardware temperature

and execution time in a context of heterogeneous platforms with CPU and

GPU. We used the MNIST database for training and testing the LeNet

Convolutional Neural Network (CNN). We performed a scientific experiment

following the Goal Question Metrics (GQM) methodology, data were

validated through statistical tests. After data analysis, we show that PyTorch

library presented a better performance, even though the TensorFlow library

presented a greater GPU utilization rate.

Keywords: Tensorflow, PyTorch, Comparison, Evaluation Performance,

Benchmarking, Deep Learning Library

Introduction

Deep learning is an artificial intelligence field that

allows computers to learn with experience and

understand the world in terms of a concept hierarchy,

with each concept defined by its relationship with

simpler concepts. If we draw a graph showing how these

concepts are built on top of each other, the graph is deep,

with many layers. For this reason, it is called deep

learning (Goodfellow et al., 2016).

The deep learning idea is to train an Artificial

Neural Network (ANN) of multiple layers in a set of

data in order to allow it to deal with real world tasks.

Although the theoretical concepts behind are not new,

deep learning has become to be a trend in the last

decade due to many factors, including its well-succeed

application in a variety of problem solution (many of

them are potentially commercial, such as the

development of new computer architectures with a

higher level of parallelism, the design of Convolutional

Neural Network (CNN) and a higher accessibility to

high performance computers (Shatnawi et al., 2018;

Verhelst and Moons, 2017) (Raschka, 2015).

There are many deep learning libraries, such as

TensorFlow, Theano, CNTK, Caffe, Torch, Neon and

PyTorch. Each one of these libraries has different

features of performance and applies different techniques

to optimize the implementation of algorithms. Therefore,

even though implementing the same algorithm in

different structures, the performance of these different

implementations may have a considerable variation

(Bahrampour et al., 2015; Shatnawi et al., 2018).

Since there are a variety of open source libraries
available, developers and scientists that work with

deep learning need scientific experimental studies that
point out which library is the most suitable for
determined application.

Being that, the present work evaluates and compares

the Tensorflow library and PyTorch library focusing on

their hardware utilization, hardware temperature and

execution time in a context of heterogeneous platforms

with CPU and GPU. We have used the Modified National

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

786

Institute of Standards and Technology (MNIST) database

for training and testing the LeNet CNN.

For the reason that there are a variety of open source

libraries available, developers and scientists that work

with deep learning need scientific experimental studies

that point which library is the most suitable for

determined application. Being that, the present work has

as aim to evaluate and compare the Tensorflow library

and PyTorch library focusing on their hardware

utilization, hardware temperature and execution time in a

context of heterogeneous platforms with CPU and GPU.

It was used the Modified National Institute of Standards

and Technology (MNIST) database for training and

testing the LeNet CNN.

The novelty that this article presents is the

performance evaluation of PyTorch library, the use of

GPU and CPU utilization rate as evaluation metrics and

the use of statistical tests for validating the obtained data

during the experiment. As a result, the PyTorch library

presented a superior performance when compared with

TensorFlow library, through data analysis, it was

verified that during execution using PyTorch there is a

smaller GPU utilization rate. It is possible to conclude

that the communication bottleneck between CPU and

GPU is a relevant factor for TensorFlow presenting an

inferior performance than PyTorch, once TensorFlow

uses more the resources of the GPU.

For a better understanding in how the results were

obtained, the present paper is divided into eight sections.

In section 2 presents the used method. In Section 3, the

conceptual bases are presented, also the used neural

network is described and the examined libraries are

presented. In Section 4 related works are presented. In

section 5, the definition and the experiment planning for

making the frameworks comparison is showed. The

Section 6 has the execution phases of the experiment,

including how the data were collected. In Section 7, the

analysis and interpretation of the obtained results are

done, besides that, it is shown the threats to validity in

this work. Finally, in Section 8 is showed the conclusion

and the possible future works.

Method

The paper consists in an experimental study of

performance evaluation of two deep learning libraries

(TensorFlow and PyTorch) in a heterogeneous

computational system with CPU and GPU. For

experimental research we have used as benchmark

framework the LeNet CNN for training and inferring

data in MNIST dataset.

In a prior moment of this research we have selected

some related works that benchmark deep learning libraries.

The analysis of the related works demonstrated the absence

of performance analysis of PyTorch library, in the analysis

process also was verified that the selected experiments do

not take in consideration the utilization rate of hardware

components and that, in general, the authors do not use

statistical tests for validating the data extracted from the

experiment. We have selected the PyTorch library, for

being little explored and the TensorFlow library since it is

popular and for serving as performance reference.

We used six (6) metrics: (i) execution time for inference

algorithm, (ii) execution time for training algorithm, (iii)

GPU utilization rate, (iv) CPU utilization rate, (v) GPU

temperature and (vi) CPU temperature. The execution time

is used to verify which library presents the best

performance and the utilization rate is used to investigate

possible causes for this performance. The selected CNN for

evaluating performance of the libraries is LeNet and the

selected dataset is MNIST. The reason for that is the

availability of preexisting codes for both libraries.
After the materials selection, it was performed an in

silico experiment using a heterogeneous computational
system. The experiment consisted in preparing the
execution environment, adapting the codes extracted
from the library’s official repository, implementing
scrips, executing the codes and extracting data of each
execution. The experiment’s organization followed the
Goal Question Metric (GQM) method as indicated by
Basili et al. (1994).

After data extraction, it was performed Kolmogov-

Smirnov (KS) and Wilcoxon statistical tests for

validating the data. After validation, the data could be

analyzed and evaluated.

Conceptual Bases

This section presents some concepts that are

necessaries for understanding this work.

Convolutional Neural Networks

The Convolutional Neural Networks (CNNs) are a

kind of biologically inspired feed-forward neural network,

it is developed to imitate the behavior of an animal visual

cortex (da Costa e Silva Franco, 2016). The basic concept

of CNNs goes back to 1979 when Fukushima (1979)

proposed an artificial neural network including simple and

complex cells that were very similar to the convolutional

and pooling layers from modern CNN.

CNNs composed by many non-linear data processing

layers, where the output of each inferior layer feed the input

of its immediately superior layer (Deng, 2014). They use

convolution in place of general matrix multiplication in at

least one of their layers (Goodfellow et al., 2016). The

layers of CNNs may be of three kinds: Convolutional

layer, pooling layer and dense layer.

Convolutional Layer

The convolutional layer consists in a set of resource

maps, that are generated from a convolutional operation

on input data or another resource map. Each convolutional

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

787

layer defines an input representation in a determined

abstraction level (da Costa e Silva Franco, 2016).

In its general form, the convolution is a linear

operator, that from two given functions, results in a third

one which is the sum of the product of those functions

along the region implied by their superposition in

function of the existent displacement between them

(Goodfellow et al., 2016). It has the following form:

   x a w t a da (1)

In which x(t) and w(a) are two given functions and

s(t) the resulting function. The convolution operation is

typically denoted by an asterisk:

    s t x w t  (2)

In case of convolutional networks, the first

argument (in this example, function x) for the
convolution is many times called input and the second
argument (in this example, function w) is called
kernel. The output is commonly called Feature Map
(Goodfellow et al., 2016).

In Fig. 1 there is an example of 2-D Convolution

without flow of kernel. The output is limited to only the

position where the kernel is fully inside of the image

called valid convolution. In the figure there are arrows

indicating as the left superior of the output is formed

applying the kernel to the left superior region

corresponding to input.

Fig. 1: An example of 2-D convolution (Goodfellow et al., 2016)

Fig. 2: Example of Max-pooling layer obtained from a features map input (Dertart, 2017)

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4

max pool with 22

window and stride 2

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

788

Fig. 3: Representing LeNet-5 using DAG (Hamed Habibi Aghdam, 2017)

Pooling Layer

The pooling layer serves to progressively reduce the
representation spatial size, reduce the number of parameters
and the quantity of computation in the network and,
therefore, also control overfitting (GBT, 2018a).

A pooling algorithm commonly used is the Max-
pooling, that extracts sub-regions of a resource map (for
example, blocks of 22 pixels), maintain its maximum
value and discard all other values (da Costa e Silva
Franco, 2016; GBT, 2018a). This extraction is shown in
Fig. 2 in which the Max-pooling layer is obtained from a
features map input.

Dense Layer

Fully connected layers, similar to layers of multi-

layers Perceptrons (MLP), that perform classification of

extracting features by convolutional layers and decreased

by pooling layers. In each dense layer, all nodes are

connected to all nodes from the previous layer (Raschka,

2015; da Costa e Silva Franco, 2016; GBT, 2018a).

LeNet CNN

Lecun et al. (1998) proposed the paradigm of weigh

sharing and derived layers from convolution and

grouping. Then, they projected a Convolutional Neural

Network that is called LeNet-5. The architecture of this

CNN is illustrated in Fig. 3.

In this Directed Acyclic Graph (DAG), Ca, b shows a

convolutional layer with size filters bb and the phrase/a

in any node shows the last one from this operation.

Besides that, P/a, b denotes an operation of pooling with

last a and size b, FCa shows a fully connected layer with

the neurons, Ya shows an output layer with a neuron. This

CNN was originally proposed for recognizing manuscript

digits, it consists of four layers of convolution pool. The

input of a Neural Network is a 3232 single channel image.

Besides that, the last layer of pooling is connected to the

fully connected layer. (Hamed Habibi Aghdam, 2017).
In this work it was used LeNet with the

backpropagation algorithm for CNN training.

Libraries

In this section the evaluated libraries on this paper are

presented.

Tensorflow

Tensorflow (Abadi et al., 2015) is an open source

library for numeric computation originally developed by

the Google Brain Team. It has a flexible architecture that

allows easy implantation in different architectures (CPU,

GPU and TPU), for this reason it is used in desktops,

clusters and mobile devices. It supports machine learning

and deep learning been also used in a variety of scientific

domains (GBT, 2018b).
Written from another deep learning library called

DistBelief, TensorFlow is implemented based on directed
graphs. In these graphs, nodes represent mathematics,
operations and edges represents the flow of data among
the nodes, what makes TensorFlow used in any domain
that the computation can be designed as a flow network
(Parvat et al., 2017; Shatnawi et al., 2018).

TensorFlow is developed as a Python API in C/C++
language seeking to achieve improvements in
performance (Parvat et al., 2017). It is available for
Windows, Linux, Mac OS and on mobile platforms such
as AndroidOS and Raspberry (Parvat et al., 2017).

PyTorch

Pytorch (Paszke et al., 2017) is developed by PyTorch
Core Team, a group formed by many organizations such
as: Nvidia, Facebook Open Source, ParisTech, Twitter,
Universite Pierre et Marie Curie, University of Oxford,
Stanford University, Uber, among others. The
development focus is to produce a framework for tensors
and dynamic neural networks in Python with strong
acceleration of the GPU.

It is a library built with the aim to be deeply integrated

to Python, differently of TensorFlow that is a link between

Python in a monolithic structure of C/C++. Two of its

principal features are: Tensor computation (as Numpy)

with strong use of GPU and deep neural networks built in

an automatic differentiation system in reverse mode that

allows the random way that neural network behaves with

overhead (PyTorch, 2018a; GBT, 2018b).

PyTorch is integrated with accelerated libraries such
as Intel MKL and NVIDIA (CuDNN, NCCL) in order
to maximize the performance. At the core, it is CPU
and GPU Tensor and neural network back-ends are
written as independent libraries with a C99 API. It can
be used as a Numpy substitute for better utilization of
the GPU power.

Related Works

This work presents a controlled experiment for the

evaluation of two deep learning libraries. In this

context, this section shows some papers that have a

similar approach.

Shi et al. (2016) performed a comparative study
among many deep learning libraries, including Caffe,

X C6,5 P/2,2 C16,5 C120,5 FC84 P/2,2 Y10

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

789

MXNet, CNTK, TensorFlow and Torch. The study
considers three types of neural networks, including
MLP networks, convolutional neural networks (AlexNet
and ResNet-50) and recurrent neural networks (LSTM-
32 e LSTM-64), being executed in two platforms of
CPU and three platforms of GPU. The comparison is
done through execution time and convergence rate. It
was used sets of synthetic data (the authors did not
inform the used dataset) for measuring the performance
of execution time and real-world set of data for
measuring the convergence rate in their experiments.
Hardware temperature was not used.

Goldsborough (2016) presents a comparative study of

five deep learning libraries: Caffe, Neon, TensorFlow,

Theano and Torch. The comparison takes into

consideration the extensibility, hardware utilization and

velocity, using gradient computation time and forward

time as metrics. The evaluation was accomplished using

CNN in CPUs and GPUs, but it was not taken into

account the hardware temperature.

Kruchinin et al. (2015) presented a comparative

analysis of some popular deep learning libraries and freely

available: Caffe, Pylearn2, Torch e Theano. The authors

execute a MLP network and a CNN network, whose

model is not detailed, for training the MNIST dataset.

Accuracy and execution time are calculated, as also the

usability and flexibility of each library are measured. As a

conclusion, Caffe and Torch libraries were considered the

most suitable for training MNIST dataset.

Kovalev et al. (2016) shows a comparative study of

velocity (training and classification time), classification

precision and of implementation complexity (number of

code lines) among deep learning libraries: Theano,

Torch, Caffe, TensorFlow and Deeplearning4j. This

study limited itself to the neural network fully connected

(MLP) executing in CPU architectures, these networks

and CPU architectures are not the most indicated tools

for exploring the potential of deep learning libraries. The

study also does not explore the impact of hardware

temperature and scalability.

Liu et al. (2018) presented project considerations,

metrics and challenges for the development of an

effective benchmark for deep learning softwares and

illustrate some observations through a comparative stead

of three deep learning libraries: TensorFlow, Caffe and

Torch. The experiments consisted in executing a LeNet

network for learning and inference in MNIST dataset

and CIFAR-10, the authors executed the LeNet network

with two different optimization algorithms: ADAM and

SGD. The results illustrated that these libraries are

optimized with their standard settings, but the optimized

standard setting in a set of specific data may not work

effectively for other sets of data with respect to

execution time performance and to learning precision.
Shatnawi et al. (2018) executed a comparative study

among three open source libraries for deep learning:

TensorFlow, CNTK and Theano. The performed
evaluation of this work considers the CPU and GPU
performance using convolutional neural networks (CNN)
and the MNIST dataset and CIFAR-10 measuring
processing time according to the number of used threads.
The results were the following: Related to the image
recognition dataset (MNIST and CIFAR-10) CNTK
presented the best performance compared to TensorFlow
and Theano in terms of GPU and CPU multithreading,
but in CIFAR-1 processing using 8,16 and 32 threads in
CPU Tensorflow was faster than CNTK, Theano
revealed being slower than the other libraries. The
authors did not inform the used CNN architectures.

Fonnegra et al. (2017) evaluated and compared the
following libraries: TensorFlow, Theano and Torch. The
comparison is performed through the implementation of
recurrent and convolutional architectures for classifying
images of two datasets: MNIST and CIFAR-10. The
utilized architectures were LeNet and LSTM. For
evaluating performance, the authors calculated the
forward time (execution time of gradient). As a result,
concluded that Torch requires the shortest computational
time for each iteration in CPU and GPU configurations,
it means, it reports the less usage of time for training and
gradient computation for configurations of CPU and
GPU, but also report the greatest time for testing. For
processing architectures with LSTM cores, TensorFlow
was faster than Theano in all the cases, except by
recognizing task CIFAR-10 time of the test. The
evaluation does not take into consideration the utilization
and the temperature of the hardware.

None of the found related works present a

performance evaluation of PyTorch library, they do not

take into consideration the CPU and GPU utilization rate

and do not apply statistical tests for validating data.

Definition and Planning

In this section, it is showed the planning strategy of the

proposed controlled experiment. The next subsections

present aim and planning of the experiment (context,

dependent and independent variables, hypothesis, object of

analysis, experiment project and instrumentation).

Definition of the Aim

The aim of this work is to evaluate (according to

execution time, temperature and scalability) the PyTorch

and TensorFlow libraries, verifying its behavior in learning

and inference phases of convolutional neural network.

The evaluation was accomplished with an in silico

experimental study-where the situations will be

described by computational models.
Following the aim definition formalization of GQM

model, proposed by Basili et al. (1994), the aim can be
rewritten as: Analyse the deep learning libraries
TensorFlow and PyTorch, for the purpose of compare
them with respect to execution time, scalability and

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

790

hardware temperature from the point of view of
researchers, scientists and developers that work with
deep learning in the context of LeNet convolutional
neural network executing in heterogeneous platforms
with CPU and GPU.

Planning

Context Selection

The experiment was in silico and used the Dell

Inspiron 15 Gaming i15-7567 notebook. For each library

it was executed the training algorithm (learning) and the

inference for a LeNet convolutional neural network

(CNN) processing a set of MNIST data, what allowed to

verify the behavior of the libraries in hybrid systems

with a GPU that uses CUDA and CPUs.

Dependent Variables

Average learning execution time (s), average inference

execution time (s), CPU temperature, GPU temperature,

CPU utilization tax (%), GPU utilization tax (%).

Independent Variables

Code compilation, library parallelization capacity,

algorithm complexity contained in the libraries, room

temperature and execution environment (notebook).

Hypothesis Formulation

The research questions for this experiment are: Does the

libraries have similar execution time? Does the execution of

algorithms that use libraries to generate a similar

temperature in the GPU? Does the execution of algorithms

that use libraries to generate a similar temperature in the

CPU? Does the framework present the same utilization tax

in the GPU? Does the library present the same utilization

tax in the CPU? Each of these questions must be answered

for both learning and inference process.

All the questions are answered from data extracted

from execution of the same artificial neural network. For

the first question, it can be considered learning average

time of the network (lrn) and the inference average time

(inf), for the second question it can use the GPU average

temperature during the learning process (lrn) and during

the inference process (inf), for the third question it can

use the CPU average temperature during the learning

process (lrn) and during the inference process (inf), for

the fourth question it can utilize the GPU utilization tax

average during the learning process (lrn) and during the

inference process (inf) and, for the last question, it can

use the CPU utilization tax average (in percentage)

during the learning process (lrn) and during the

inference process (inf). Each one of the measures has to

be done for each one library: TensorFlow and PyTorch.

In this context, the following hypothesis can be verified

(knowing that, TF = TensorFlow, PT = PyTorch):

Hypothesis 1 (For Inference and Learning

Processes)

H0: There is not statistical differences between the

library execution average times,  i i

TF PT 

H1: There are statical differences in the average

execution time of the libraries, that means,

 i i

TF PT 

Hypothesis 2 (For the Learning and Inference

Processes)

H0: There is not statistical differences between the GPU

average temperature during the library executions,

that means,  i i

TF PT 

H1: There are statistical differences between the GPU

average temperature during the library executions,

that means,  i i

TF PT 

Hypothesis 3 (For the Learning and Inference

Processes)

H0: There is not statistical differences between the CPU

average temperature during the library executions,

that means,  i i

TF PT 

H1: There are statistical differences between the CPU

average temperature during the library executions,

that means,  i i

TF PT 

Hypothesis 4 (For the Learning and Inference

Processes)

H0: There is not statistical differences between the GPU

utilization tax average during the library executions,

that means,  i i

TF PT 

H1: There are statistical differences between the GPU

utilization tax average during the library executions,

that means,  i i

TF PT 

Hypothesis 5 (For the Learning and Inference

Processes)

H0: There is not statistical differences between the CPU

utilization tax average during the library executions,

that means,  i i

TF PT 

H1: There are statistical differences between the CPU

utilization tax average during the library executions,

that means,  i i

TF PT 

Object Selection

The experiment utilized a set of image data, the

Modified National Institute of Standards and

Technology database (MNIST database) (LeCun and

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

791

Cortes, 2010). MNIST is a set of manuscript digits

commonly used to train image processing systems and

has the following features:

 Images of size 2828 pixels

 10 classes, one class for each digit

 Subset with 60000 training data

 Subset with 10000 test data

About the codes, the experiment utilized two codes

in a LeNet CNN implemented in Python, the LeNet

network is presented by Lecun et al. (1998). The first

code, using TensorFlow libraries, was adapted from the

code available in a TensorFlow repository in Github

(GBT, 2017). The second code, used libraries from

PyTorch was adapted from the code available in a

PyTorch repository in Github (PyTorch, 2018b). The

adaptations were done in order to let both codes with

the same parameter patterns, this process is explained

in the subsection 5.1.

Experiment Project

The experiment project can be summarized in the

following steps:

1. Preparing the execution environment

2. Adapting the available codes from TensorFlow and

PyTorch repositories

3. Implementing scripts

4. Measuring 100 times the algorithm execution time

during the learning phase for each one of the

libraries

5. Measuring 100 times the algorithm execution time

during the inference phase for each one of the

libraries

6. Collecting 100 times the CPU and GPU utilization

during the execution of each phase (learning and

inference)

7. Collecting 100 times the CPU and GPU temperature

during the execution of each phase (learning and

inference)

8. Applying statistical tests for the hypothesis analysis

Instrumentation

The used software are the Python environment 3.5.2,
Anaconda 3, TensorFlow 1.8, PyTorch 1.0, CUDA 9.0,
cuDNN 7.1, Nvidia Driver 396.26, Nvidia System
Management Interface, Sensors 3.4.0 and Ubuntu OS
16.04 LTS. The hardware for experiment execution is a
Dell Inspiron 15 Gaming i15-7567 notebook, 8GB
2133MHz DDR4 RAM Memory, 7th Generation Intel
Core i5-7300HQ Quad Core (6MB Cache, up to
3.5GHz, 1TB 5400 rpm HD with 8GB cache and GPU
NVIDIA GeForce GTX 1050. The GPU specifications
are available in Table 1.

Table 1: GPU NVIDIA GeForce GTX 1050 Specifications

Technical Information Value

GPU Architecture Pascal

NVIDIA Cuda Cores 768

Frame Buffer 4GB GDDR5

Memory Velocity 7G bps

Boost Clock 1392 MHzx

Operation of the Experiment

Preparation

The experiment preparation had as first task the

installation of software inside the notebook including the

environment Python, Anaconda, cuDNN and the

libraries. The selection of a dataset was done after that,

MNIST dataset was selected by because it is the most

used in the related works for library evaluation.

It was selected codes in the libraries official

repositories that train and test a LeNet CNN network

using the MNIST dataset. The code for PyTorch library

available in PyTorch (2018b) and the code for

TensorFlow library were modified and, posteriorly, used

for collection of data. The accomplished modifications

aimed to standardize the parameters of both codes

according to Table 2.

It was created scripts in order to automatize the

collection of data, each script was developed to execute

the learning and inference and store the data of each one

of the variables.

Execution

The created scripts for automation of data collecting

worked in the following way: Each script executed

learning and inference of the LeNet network

sequentially, in each one of these executions it was

stored 100 data from two variables with the same

criteria.

The execution steps were:

1. Script execution that stores 100 measures of

execution time of learning and 100 measures of

execution time of inference using TensorFlow

2. Script execution that stores 100 measures of

temperature during the execution of learning and

100 measures of temperature during the execution of

inference using TensorFlow

3. Script execution that stores 100 measures of CPU

utilization during the execution of learning and 100

measures of CPU utilization during the execution of

inference using TensorFlow

4. Script execution that stores 100 measures of GPU

utilization during the execution of learning and 100

measures of CPU utilization during the execution of

inference using TensorFlow

5. Repeat the process, but using PyTorch

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

792

Table 2: Used LeNet CNN parameters

Parameters Value

Batch size 100.00

Number of epochs 1.00

Number of steps 600.00

Learning rate 0.01

Observation about the execution:

 When storing the execution time data, the first value

was ignored in order to avoid outliers occasioned by

first library calls from libraries

 The environment temperature during execution of

TensorFlow was 22C

 The environment temperature during execution of

PyTorch was among 24C and 26C.

Data Collection

In order to collect time data it was utilized the
function time.time() from time library of Python
language. In order to measure the learning execution
time, the time starts to be counted before the training
procedure call, the count is finalized after the procedure
end. For measuring the inference execution time, the
library time.time() was applied the same way, but for the
classification procedure.

The CPU temperature and utilization collection were
done using Sensors 3.4.0, the GPU temperature and
utilization rate were done using the NVIDIA System
Management Interface. The measures were done several
times during the execution of each procedure (learning
and inference), it can have few measures done before
and after the execution of the procedures.

For each one of the codes, one using TensorFLow

and other using PyTorch, it was collected the following

dependent samples:

 100 samples of learning execution time

 100 samples of inference execution time

 100 samples of GPU temperature (C) during the

learning phase

 100 samples of GPU temperature (C) during the

inference phase

 100 samples of CPU temperature (C) during the

learning phase

 100 samples of CPU temperature (C) during the

inference phase

 100 samples of GPU utilization rate (%) during the

learning phase

 100 samples of GPU utilization rate (%) during the

inference phase

 100 samples of CPU utilization rate (%) during the

learning phase

 100 samples of CPU utilization rate (%) during the

inference phase

Data Validation

As a way to validate data and to evaluate statistical the

raised hypothesis, the statistical test Kolmogov-Smirnov

(KS) was used initially for testing if the acquired metrics

had a Gaussian probability distribution (normal). From the

result of this test (that showed the data had not a normal

distribution), it was used the paired Wilcoxon test for

analysis of the presented hypothesis.

The paired Wilcoxon test was selected for analysis of

the presented hypothesis because it is a non-parametric

test used to compare if the position measures of two

samples are equals in case that samples are dependents.

The subsequent section presents the result of KS test

and also the obtained results from paired Wilcoxon test

having in mind the raised hypothesis.

Results

As mentioned at the end of the last section, the KS

statistical test was used for verifying the normality of

data, therefore, a level of thrust of 95% was applied.

From the results it was identified that for all dependent

variables, the probability distribution is not normal,

because the returned p-values (a measure that indicates

the probability of evaluated set to follow the normal

distribution), were next to zero (less than 1010).

As also previously mentioned, the used test for

hypothesis analysis was the paired Wilcoxon test with a

thrust level of 95%, we will analyze separately its results

in subsection 6.1.

Analysis and Interpretation

Execution Time (Hypothesis 1)

Here we analyze data for Hypothesis 1.

The result of paired Wilcoxon test for the learning

execution time returned a p-value of

3.8965598450959091018, therefore the hypothesis H0

was strongly rejected and, consequently, the hypothesis

H1 was not rejected. The graphic in Fig. 4, that shows

time in seconds for each code, it shows clearly a

smaller learning execution time for the code that uses

PyTorch library.

The result of paired Wilcoxon test for the inference

execution time returned a p-value of

3.8965598450959091018, therefore the hypothesis H0

was strongly rejected and, consequently, the hypothesis

H1 was not rejected. The graphic in Fig. 5, that shows

time in seconds for each code, shows clearly a smaller

inference execution time using the PyTorch library.

GPU Temperature (Hypothesis 2)

Here we will analyze data for Hypothesis 2.

The result of paired Wilcoxon test for GPU average

temperature during learning phase returned a p-value of

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

793

3.8965598450959091018, therefore the hypothesis H0

was strongly rejected and, consequently, the hypothesis

H1 was not rejected. The graphic in Fig. 6, shows

temperature in Celsius degrees (C) for each code, shows

clearly a smaller average temperature for the code that

uses PyTorch library.

Fig. 4: Learning execution time

Fig. 5: Inference execution time

Fig. 6: GPU temperature (C) during learning phase

8.0

7.5

7.0

6.5

6.0

5.5

5.0

TensorFlow PyTorch

TensorFlow PyTorch

55

54

53

52

51

50

49

48
TensorFlow PyTorch

1.8

1.6

1.4

1.2

1.0

0.8

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

794

Another important thing that can also be noted

analyzing the graphic in Fig. 6 is the presence of two

outliers for PyTorch. They may be occasioned for a

sudden drop during the begin of the code execution that

uses PyTorch for learning, that means, the GPU was

more heated before the execution of PyTorch.

The result of paired Wilcoxon test for GPU average

temperature during the inference phase returned a p-

value of 9.5953590877701751016, therefore the

hypothesis H0 was strongly rejected and, consequently,

the hypothesis H1 was not rejected. The graphic in Fig.

7, shows temperature in Celsius degrees (C) for each

code, shows clearly a smaller average temperature for

the code that uses PyTorch library.

Another important thing that can also be noted

analyzing the graphic in Fig. 7 is the presence of some

outliers for PyTorch. They may be occasioned for a

sudden drop during the begin of the code execution that

uses PyTorch for learning, that means, the GPU was

more heated before the execution of PyTorch.

CPU Temperature (Hypothesis 3)

The result of paired Wilcoxon test for CPU average

temperature during the execution of the learning phase

returned a p-value of 3.63181890050861531013,

therefore the hypothesis H0 was strongly rejected and,

consequently, the hypothesis H1 was not rejected. The

graphic in Fig. 8, shows temperature in Celsius degrees

(C) for each code, shows clearly a smaller average

temperature for the code that uses PyTorch library.

Another important thing that can also be noted

analyzing the graphic in Fig. 8 is the presence of some

outliers for TensorFlow and PyTorch. The outliers from

PyTorch could also be occasioned for a sudden drop of

temperature during the begin of learning code execution,

it means, the GPU was more heated before the execution

of PyTorch. The outliers from TensorFlow, contrary, are

occasioned by a sudden ascent of the CPU temperature

when executing TensorFlow.

Fig. 7: GPU Temperature (C) during inference phase

Fig. 8: CPU Temperature (C) during learning phase

51.0

50.5

50.0

49.5

49.0

48.5

48.0

47.5

TensorFlow PyTorch

65

64

63

62

61

60

TensorFlow PyTorch

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

795

The result of paired Wilcoxon test for CPU average

temperature during the execution of the inference

phase returned a p-value of

4.5318610611095461018, therefore the hypothesis

H0 was strongly rejected and, consequently, the

hypothesis H1 was not rejected. The graphic in Fig. 9,

shows temperature in Celsius degrees (C) for each

code, shows clearly a smaller average temperature for

the code that uses PyTorch library.

Another important thing that can also be noted

analyzing the graphic in Fig. 9 is the presence of some

outliers. The graphic presents some outliers of low

temperature, both for TensorFlow and for PyTorch,

that could be occasioned by a sudden ascent of

temperature. the generated outliers in the PyTorch

data could also be occasioned by oscillation in CPU

utilization.

GPU Utilization (Hypothesis 4)

The result of paired Wilcoxon test for GPU average

utilization rate during the execution of the learning phase

returned a p-value of 3.8965598450959091018,

therefore the hypothesis H0 was strongly rejected and,

consequently, the hypothesis H1 was not rejected. The

graphic in Fig. 10, that presents the GPU utilization rate

(%) for each code, shows clearly a bigger utilization rate

during the learning phase execution from code that uses

TensorFlow library.

Fig. 9: CPU Temperature (C) during inference phase

Fig. 10: GPU Utilization rate(%) during learning phase

27.5

25.0

22.5

20.0

17.5

15.0

12.5

10.0

7.5

TensorFlow PyTorch

63

62

61

60

59

TensorFlow PyTorch

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

796

The result of paired Wilcoxon test for GPU average

utilization rate during the execution of the inference

phase returned a p-value of

3.8965598450959091018, therefore the hypothesis

H0 was strongly rejected and, consequently, the

hypothesis H1 was not rejected. The graphic in Fig.

11, that presents the GPU utilization rate (%) for each

code, shows clearly a bigger utilization rate during the

learning phase execution from code that uses

TensorFlow library.

CPU Utilization (Hypothesis 5)

The result of paired Wilcoxon test for the CPU

utilization rate during execution of learning phase

returned a p-value of 0.4851894147442428, therefore the

hypothesis H0 was not rejected. The graphic in Fig. 12,

that presents a CPU utilization rate (%) for each code,

shows a utilization rate very similar, with the PyTorch

rate presenting a bigger variance.

The result of paired Wilcoxon test for the CPU

utilization rate during execution of inference phase

returned a p-value of 3.313354231943190818,

therefore the hypothesis H0 was strongly rejected and,

consequently, the hypothesis H1 was not rejected. The

graphic in Fig. 13, that presents the CPU utilization

rate (%) for each code, shows clearly a bigger

utilization rate during inference phase of code using

PyTorch library.

Threats to Validity

Statistical tests were used as a way to mitigate bias

related to conclusion with respect to established

hypothesis (conclusion validity). The first was the KS

test, using for verification of data normality. This step

was necessary for choosing the following test, related to

comparison of algorithms to be utilized, that, being a

rejected null hypothesis of the KS test, it was used a non-

parametric test for dependent samples, the paired

Wilcoxon test. Thus, it might have a statistically

satisfactory conclusion, avoiding a selection of a library

detriment of another only by the sample averages.

It was monitoring the environment temperature from

the Aracaju city during the data collection process as a

way of mitigating bias about the temperature data

samples (intern validity), but the intern temperature of

the room where the notebook was located was not

adequately monitored, thus being a threat to validity.

Another threat to validity about the intern validity is

that it was not monitored all the process executed by the

operating system during the code execution. Some

processes might occasionally influence in the code

execution causing outliers. It was mitigated for execution

times, eliminating the collection of the first sample and

was mitigated for all variables turning the graphic

environment off and using the Anaconda software.

Only one kind of deep network was used, the LeNet

CNN, what represent a low variety of networks for

library analysis constituting a threat to external validity.

Another threat to external validity is that only one device

was used to processing the codes, a greater variety of

devices could mitigate the bias.

The experiment authors have little experience using

both the libraries, therefore the codes may have errors

that were unnoticed constituting a threat to construct

validity. In order to mitigate this threat it was used codes

already done available in the official repositories from

the library developers (with modifications, as previously

explained), it was used a widely used network (LeNet

CNN) in literature and am also widely used among the

related work dataset (MNIST dataset).

Fig. 11: GPU utilization rate (%) during inference phase

3.5

3.0

2.5

2.0

1.5

TensorFlow PyTorch

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

797

Fig. 12: CPU utilization rate (%) during learning phase

Fig. 13: CPU utilization rate (%) during inference phase

Conclusion and Future Works

Deep Neural Network tools are a recurrent subject in

the academia and industry with several researches related

to the creation of new libraries, library performance

evaluation, execution optimization techniques and the

creation of dedicated devices.

In this context, the present work showed an approach

related to performance of available open source libraries,

comparing them in a heterogeneous architecture with

CPU and GPU according to their performance.

The compared libraries TensorFlow and PyTorch are

indicated tools when dealing with CNN implementation

with CUDA support. In order to compare them,

execution time, hardware temperature impact and

utilization tax were evaluated.

In order to test the hypothesis (about execution time,

hardware temperature and hardware utilization), it was

used execution time in seconds, CPU and GPU

temperature in degrees Celsius and CPU and GPU

utilization tax in percentage. Two codes were used, the

first one using PyTorch library and the second one using

TensorFlow framework, both of them implemented in a

LeNet CNN and being executed with the MNIST dataset.

It was possible verify that PyTorch library presented a

better performance in the showed context. However, it is

necessary to note that PyTorch uses less the GPU potential

than it does with CPU potential, unlike TensorFlow that

during inference focus its processes in the GPU.
Some theses may be raised for a better performance

of PyTorch. The first one is that it uses less GPU,
reducing the communication bottleneck between CPU
and GPU. The second one is that PyTorch utilizes
function less automatized leaving harder work for
programmers. TensorFlow is much simpler and intuitive,
however it may have impacted in algorithm
generalization and, consequently, in non-optimized
algorithms for specific neural networks.

24

23

22

21

20

19

18

17

16

TensorFlow PyTorch

21.4

21.2

21.0

20.8

20.6

TensorFlow PyTorch

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

798

As future work, it is recommended a deeper

investigation into the impact of each library in GPUs

utilizing other hardware as clusters with several GPUs. It

also is recommended verifying the performance of these

libraries implementing other CNN and RNN networks.

Lastly, it is recommended comparing these libraries with

other popular libraries such as Caffe, Microsoft CNTK,

Theano and Deeplearning4j.

Acknowledgment

This study was financed in part by the Coordenação

de Aperfeiçoamento de Pessoal de Nível Superior -

Brasil (CAPES) - Finance Code 001.

The authors thank the Programa de Pós-Graduação

em Ciência da Computação da UFS (PROCC-UFS) for

their support..

Author’s Contributions

All authors are equally contributed in this work and

this paper.

Mr. Felipe Florencio: Participated in all

experiments, coordinated the data analysis and

contributed to the writing of the manuscript.

Mr. Thiago Valença: Participated in all experiments,

coordinated the data analysis and contributed to the

writing of the manuscript.

Dr. Edward David Moreno: Coordinated the

experiments and contributed to the writing of the

manuscript.

Dr. Methanias Colaço Junior: Designed the

research plan, organized the study and contributed.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Abadi, M., A. Agarwal, P. Barham, E. Brevdo and Z.

Chen et al., 2015. TensorFlow: Large-scale machine

learning on heterogeneous systems. tensorflow.org

Bahrampour, S., N. Ramakrishnan, L. Schott and M.

Shah, 2015. Comparative study of Caffe, neon,

theano and torch for deep learning. CoRR.

Basili, V.R., G. Caldiera and H.D. Rombach, 1994. The

goal question metric approach. Encyclopedia of

Software Engineering, Wiley.

da Costa e Silva Franco, A., 2016. On deeply learning

features for automatic person image reidentification.

PhD Thesis, Mechatronics Federal University of

Bahia, Salvador, Brazil.

Deng, L., 2014. A tutorial survey of architectures,

algorithms and applications for deep learning.

APSIPA Trans. Signal Inform. Process.

 DOI: 10.1017/atsip.2013.9

Dertat, A., 2017. Applied deep learning – part 4:

Convolutional neural netwotk.

https://bit.ly/2QCu72R

Fonnegra, R.D., B. Blair and G.M. Diaz, 2017.

Performance comparison of deep learning

frameworks in image classification problems using

convolutional and recurrent networks. Proceedings

of the IEEE Colombian Conference on

Communications and Computing, Aug. 16-18, IEEE

Xplore Press, Cartagena, Colombia, pp: 1-6.

 DOI: 10.1109/ColComCon.2017.8088219

Fukushima, K., 1979. Self-organization of a neural

network which gives position-invariant response.

Proceedings of the 6th International Joint

Conference on Artificial Intelligence, (CAI’ 79),

Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, pp: 291-293.

Goldsborough, P., 2016. A tour of tensorflow. CoRR.

Goodfellow, I., Y. Bengio and A. Courville, 2016. Deep

learning. MIT Press.

GBT, 2017. Convolutional neural network estimator for

MNIST, built with tf.layers. Google Brain Team.

GBT, 2018a. A guide to TF layers: Building a

convolutional neural network. Google Brain Team.

https://www.tensorflow.org/tutorials/layers

GBT, 2018b. Tensorflow: An open source machine

learning library for research and production. Google

Brain Team. https://www.tensorflow.org
Hamed Habibi Aghdam, E.J.H.A., 2017. Guide to

Convolutional Neural Networks: A Practical
Application to Traffic-Sign Detection and
Classification. 1st Edn., Springer International
Publishing, pp: 282.

Kovalev, V., A. Kalinovsky and S. Kovalev, 2016. Deep
learning with theano, torch, caffe, tensorflow and
deeplearning4j: Which one is the best in speed and
accuracy? Proceedings of the 13th International
Conference on Pattern Recognition and Information
Processing, Oct. 3-5, At Minsk, Belarus, pp: 99-103.

Kruchinin, D., E. Dolotov, K. Kornyakov, V. Kustikova

and P. Druzhkov, 2015. Comparison of Deep Learning

Libraries on the Problem of Handwritten Digit

Classification. In: Analysis of Images, Social Networks

and Texts, Khachay, M.Y., N. Konstantinova, A.

Panchenko, D. Ignatov and V.G. Labunets (Eds.),

Springer International Publishing, Cham, pp: 399-411.

Lecun, Y., L. Bottou, Y. Bengio and P. Haffner, 1998.

Gradient-based learning applied to document

recognition. Proc. IEEE, 86: 2278-2324.

 DOI: 10.1109/5.726791

LeCun, Y. and C. Cortes, 2010. MNIST handwritten

digit database.

../Downloads/www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/

Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799

DOI: 10.3844/jcssp.2019.785.799

799

Liu, L., Y. Wu, W. Wei, W. Cao and S. Sahin et al.,

2018. Benchmarking deep learning frameworks:

Design considerations, metrics and beyond.

Proceedings of the IEEE 38th International

Conference on Distributed Computing Systems,

Jul. 2-6, IEEE Xplore Press, Vienna, Austria,

pp: 1258-1269. DOI: 10.1109/ICDCS.2018.00125

Parvat, A., J. Chavan, S. Kadam, S. Dev and V. Pathak,

2017. A survey of deep-learning frameworks.

Proceedings of the International Conference on

Inventive Systems and Control, Jan. 19-20, IEEE

Xplore Press, Coimbatore, India, pp: 1-7.

 DOI: 10.1109/ICISC.2017.8068684
Paszke, A., S. Gross, S. Chintala, G. Chanan and E.

Yang et al., 2017. Automatic differentiation in
pytorch.

PyTorch, 2018a. Pytorch: About.

https://pytorch.org/about/

PyTorch, 2018b. Pytorch/examples.

https://github.com/pytorch/examples/tree/master/mnist

Raschka, S., 2015. Python Machine Learning. 1st Edn.,

Packt Publishing, Birmingham,
 ISBN-10: 1783555149, pp: 454.

Shatnawi, A., G. Al-Bdour, R. Al-Qurran and M. Al-

Ayyoub, 2018. A comparative study of open source

deep learning frameworks. Proceedings of the 9th

International Conference on Information and

Communication Systems, Apr. 3-5, IEEE Xplore

Press, Irbid, Jordan, pp: 72-77.

 DOI: 10.1109/IACS.2018.8355444
Shi, S., Q. Wang, P. Xu and X. Chu, 2016.

Benchmarking state-of-the-art deep learning
software tools. Proceedings of the 7th International
Conference on Cloud Computing and Big Data,
Nov. 16-18, IEEE Xplore Press, Macau, China pp:
99-104. DOI: 10.1109/CCBD.2016.029

Verhelst, M. and B. Moons, 2017. Embedded deep
neural network processing: Algorithmic and
processor techniques bring deep learning to IOT and
edge devices. IEEE Solid-State Circuits Magazine,
9: 55-65. DOI: 10.1109/MSSC.2017.2745818

https://pytorch/

