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Abstract: Through the increase in deep learning study and use, in the last 

years there was a development of specific libraries for Deep Neural 

Network (DNN). Each one of these libraries has different performance 

results and applies different techniques to optimize the implementation of 

algorithms. Therefore, even though implementing the same algorithm and 

using different libraries, the performance of their executions may have a 

considerable variation. For this reason, developers and scientists that work 

with deep learning need scientific experimental studies that examine the 

performance of those libraries. Therefore, this paper has the aim of 

evaluating and comparing these two libraries: TensorFlow and PyTorch. 

We have used three parameters: Hardware utilization, hardware temperature 

and execution time in a context of heterogeneous platforms with CPU and 

GPU. We used the MNIST database for training and testing the LeNet 

Convolutional Neural Network (CNN). We performed a scientific experiment 

following the Goal Question Metrics (GQM) methodology, data were 

validated through statistical tests. After data analysis, we show that PyTorch 

library presented a better performance, even though the TensorFlow library 

presented a greater GPU utilization rate. 

 

Keywords: Tensorflow, PyTorch, Comparison, Evaluation Performance, 

Benchmarking, Deep Learning Library 

 

Introduction 

Deep learning is an artificial intelligence field that 

allows computers to learn with experience and 

understand the world in terms of a concept hierarchy, 

with each concept defined by its relationship with 

simpler concepts. If we draw a graph showing how these 

concepts are built on top of each other, the graph is deep, 

with many layers. For this reason, it is called deep 

learning (Goodfellow et al., 2016). 

The deep learning idea is to train an Artificial 

Neural Network (ANN) of multiple layers in a set of 

data in order to allow it to deal with real world tasks. 

Although the theoretical concepts behind are not new, 

deep learning has become to be a trend in the last 

decade due to many factors, including its well-succeed 

application in a variety of problem solution (many of 

them are potentially commercial, such as the 

development of new computer architectures with a 

higher level of parallelism, the design of Convolutional 

Neural Network (CNN) and a higher accessibility to 

high performance computers (Shatnawi et al., 2018; 

Verhelst and Moons, 2017) (Raschka, 2015). 

There are many deep learning libraries, such as 

TensorFlow, Theano, CNTK, Caffe, Torch, Neon and 

PyTorch. Each one of these libraries has different 

features of performance and applies different techniques 

to optimize the implementation of algorithms. Therefore, 

even though implementing the same algorithm in 

different structures, the performance of these different 

implementations may have a considerable variation 

(Bahrampour et al., 2015; Shatnawi et al., 2018). 

Since there are a variety of open source libraries 
available, developers and scientists that work with 

deep learning need scientific experimental studies that 
point out which library is the most suitable for 
determined application. 

Being that, the present work evaluates and compares 

the Tensorflow library and PyTorch library focusing on 

their hardware utilization, hardware temperature and 

execution time in a context of heterogeneous platforms 

with CPU and GPU. We have used the Modified National 
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Institute of Standards and Technology (MNIST) database 

for training and testing the LeNet CNN. 

For the reason that there are a variety of open source 

libraries available, developers and scientists that work 

with deep learning need scientific experimental studies 

that point which library is the most suitable for 

determined application. Being that, the present work has 

as aim to evaluate and compare the Tensorflow library 

and PyTorch library focusing on their hardware 

utilization, hardware temperature and execution time in a 

context of heterogeneous platforms with CPU and GPU. 

It was used the Modified National Institute of Standards 

and Technology (MNIST) database for training and 

testing the LeNet CNN. 

The novelty that this article presents is the 

performance evaluation of PyTorch library, the use of 

GPU and CPU utilization rate as evaluation metrics and 

the use of statistical tests for validating the obtained data 

during the experiment. As a result, the PyTorch library 

presented a superior performance when compared with 

TensorFlow library, through data analysis, it was 

verified that during execution using PyTorch there is a 

smaller GPU utilization rate. It is possible to conclude 

that the communication bottleneck between CPU and 

GPU is a relevant factor for TensorFlow presenting an 

inferior performance than PyTorch, once TensorFlow 

uses more the resources of the GPU. 

For a better understanding in how the results were 

obtained, the present paper is divided into eight sections. 

In section 2 presents the used method. In Section 3, the 

conceptual bases are presented, also the used neural 

network is described and the examined libraries are 

presented. In Section 4 related works are presented. In 

section 5, the definition and the experiment planning for 

making the frameworks comparison is showed. The 

Section 6 has the execution phases of the experiment, 

including how the data were collected. In Section 7, the 

analysis and interpretation of the obtained results are 

done, besides that, it is shown the threats to validity in 

this work. Finally, in Section 8 is showed the conclusion 

and the possible future works. 

Method 

The paper consists in an experimental study of 

performance evaluation of two deep learning libraries 

(TensorFlow and PyTorch) in a heterogeneous 

computational system with CPU and GPU. For 

experimental research we have used as benchmark 

framework the LeNet CNN for training and inferring 

data in MNIST dataset. 

In a prior moment of this research we have selected 

some related works that benchmark deep learning libraries. 

The analysis of the related works demonstrated the absence 

of performance analysis of PyTorch library, in the analysis 

process also was verified that the selected experiments do 

not take in consideration the utilization rate of hardware 

components and that, in general, the authors do not use 

statistical tests for validating the data extracted from the 

experiment. We have selected the PyTorch library, for 

being little explored and the TensorFlow library since it is 

popular and for serving as performance reference. 

We used six (6) metrics: (i) execution time for inference 

algorithm, (ii) execution time for training algorithm, (iii) 

GPU utilization rate, (iv) CPU utilization rate, (v) GPU 

temperature and (vi) CPU temperature. The execution time 

is used to verify which library presents the best 

performance and the utilization rate is used to investigate 

possible causes for this performance. The selected CNN for 

evaluating performance of the libraries is LeNet and the 

selected dataset is MNIST. The reason for that is the 

availability of preexisting codes for both libraries. 
After the materials selection, it was performed an in 

silico experiment using a heterogeneous computational 
system. The experiment consisted in preparing the 
execution environment, adapting the codes extracted 
from the library’s official repository, implementing 
scrips, executing the codes and extracting data of each 
execution. The experiment’s organization followed the 
Goal Question Metric (GQM) method as indicated by 
Basili et al. (1994). 

After data extraction, it was performed Kolmogov-

Smirnov (KS) and Wilcoxon statistical tests for 

validating the data. After validation, the data could be 

analyzed and evaluated. 

Conceptual Bases 

This section presents some concepts that are 

necessaries for understanding this work. 

Convolutional Neural Networks 

The Convolutional Neural Networks (CNNs) are a 

kind of biologically inspired feed-forward neural network, 

it is developed to imitate the behavior of an animal visual 

cortex (da Costa e Silva Franco, 2016). The basic concept 

of CNNs goes back to 1979 when Fukushima (1979) 

proposed an artificial neural network including simple and 

complex cells that were very similar to the convolutional 

and pooling layers from modern CNN. 

CNNs composed by many non-linear data processing 

layers, where the output of each inferior layer feed the input 

of its immediately superior layer (Deng, 2014). They use 

convolution in place of general matrix multiplication in at 

least one of their layers (Goodfellow et al., 2016). The 

layers of CNNs may be of three kinds: Convolutional 

layer, pooling layer and dense layer. 

Convolutional Layer 

The convolutional layer consists in a set of resource 

maps, that are generated from a convolutional operation 

on input data or another resource map. Each convolutional 
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layer defines an input representation in a determined 

abstraction level (da Costa e Silva Franco, 2016). 

In its general form, the convolution is a linear 

operator, that from two given functions, results in a third 

one which is the sum of the product of those functions 

along the region implied by their superposition in 

function of the existent displacement between them 

(Goodfellow et al., 2016). It has the following form: 

 

   x a w t a da   (1) 

 

In which x(t) and w(a) are two given functions and 

s(t) the resulting function. The convolution operation is 

typically denoted by an asterisk: 

    s t x w t    (2) 

 
In case of convolutional networks, the first 

argument (in this example, function x) for the 
convolution is many times called input and the second 
argument (in this example, function w) is called 
kernel. The output is commonly called Feature Map 
(Goodfellow et al., 2016). 

In Fig. 1 there is an example of 2-D Convolution 

without flow of kernel. The output is limited to only the 

position where the kernel is fully inside of the image 

called valid convolution. In the figure there are arrows 

indicating as the left superior of the output is formed 

applying the kernel to the left superior region 

corresponding to input. 
 

 
 

Fig. 1: An example of 2-D convolution (Goodfellow et al., 2016) 

 

 
 

Fig. 2: Example of Max-pooling layer obtained from a features map input (Dertart, 2017) 
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Fig. 3: Representing LeNet-5 using DAG (Hamed Habibi Aghdam, 2017) 

 

Pooling Layer 

The pooling layer serves to progressively reduce the 
representation spatial size, reduce the number of parameters 
and the quantity of computation in the network and, 
therefore, also control overfitting (GBT, 2018a). 

A pooling algorithm commonly used is the Max-
pooling, that extracts sub-regions of a resource map (for 
example, blocks of 22 pixels), maintain its maximum 
value and discard all other values (da Costa e Silva 
Franco, 2016; GBT, 2018a). This extraction is shown in 
Fig. 2 in which the Max-pooling layer is obtained from a 
features map input. 

Dense Layer 

Fully connected layers, similar to layers of multi-

layers Perceptrons (MLP), that perform classification of 

extracting features by convolutional layers and decreased 

by pooling layers. In each dense layer, all nodes are 

connected to all nodes from the previous layer (Raschka, 

2015; da Costa e Silva Franco, 2016; GBT, 2018a). 

LeNet CNN 

Lecun et al. (1998) proposed the paradigm of weigh 

sharing and derived layers from convolution and 

grouping. Then, they projected a Convolutional Neural 

Network that is called LeNet-5. The architecture of this 

CNN is illustrated in Fig. 3. 

In this Directed Acyclic Graph (DAG), Ca, b shows a 

convolutional layer with size filters bb and the phrase/a 

in any node shows the last one from this operation. 

Besides that, P/a, b denotes an operation of pooling with 

last a and size b, FCa shows a fully connected layer with 

the neurons, Ya shows an output layer with a neuron. This 

CNN was originally proposed for recognizing manuscript 

digits, it consists of four layers of convolution pool. The 

input of a Neural Network is a 3232 single channel image. 

Besides that, the last layer of pooling is connected to the 

fully connected layer. (Hamed Habibi Aghdam, 2017). 
In this work it was used LeNet with the 

backpropagation algorithm for CNN training. 

Libraries 

In this section the evaluated libraries on this paper are 

presented. 

Tensorflow 

Tensorflow (Abadi et al., 2015) is an open source 

library for numeric computation originally developed by 

the Google Brain Team. It has a flexible architecture that 

allows easy implantation in different architectures (CPU, 

GPU and TPU), for this reason it is used in desktops, 

clusters and mobile devices. It supports machine learning 

and deep learning been also used in a variety of scientific 

domains (GBT, 2018b). 
Written from another deep learning library called 

DistBelief, TensorFlow is implemented based on directed 
graphs. In these graphs, nodes represent mathematics, 
operations and edges represents the flow of data among 
the nodes, what makes TensorFlow used in any domain 
that the computation can be designed as a flow network 
(Parvat et al., 2017; Shatnawi et al., 2018). 

TensorFlow is developed as a Python API in C/C++ 
language seeking to achieve improvements in 
performance (Parvat et al., 2017). It is available for 
Windows, Linux, Mac OS and on mobile platforms such 
as AndroidOS and Raspberry (Parvat et al., 2017). 

PyTorch 

Pytorch (Paszke et al., 2017) is developed by PyTorch 
Core Team, a group formed by many organizations such 
as: Nvidia, Facebook Open Source, ParisTech, Twitter, 
Universite Pierre et Marie Curie, University of Oxford, 
Stanford University, Uber, among others. The 
development focus is to produce a framework for tensors 
and dynamic neural networks in Python with strong 
acceleration of the GPU. 

It is a library built with the aim to be deeply integrated 

to Python, differently of TensorFlow that is a link between 

Python in a monolithic structure of C/C++. Two of its 

principal features are: Tensor computation (as Numpy) 

with strong use of GPU and deep neural networks built in 

an automatic differentiation system in reverse mode that 

allows the random way that neural network behaves with 

overhead (PyTorch, 2018a; GBT, 2018b).  

PyTorch is integrated with accelerated libraries such 
as Intel MKL and NVIDIA (CuDNN, NCCL) in order 
to maximize the performance. At the core, it is CPU 
and GPU Tensor and neural network back-ends are 
written as independent libraries with a C99 API. It can 
be used as a Numpy substitute for better utilization of 
the GPU power. 

Related Works 

This work presents a controlled experiment for the 

evaluation of two deep learning libraries. In this 

context, this section shows some papers that have a 

similar approach. 

Shi et al. (2016) performed a comparative study 
among many deep learning libraries, including Caffe, 

X C6,5 P/2,2 C16,5 C120,5 FC84 P/2,2 Y10 
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MXNet, CNTK, TensorFlow and Torch. The study 
considers three types of neural networks, including 
MLP networks, convolutional neural networks (AlexNet 
and ResNet-50) and recurrent neural networks (LSTM-
32 e LSTM-64), being executed in two platforms of 
CPU and three platforms of GPU. The comparison is 
done through execution time and convergence rate. It 
was used sets of synthetic data (the authors did not 
inform the used dataset) for measuring the performance 
of execution time and real-world set of data for 
measuring the convergence rate in their experiments. 
Hardware temperature was not used. 

Goldsborough (2016) presents a comparative study of 

five deep learning libraries: Caffe, Neon, TensorFlow, 

Theano and Torch. The comparison takes into 

consideration the extensibility, hardware utilization and 

velocity, using gradient computation time and forward 

time as metrics. The evaluation was accomplished using 

CNN in CPUs and GPUs, but it was not taken into 

account the hardware temperature. 

Kruchinin et al. (2015) presented a comparative 

analysis of some popular deep learning libraries and freely 

available: Caffe, Pylearn2, Torch e Theano. The authors 

execute a MLP network and a CNN network, whose 

model is not detailed, for training the MNIST dataset. 

Accuracy and execution time are calculated, as also the 

usability and flexibility of each library are measured. As a 

conclusion, Caffe and Torch libraries were considered the 

most suitable for training MNIST dataset. 

Kovalev et al. (2016) shows a comparative study of 

velocity (training and classification time), classification 

precision and of implementation complexity (number of 

code lines) among deep learning libraries: Theano, 

Torch, Caffe, TensorFlow and Deeplearning4j. This 

study limited itself to the neural network fully connected 

(MLP) executing in CPU architectures, these networks 

and CPU architectures are not the most indicated tools 

for exploring the potential of deep learning libraries. The 

study also does not explore the impact of hardware 

temperature and scalability. 

Liu et al. (2018) presented project considerations, 

metrics and challenges for the development of an 

effective benchmark for deep learning softwares and 

illustrate some observations through a comparative stead 

of three deep learning libraries: TensorFlow, Caffe and 

Torch. The experiments consisted in executing a LeNet 

network for learning and inference in MNIST dataset 

and CIFAR-10, the authors executed the LeNet network 

with two different optimization algorithms: ADAM and 

SGD. The results illustrated that these libraries are 

optimized with their standard settings, but the optimized 

standard setting in a set of specific data may not work 

effectively for other sets of data with respect to 

execution time performance and to learning precision. 
Shatnawi et al. (2018) executed a comparative study 

among three open source libraries for deep learning: 

TensorFlow, CNTK and Theano. The performed 
evaluation of this work considers the CPU and GPU 
performance using convolutional neural networks (CNN) 
and the MNIST dataset and CIFAR-10 measuring 
processing time according to the number of used threads. 
The results were the following: Related to the image 
recognition dataset (MNIST and CIFAR-10) CNTK 
presented the best performance compared to TensorFlow 
and Theano in terms of GPU and CPU multithreading, 
but in CIFAR-1 processing using 8,16 and 32 threads in 
CPU Tensorflow was faster than CNTK, Theano 
revealed being slower than the other libraries. The 
authors did not inform the used CNN architectures. 

Fonnegra et al. (2017) evaluated and compared the 
following libraries: TensorFlow, Theano and Torch. The 
comparison is performed through the implementation of 
recurrent and convolutional architectures for classifying 
images of two datasets: MNIST and CIFAR-10. The 
utilized architectures were LeNet and LSTM. For 
evaluating performance, the authors calculated the 
forward time (execution time of gradient). As a result, 
concluded that Torch requires the shortest computational 
time for each iteration in CPU and GPU configurations, 
it means, it reports the less usage of time for training and 
gradient computation for configurations of CPU and 
GPU, but also report the greatest time for testing. For 
processing architectures with LSTM cores, TensorFlow 
was faster than Theano in all the cases, except by 
recognizing task CIFAR-10 time of the test. The 
evaluation does not take into consideration the utilization 
and the temperature of the hardware. 

None of the found related works present a 

performance evaluation of PyTorch library, they do not 

take into consideration the CPU and GPU utilization rate 

and do not apply statistical tests for validating data. 

Definition and Planning 

In this section, it is showed the planning strategy of the 

proposed controlled experiment. The next subsections 

present aim and planning of the experiment (context, 

dependent and independent variables, hypothesis, object of 

analysis, experiment project and instrumentation). 

Definition of the Aim 

The aim of this work is to evaluate (according to 

execution time, temperature and scalability) the PyTorch 

and TensorFlow libraries, verifying its behavior in learning 

and inference phases of convolutional neural network. 

The evaluation was accomplished with an in silico 

experimental study-where the situations will be 

described by computational models. 
Following the aim definition formalization of GQM 

model, proposed by Basili et al. (1994), the aim can be 
rewritten as: Analyse the deep learning libraries 
TensorFlow and PyTorch, for the purpose of compare 
them with respect to execution time, scalability and 
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hardware temperature from the point of view of 
researchers, scientists and developers that work with 
deep learning in the context of LeNet convolutional 
neural network executing in heterogeneous platforms 
with CPU and GPU. 

Planning 

Context Selection 

The experiment was in silico and used the Dell 

Inspiron 15 Gaming i15-7567 notebook. For each library 

it was executed the training algorithm (learning) and the 

inference for a LeNet convolutional neural network 

(CNN) processing a set of MNIST data, what allowed to 

verify the behavior of the libraries in hybrid systems 

with a GPU that uses CUDA and CPUs. 

Dependent Variables 

Average learning execution time (s), average inference 

execution time (s), CPU temperature, GPU temperature, 

CPU utilization tax (%), GPU utilization tax (%). 

Independent Variables 

Code compilation, library parallelization capacity, 

algorithm complexity contained in the libraries, room 

temperature and execution environment (notebook). 

Hypothesis Formulation 

The research questions for this experiment are: Does the 

libraries have similar execution time? Does the execution of 

algorithms that use libraries to generate a similar 

temperature in the GPU? Does the execution of algorithms 

that use libraries to generate a similar temperature in the 

CPU? Does the framework present the same utilization tax 

in the GPU? Does the library present the same utilization 

tax in the CPU? Each of these questions must be answered 

for both learning and inference process. 

All the questions are answered from data extracted 

from execution of the same artificial neural network. For 

the first question, it can be considered learning average 

time of the network (lrn) and the inference average time 

(inf), for the second question it can use the GPU average 

temperature during the learning process (lrn) and during 

the inference process (inf), for the third question it can 

use the CPU average temperature during the learning 

process (lrn) and during the inference process (inf), for 

the fourth question it can utilize the GPU utilization tax 

average during the learning process (lrn) and during the 

inference process (inf) and, for the last question, it can 

use the CPU utilization tax average (in percentage) 

during the learning process (lrn) and during the 

inference process (inf). Each one of the measures has to 

be done for each one library: TensorFlow and PyTorch. 

In this context, the following hypothesis can be verified 

(knowing that, TF = TensorFlow, PT = PyTorch): 

Hypothesis 1 (For Inference and Learning 

Processes) 

H0: There is not statistical differences between the 

library execution average times,  i i

TF PT   

H1: There are statical differences in the average 

execution time of the libraries, that means, 

 i i

TF PT    

Hypothesis 2 (For the Learning and Inference 

Processes) 

H0: There is not statistical differences between the GPU 

average temperature during the library executions, 

that means,  i i

TF PT    

H1: There are statistical differences between the GPU 

average temperature during the library executions, 

that means,  i i

TF PT    

Hypothesis 3 (For the Learning and Inference 

Processes) 

H0: There is not statistical differences between the CPU 

average temperature during the library executions, 

that means,  i i

TF PT   

H1: There are statistical differences between the CPU 

average temperature during the library executions, 

that means,  i i

TF PT   

Hypothesis 4 (For the Learning and Inference 

Processes) 

H0: There is not statistical differences between the GPU 

utilization tax average during the library executions, 

that means,  i i

TF PT   

H1: There are statistical differences between the GPU 

utilization tax average during the library executions, 

that means,  i i

TF PT   

Hypothesis 5 (For the Learning and Inference 

Processes) 

H0: There is not statistical differences between the CPU 

utilization tax average during the library executions, 

that means,  i i

TF PT   

H1: There are statistical differences between the CPU 

utilization tax average during the library executions, 

that means,  i i

TF PT    

 

Object Selection 

The experiment utilized a set of image data, the 

Modified National Institute of Standards and 

Technology database (MNIST database) (LeCun and 
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Cortes, 2010). MNIST is a set of manuscript digits 

commonly used to train image processing systems and 

has the following features: 

 

 Images of size 2828 pixels 

 10 classes, one class for each digit 

 Subset with 60000 training data 

 Subset with 10000 test data 

 

About the codes, the experiment utilized two codes 

in a LeNet CNN implemented in Python, the LeNet 

network is presented by Lecun et al. (1998). The first 

code, using TensorFlow libraries, was adapted from the 

code available in a TensorFlow repository in Github 

(GBT, 2017). The second code, used libraries from 

PyTorch was adapted from the code available in a 

PyTorch repository in Github (PyTorch, 2018b). The 

adaptations were done in order to let both codes with 

the same parameter patterns, this process is explained 

in the subsection 5.1. 

Experiment Project 

The experiment project can be summarized in the 

following steps: 

 

1. Preparing the execution environment 

2. Adapting the available codes from TensorFlow and 

PyTorch repositories 

3. Implementing scripts 

4. Measuring 100 times the algorithm execution time 

during the learning phase for each one of the 

libraries 

5. Measuring 100 times the algorithm execution time 

during the inference phase for each one of the 

libraries 

6. Collecting 100 times the CPU and GPU utilization 

during the execution of each phase (learning and 

inference) 

7. Collecting 100 times the CPU and GPU temperature 

during the execution of each phase (learning and 

inference) 

8. Applying statistical tests for the hypothesis analysis 

 

Instrumentation 

The used software are the Python environment 3.5.2, 
Anaconda 3, TensorFlow 1.8, PyTorch 1.0, CUDA 9.0, 
cuDNN 7.1, Nvidia Driver 396.26, Nvidia System 
Management Interface, Sensors 3.4.0 and Ubuntu OS 
16.04 LTS. The hardware for experiment execution is a 
Dell Inspiron 15 Gaming i15-7567 notebook, 8GB 
2133MHz DDR4 RAM Memory, 7th Generation Intel 
Core i5-7300HQ Quad Core (6MB Cache, up to 
3.5GHz, 1TB 5400 rpm HD with 8GB cache and GPU 
NVIDIA GeForce GTX 1050. The GPU specifications 
are available in Table 1. 

Table 1: GPU NVIDIA GeForce GTX 1050 Specifications 

Technical Information  Value 

GPU Architecture  Pascal 

NVIDIA Cuda Cores  768 

Frame Buffer  4GB GDDR5 

Memory Velocity  7G bps 

Boost Clock  1392 MHzx 

 

Operation of the Experiment 

Preparation 

The experiment preparation had as first task the 

installation of software inside the notebook including the 

environment Python, Anaconda, cuDNN and the 

libraries. The selection of a dataset was done after that, 

MNIST dataset was selected by because it is the most 

used in the related works for library evaluation. 

It was selected codes in the libraries official 

repositories that train and test a LeNet CNN network 

using the MNIST dataset. The code for PyTorch library 

available in PyTorch (2018b) and the code for 

TensorFlow library were modified and, posteriorly, used 

for collection of data. The accomplished modifications 

aimed to standardize the parameters of both codes 

according to Table 2. 

It was created scripts in order to automatize the 

collection of data, each script was developed to execute 

the learning and inference and store the data of each one 

of the variables. 

Execution 

The created scripts for automation of data collecting 

worked in the following way: Each script executed 

learning and inference of the LeNet network 

sequentially, in each one of these executions it was 

stored 100 data from two variables with the same 

criteria. 

The execution steps were: 

 

1. Script execution that stores 100 measures of 

execution time of learning and 100 measures of 

execution time of inference using TensorFlow 

2. Script execution that stores 100 measures of 

temperature during the execution of learning and 

100 measures of temperature during the execution of 

inference using TensorFlow 

3. Script execution that stores 100 measures of CPU 

utilization during the execution of learning and 100 

measures of CPU utilization during the execution of 

inference using TensorFlow 

4. Script execution that stores 100 measures of GPU 

utilization during the execution of learning and 100 

measures of CPU utilization during the execution of 

inference using TensorFlow 

5. Repeat the process, but using PyTorch 



Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799 

DOI: 10.3844/jcssp.2019.785.799 

 

792 

Table 2: Used LeNet CNN parameters 

Parameters  Value 

Batch size  100.00 

Number of epochs  1.00 

Number of steps  600.00 

Learning rate  0.01 

 

Observation about the execution: 

 

 When storing the execution time data, the first value 

was ignored in order to avoid outliers occasioned by 

first library calls from libraries 

 The environment temperature during execution of 

TensorFlow was 22C 

 The environment temperature during execution of 

PyTorch was among 24C and 26C. 

 

Data Collection 

In order to collect time data it was utilized the 
function time.time() from time library of Python 
language. In order to measure the learning execution 
time, the time starts to be counted before the training 
procedure call, the count is finalized after the procedure 
end. For measuring the inference execution time, the 
library time.time() was applied the same way, but for the 
classification procedure. 

The CPU temperature and utilization collection were 
done using Sensors 3.4.0, the GPU temperature and 
utilization rate were done using the NVIDIA System 
Management Interface. The measures were done several 
times during the execution of each procedure (learning 
and inference), it can have few measures done before 
and after the execution of the procedures. 

For each one of the codes, one using TensorFLow 

and other using PyTorch, it was collected the following 

dependent samples: 

 

 100 samples of learning execution time 

 100 samples of inference execution time 

 100 samples of GPU temperature (C) during the 

learning phase 

 100 samples of GPU temperature (C) during the 

inference phase 

 100 samples of CPU temperature (C) during the 

learning phase 

 100 samples of CPU temperature (C) during the 

inference phase 

 100 samples of GPU utilization rate (%) during the 

learning phase 

 100 samples of GPU utilization rate (%) during the 

inference phase 

 100 samples of CPU utilization rate (%) during the 

learning phase 

 100 samples of CPU utilization rate (%) during the 

inference phase 

Data Validation 

As a way to validate data and to evaluate statistical the 

raised hypothesis, the statistical test Kolmogov-Smirnov 

(KS) was used initially for testing if the acquired metrics 

had a Gaussian probability distribution (normal). From the 

result of this test (that showed the data had not a normal 

distribution), it was used the paired Wilcoxon test for 

analysis of the presented hypothesis. 

The paired Wilcoxon test was selected for analysis of 

the presented hypothesis because it is a non-parametric 

test used to compare if the position measures of two 

samples are equals in case that samples are dependents. 

The subsequent section presents the result of KS test 

and also the obtained results from paired Wilcoxon test 

having in mind the raised hypothesis. 

Results 

As mentioned at the end of the last section, the KS 

statistical test was used for verifying the normality of 

data, therefore, a level of thrust of 95% was applied. 

From the results it was identified that for all dependent 

variables, the probability distribution is not normal, 

because the returned p-values (a measure that indicates 

the probability of evaluated set to follow the normal 

distribution), were next to zero (less than 1010). 

As also previously mentioned, the used test for 

hypothesis analysis was the paired Wilcoxon test with a 

thrust level of 95%, we will analyze separately its results 

in subsection 6.1. 

Analysis and Interpretation 

Execution Time (Hypothesis 1) 

Here we analyze data for Hypothesis 1. 

The result of paired Wilcoxon test for the learning 

execution time returned a p-value of 

3.8965598450959091018, therefore the hypothesis H0 

was strongly rejected and, consequently, the hypothesis 

H1 was not rejected. The graphic in Fig. 4, that shows 

time in seconds for each code, it shows clearly a 

smaller learning execution time for the code that uses 

PyTorch library. 

The result of paired Wilcoxon test for the inference 

execution time returned a p-value of 

3.8965598450959091018, therefore the hypothesis H0 

was strongly rejected and, consequently, the hypothesis 

H1 was not rejected. The graphic in Fig. 5, that shows 

time in seconds for each code, shows clearly a smaller 

inference execution time using the PyTorch library. 

GPU Temperature (Hypothesis 2) 

Here we will analyze data for Hypothesis 2. 

The result of paired Wilcoxon test for GPU average 

temperature during learning phase returned a p-value of 
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3.8965598450959091018, therefore the hypothesis H0 

was strongly rejected and, consequently, the hypothesis 

H1 was not rejected. The graphic in Fig. 6, shows 

temperature in Celsius degrees (C) for each code, shows 

clearly a smaller average temperature for the code that 

uses PyTorch library. 
 

  
 
 

Fig. 4: Learning execution time 
 

 
 
 

Fig. 5: Inference execution time 
 

 
 
 

Fig. 6: GPU temperature (C) during learning phase 
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Another important thing that can also be noted 

analyzing the graphic in Fig. 6 is the presence of two 

outliers for PyTorch. They may be occasioned for a 

sudden drop during the begin of the code execution that 

uses PyTorch for learning, that means, the GPU was 

more heated before the execution of PyTorch. 

The result of paired Wilcoxon test for GPU average 

temperature during the inference phase returned a p-

value of 9.5953590877701751016, therefore the 

hypothesis H0 was strongly rejected and, consequently, 

the hypothesis H1 was not rejected. The graphic in Fig. 

7, shows temperature in Celsius degrees (C) for each 

code, shows clearly a smaller average temperature for 

the code that uses PyTorch library. 

Another important thing that can also be noted 

analyzing the graphic in Fig. 7 is the presence of some 

outliers for PyTorch. They may be occasioned for a 

sudden drop during the begin of the code execution that 

uses PyTorch for learning, that means, the GPU was 

more heated before the execution of PyTorch. 

CPU Temperature (Hypothesis 3) 

The result of paired Wilcoxon test for CPU average 

temperature during the execution of the learning phase 

returned a p-value of 3.63181890050861531013, 

therefore the hypothesis H0 was strongly rejected and, 

consequently, the hypothesis H1 was not rejected. The 

graphic in Fig. 8, shows temperature in Celsius degrees 

(C) for each code, shows clearly a smaller average 

temperature for the code that uses PyTorch library. 

Another important thing that can also be noted 

analyzing the graphic in Fig. 8 is the presence of some 

outliers for TensorFlow and PyTorch. The outliers from 

PyTorch could also be occasioned for a sudden drop of 

temperature during the begin of learning code execution, 

it means, the GPU was more heated before the execution 

of PyTorch. The outliers from TensorFlow, contrary, are 

occasioned by a sudden ascent of the CPU temperature 

when executing TensorFlow. 

 

 
 
 

Fig. 7: GPU Temperature (C) during inference phase 

 

 
 
 

Fig. 8: CPU Temperature (C) during learning phase 

51.0 
 

50.5 
 

50.0 
 

49.5 
 

49.0 
 

48.5 
 

48.0 
 

47.5 

TensorFlow PyTorch 

65 

 
64 

 
63 

 
62 

 
61 

 
60 

TensorFlow PyTorch 



Felipe Florencio et al. / Journal of Computer Science 2019, 15 (6): 785.799 

DOI: 10.3844/jcssp.2019.785.799 

 

795 

The result of paired Wilcoxon test for CPU average 

temperature during the execution of the inference 

phase returned a p-value of 

4.5318610611095461018, therefore the hypothesis 

H0 was strongly rejected and, consequently, the 

hypothesis H1 was not rejected. The graphic in Fig. 9, 

shows temperature in Celsius degrees (C) for each 

code, shows clearly a smaller average temperature for 

the code that uses PyTorch library. 

Another important thing that can also be noted 

analyzing the graphic in Fig. 9 is the presence of some 

outliers. The graphic presents some outliers of low 

temperature, both for TensorFlow and for PyTorch, 

that could be occasioned by a sudden ascent of 

temperature. the generated outliers in the PyTorch 

data could also be occasioned by oscillation in CPU 

utilization. 

GPU Utilization (Hypothesis 4) 

The result of paired Wilcoxon test for GPU average 

utilization rate during the execution of the learning phase 

returned a p-value of 3.8965598450959091018, 

therefore the hypothesis H0 was strongly rejected and, 

consequently, the hypothesis H1 was not rejected. The 

graphic in Fig. 10, that presents the GPU utilization rate 

(%) for each code, shows clearly a bigger utilization rate 

during the learning phase execution from code that uses 

TensorFlow library. 

 

 
 
 

Fig. 9: CPU Temperature (C) during inference phase 

 

 
 

 
Fig. 10: GPU Utilization rate(%) during learning phase 
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The result of paired Wilcoxon test for GPU average 

utilization rate during the execution of the inference 

phase returned a p-value of 

3.8965598450959091018, therefore the hypothesis 

H0 was strongly rejected and, consequently, the 

hypothesis H1 was not rejected. The graphic in Fig. 

11, that presents the GPU utilization rate (%) for each 

code, shows clearly a bigger utilization rate during the 

learning phase execution from code that uses 

TensorFlow library. 

CPU Utilization (Hypothesis 5) 

The result of paired Wilcoxon test for the CPU 

utilization rate during execution of learning phase 

returned a p-value of 0.4851894147442428, therefore the 

hypothesis H0 was not rejected. The graphic in Fig. 12, 

that presents a CPU utilization rate (%) for each code, 

shows a utilization rate very similar, with the PyTorch 

rate presenting a bigger variance. 

The result of paired Wilcoxon test for the CPU 

utilization rate during execution of inference phase 

returned a p-value of 3.313354231943190818, 

therefore the hypothesis H0 was strongly rejected and, 

consequently, the hypothesis H1 was not rejected. The 

graphic in Fig. 13, that presents the CPU utilization 

rate (%) for each code, shows clearly a bigger 

utilization rate during inference phase of code using 

PyTorch library. 

Threats to Validity 

Statistical tests were used as a way to mitigate bias 

related to conclusion with respect to established 

hypothesis (conclusion validity). The first was the KS 

test, using for verification of data normality. This step 

was necessary for choosing the following test, related to 

comparison of algorithms to be utilized, that, being a 

rejected null hypothesis of the KS test, it was used a non-

parametric test for dependent samples, the paired 

Wilcoxon test. Thus, it might have a statistically 

satisfactory conclusion, avoiding a selection of a library 

detriment of another only by the sample averages. 

It was monitoring the environment temperature from 

the Aracaju city during the data collection process as a 

way of mitigating bias about the temperature data 

samples (intern validity), but the intern temperature of 

the room where the notebook was located was not 

adequately monitored, thus being a threat to validity. 

Another threat to validity about the intern validity is 

that it was not monitored all the process executed by the 

operating system during the code execution. Some 

processes might occasionally influence in the code 

execution causing outliers. It was mitigated for execution 

times, eliminating the collection of the first sample and 

was mitigated for all variables turning the graphic 

environment off and using the Anaconda software. 

Only one kind of deep network was used, the LeNet 

CNN, what represent a low variety of networks for 

library analysis constituting a threat to external validity. 

Another threat to external validity is that only one device 

was used to processing the codes, a greater variety of 

devices could mitigate the bias. 

The experiment authors have little experience using 

both the libraries, therefore the codes may have errors 

that were unnoticed constituting a threat to construct 

validity. In order to mitigate this threat it was used codes 

already done available in the official repositories from 

the library developers (with modifications, as previously 

explained), it was used a widely used network (LeNet 

CNN) in literature and am also widely used among the 

related work dataset (MNIST dataset).  

 

 
 

 
Fig. 11: GPU utilization rate (%) during inference phase 
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Fig. 12: CPU utilization rate (%) during learning phase 

 

 
 

 
Fig. 13: CPU utilization rate (%) during inference phase 

 

Conclusion and Future Works 

Deep Neural Network tools are a recurrent subject in 

the academia and industry with several researches related 

to the creation of new libraries, library performance 

evaluation, execution optimization techniques and the 

creation of dedicated devices. 

In this context, the present work showed an approach 

related to performance of available open source libraries, 

comparing them in a heterogeneous architecture with 

CPU and GPU according to their performance. 

The compared libraries TensorFlow and PyTorch are 

indicated tools when dealing with CNN implementation 

with CUDA support. In order to compare them, 

execution time, hardware temperature impact and 

utilization tax were evaluated. 

In order to test the hypothesis (about execution time, 

hardware temperature and hardware utilization), it was 

used execution time in seconds, CPU and GPU 

temperature in degrees Celsius and CPU and GPU 

utilization tax in percentage. Two codes were used, the 

first one using PyTorch library and the second one using 

TensorFlow framework, both of them implemented in a 

LeNet CNN and being executed with the MNIST dataset. 

It was possible verify that PyTorch library presented a 

better performance in the showed context. However, it is 

necessary to note that PyTorch uses less the GPU potential 

than it does with CPU potential, unlike TensorFlow that 

during inference focus its processes in the GPU. 
Some theses may be raised for a better performance 

of PyTorch. The first one is that it uses less GPU, 
reducing the communication bottleneck between CPU 
and GPU. The second one is that PyTorch utilizes 
function less automatized leaving harder work for 
programmers. TensorFlow is much simpler and intuitive, 
however it may have impacted in algorithm 
generalization and, consequently, in non-optimized 
algorithms for specific neural networks. 
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As future work, it is recommended a deeper 

investigation into the impact of each library in GPUs 

utilizing other hardware as clusters with several GPUs. It 

also is recommended verifying the performance of these 

libraries implementing other CNN and RNN networks. 

Lastly, it is recommended comparing these libraries with 

other popular libraries such as Caffe, Microsoft CNTK, 

Theano and Deeplearning4j. 
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