

 © 2020 Ahmed Gaber Abu Abd-Allah, Ashraf Zaki Ghalwash and Aya Sedky Adly. This open access article is distributed

under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

A Scalable Hierarchal Based Addressing Routing

Architecture in Software Defined Network (SDN)

Ahmed Gaber Abu Abd-Allah, Ashraf Zaki Ghalwash and Aya Sedky Adly

Department of Computer Science, Helwan University, Egypt

Article history

Received: 12-06-2020

Revised: 21-08-2020

Accepted: 02-09-2020

Corresponding Author:

Ahmed Gaber Abu Abd-Allah

Department of Computer

Science, Helwan University,

Egypt
Email: ahmedgaber_cs@hotmail.com

Abstract: Software Defined Networking (SDN) designs are initiated with

their own apprehensions and challenges that are needed to be addressed by

researchers. A Controller, the main and the dominant network resource in

SDN, has complex connections that lead to traffic overhead between other

devices in the network and also from and to other Controllers. A

Controller’s capacity of communications obtains will be grown when the

network gets bigger. Controller scalability one of the biggest issues of SDN

caused by this growth. This paper presents SDN with a new framework

architecture based on addressing routing through multiple layers of

controllers positioned and encompassed in two levels hierarchal

sequent. As a result, an efficient resource allocation and scalability

strategy are achieved. The framework is implemented and evaluated.

Experimental results show their superiority by reducing the number of

messages handled via the Super Intend Controller for each domain and

sustained performance for the entire network.

Keywords: Controller Scalability, Hierarchal Framework, Multiple

Controllers

Introduction and Motivation

Scalability and Flexibility are common catchy words

in the data centers field (Singha et al., 2014).

Organizations have to seek a cheap way to expand their

networks rapidly, whereas monitoring is easy and

organizations do not stick to special vendors. Outdated

networking has many restrictions that prevent it from

meeting the needs of today’s users and enterprises due to

its limited capabilities. Forming or setting up network

strategies and applications needs more skilled people,

large budget and time consumption to achieve

sustainable network performance. Moreover, in order to

achieve scalability in SDN, you will face issues resulting

from the centralized controller, which is one of the core

ideas of SDN. Many researches try to improve the

scalability, especially in the control plane because it is

the most complicated part in the network and it is

responsible for all communications; and improving

scalability comes in particular through reducing the

overhead of the centralized controller in various aspects

(Karakus and Durresi, 2015; Farhady et al., 2015;

Tavakoli et al., 2009). SDN has been established upon a

potential design that includes all the control services in a

centralized controller. These services permit a complete

wide view of the network, developing control

applications a well as applying policies to develop much

informal in this setup. However, controllers still can

possibly be the tailback in the network process, when the

network magnitude raises and more requests and events

are sent to the controller, consequently, at some point

controller cannot handgrip all the incoming requests

(Tavakoli et al., 2009). Huge data center means millions

of flows and links between network devices and

controller, this leads to possible traffic jam and

overloaded controller. Benchmarks on installed NOX

controllers show that an individual controller can handle

at least 30 K new flows setup per second. Decoupling of

control plane and data plane, magnitude of

requests/events controlled by the controller and

switch/controller communication interruption are the

reasons leading to the scalability issue (Farhady et al., 2015;

Tavakoli et al., 2009; Rana et al., 2019; Metzler and

Metzler, 2015; Karakus and Durresi, 2016). Thus, when

you think how to reduce the traffic load on the main

controller and how to have more than one controller in

a hierarchical structure (Oktian et al., 2017), where

each controller must have its responsibilities, an answer

comes to mind. Each controller will be responsible for

a sub tree (domain) from the network; meanwhile the

network will be divided into certain levels, each one of

which has its network addressing. The paper is

Ahmed Gaber Abu Abd-Allah et al. / Journal of Computer Science 2020, 16 (8): 1185.1194

DOI: 10.3844/jcssp.2020.1185.1194

1186

organized as follows: Section 2 has the related works

done to enhance the controller performance for better

scalability. Section 3 explains the details of the

proposed framework and how it works and section 4

has the experimental results and evaluations. As well as

a proof of concept for the evaluation, comparison and

discussion, that shows that the proposed framework

outperformer’s similar approaches found in the

literature. Finally, section 5 summarizes the

conclusions and future works.

Related Works

Scalability is one of the dominant SDN challenges

(Rana et al., 2019). The objective of scalable Controller

is diverse from the network and application’s

interpretation. The anticipated resolutions to controller

scalability problem of an SDN system can be off the

record in two comprehensive categories (Metzler and

Metzler, 2015). First, switch plane itself is to redefine

the controller structure and its hierarchy. Second

grouping purposes to adventure some renowned

optimization techniques in order to improve the usage

of all supportive functions of the resources in SDN,

such as data plane resources and management plane

resources. To improve the scalability of an SDN

network, networking topologies like central controller

architecture and scattered networking are famous

settings for SDN networks.

As (Karakus and Durresi, 2015) proposed a

construction consisted of certain stages from bottom to

up, these stages could be increased. The framework

proposed in this study consists of two levels: Network

Level (bottom level)-Data Plane, consists of

independent fields such as ISPs, independent systems

which are also SDN domains with their own local

controllers; and Broker level (up level)-Control Plane,

containing of a super controller substitute like a

superintendent for the bottom level controllers. Also an

obtainable a categorized SDN architecture and inter-AS

QoS based routing methodology, which improved the

scalability of the control plane in an SDN network by

dropping the number of messages received by

controller. A comparison has been placed between the

distributed and hierarchal frameworks, ensuring that

the hierarchal is more effective than the distributed in

different aspects like using the QoS or sharing

information between the local controllers.

Furthermore, this work showed that the network

controller would handgrip less transportations for

inter-AS traffic flow in a hierarchic atmosphere

compared to non-hierarchic environment since they

did not need to keep global network interpretation and

coordinate with other situations. This situation

reduced the number of messages but the influences

increased in the system. Compared to our proposed

framework, we have added the factor of the

addressing and increasing the responsibility of the

local controller to handle more messages. In the

proposed framework, the SC will interfere only when

we have packets transmission from different domain

and different addressing level.

The key factor in the related work was designed to

enable network machinists to reproduce resident

controllers on call and release the consignment on the

upper level, the processes were frequent events in

highly replicated local control applications and rare

events in a central location. The major issue was that

local controllers did not propagate an OpenFlow event

unless the root controller had subscribed to that event.

Thus, without subscription to all OpenFlow events in

all local controllers, we could not guarantee that

existing OpenFlow applications work as expected

(Hassas Yeganeh and Ganjali, 2012). OpenFlow made

the controller manage too many micro-flows, which

created extreme load and overhead on the controller

and switches. DevoFlow treated with short flows at

the OpenFlow switch, while only large flows were

directed to the controller to be handled. In addition,

this came through two major functions; (a) reducing

the need to transfer statistics for small flows and (b)

possibly reducing the need to appeal the control plane

for maximum flow settings (Curtis et al., 2011).

Proposed Framework

This section explains the details of the proposed

framework, its scenarios and how it works.

Framework Architecture

 In this section, we are going to propose a framework

that depends on dividing the network into certain sub- B

tree networks vertically as domains. Each domain has

certain number of switches, as shown in Fig. 1. The

entire network has its Super Intend Controller that will

have the global view of the entire network and this Super

Intend Controller is located at level zero (assuming the

network from up to down in levels according to the

Controller type), we will have two types of controllers,

the mentioned above (SC) plus the Domain Controller

(DC). In our framework, the levels are uniquely

distinguished by network addresses and the

Controllers verifies the addresses in case of packets

modifying-and this is not in paper scope-(checking

where the packets are coming from which level).

Next, we are going to demonstrate all possible

scenarios of sending and receiving a data packet

between the source and destination using the proposed

framework and evaluate the interference of all

Controllers in the mentioned scenarios.

Ahmed Gaber Abu Abd-Allah et al. / Journal of Computer Science 2020, 16 (8): 1185.1194

DOI: 10.3844/jcssp.2020.1185.1194

1187

Fig. 1: Basic structure of the proposed framework just shows the types of Controllers and network’s levels

Routing Strategies

In this section, the scenarios will be defined and

stated below.

Scenario A

As stated in Fig. 2, if we have a source X that wants to

send a packet to a destination Y and both are linked to

switches under the same domain, this will be the simplest

case we could have. The Domain Controller (DC) is aware

of all paths inside its cluster or domain, which means that it

has a view of all possible paths between the cluster

switches, so as stated below there is no way for a

connection to be settled between the DC and the SC.

The packet will directly be delivered to the

destination upon the flow entries defined by the DC

inside the flow table in each switch controlled by the

mentioned DC.

Scenario B

When we have a sender X needs to send packet to a

receiver Y, as per Fig. 3 (different domain but in the same

address level). Moreover, in such case, getting back to the

SC still suspended, the only way to figure out the needed

and optimal path for the packet transmission in case the

neighbor DC is not connected or down for any reasons

because if the neighbor DC is available and connected to

the requester DC, then there is no need to the SC.

 In this example, X that is connected to Switch (S1)

wants to send a packet to Y which is connected to

Switch (S6), so each DC is aware of its switches paths

and has a map view of its domain which is shared with

other DC(s) of the same level. In such case the DC must

get back to the neighbor DC(s) in its level, sending

control packets asking for the optimal path.

In this case, the DC declares a specific switch as

border node and this happens through a declaration

process of all paths done by each DC (declaration

process is not included in this study scope), we

demonstrate the transferring of packets through the

border nodes in Fig. 5 and 6.

Scenario C

The most complicated case, when X sends to Y
and both are in different domain and level (Fig. 4). In
this case, the DC from different levels cannot talk to
each other’s. When the DC cannot offer the needed
path, it will get back to the SC, sending a message
asking for the optimal path. The SC replying with the
right path and the DC(s) will use their border nodes as
mention above in scenario B.

As stated in Fig. 5, the red dot line clarifies that the
process is hold until getting the right path to Y through
sending a message to the SC asking for it, because the
SC has the global network map view. Therefore, each
connection is a link between source and destination and
each of them is in a different domain, then each
connection equals two messages sent by the SC.

S3 and S4 act as borders nodes of two different domains
with different addresses (Fig. 4 to 6). The DC of each
domain distinguishes these addresses because it has the
local map view of its domain. Therefore, to determine
which domain in our proposed framework the packet
belongs to, 3-bits will be reserved as IP header the packet is
captured at the forwarding device waiting for a
confirmation from the DC after the forwarding device
checks and finds no match in the flow table.

Level 0

Address: 0

Super intend controller

Level 1

Address: 01

Level 1

Address: 011
Level 1

Address: 012

Controller Controller Controller

S1 S2 S3 S4 S5 S6 Sn Sn-1

Ahmed Gaber Abu Abd-Allah et al. / Journal of Computer Science 2020, 16 (8): 1185.1194

DOI: 10.3844/jcssp.2020.1185.1194

1188

Fig. 2: X sends a packet to Y in the same domain and the communication to the Super Intend Controller is not allowed

Fig. 3: X sends packet to Y - different domain and both requester and neighbor DCs are not connected

S1

Level 0

Address: 0

Super intend controller

Level 1

Address: 01

Controller

S2
S3

X Y

Level 0

Address: 0

Super intend controller

Level 1

Address: 010

Controller

Level 1

Address: 011

Controller

S1 S2 S3 S4 S5 S6

X
Y

Ahmed Gaber Abu Abd-Allah et al. / Journal of Computer Science 2020, 16 (8): 1185.1194

DOI: 10.3844/jcssp.2020.1185.1194

1189

Fig. 4: Scenario C, the multi-level view for the proposed framework

Fig. 5: X sends a packet to Y using S3 and S4 as border nodes, different domains and levels

Level 0

Address: 0

Super intend controller

Level 1

Address: 010

Controller

Level 1

Address: 011

Controller

S1

Controller

S2 S3 S4 S5 S6

S7 S8
S9 X

Y

Level 2

Address: 020

Level 0

Address: 0

Super intend controller

Level 1

Address: 010

Controller

Level 1

Address: 011

Controller

S1 S2
S3 S4 S5

S6

X
Y

Ahmed Gaber Abu Abd-Allah et al. / Journal of Computer Science 2020, 16 (8): 1185.1194

DOI: 10.3844/jcssp.2020.1185.1194

1190

Fig. 6: X sends a packet to Y, different domains but same addressing level using domain border nodes

 Then, the DC checks the map view of its domain; if

the packet received by the switch belongs to its domain

range of addresses, then the DC will send an event to the

switch to add that entry in the flow table (Table 1)

because it is supposed to be listed (packet held for

modification process). Otherwise, the DC will send a

message to the SC requesting a path to the destination

to reply to the switch with the requested path. As

shown below, S3 will forward the packet received

from S1 to S4 and then S4 forwards the packet to S6

then to the destination Y.

The DC must update S1 by the new destination

path and refresh its flow table by adding the new entry

as shown in Table 1 (Updating the header fields,

actions and statistics attributes) (Open Networking

Foundation, 2015).

 Figure 6 clarifies the dual connection happened

between the SC, DC1 and DC2 by sending messages

(Fig. 6), the first message from DC1 is requesting the

interference of SC through replying to DC1 by the

requested path. The second message has been sent to

DC2 requesting to run the declaration process and get

the border node ready. In addition, DC2 refreshes the

flow table of its switches by the new destination.

 In such case, each DC will declare the border node

that will be responsible for receiving and forwarding

from and to different domains and also share its network

view to the SC, so the SC could synchronize the network

map view to each DC in the entire network. According

to the decelerated borders of each domain, we have in

that case two different domains (and different address

level) with two borders that will be responsible for

delivering the packet, according to the path obtained

from the SC. The SC will be invoked; it will be much

less headache over the SC because that path will be

recorded for repeated cases. In other words, the SC will

be invoked in different domains and different levels with

declaring different border nodes.

 After detecting that the destination is not in the same

domain, the DC will send message to the SC that will

have the capability of detecting the address of the

destination attached to the packet bit header (3-bits). The

SC to all DC already synchronizes this information and

it will be used to determine the maximum number of

switches the domain should obtain (not in paper scope).

 Since the domain of the destination is different, the

DC must forward a request to the SC to interfere and

then the SC will reply with the needed and optimal path

to the destination. In Fig. 6, switches (S3 and S4)

represent the domains border nodes. S3 is the domain

border node of domain 1 and S4 is the border node of

domain 2. As highlighted in Fig. 6 the path will be S1 

S3  S4  S6.

Ahmed Gaber Abu Abd-Allah et al. / Journal of Computer Science 2020, 16 (8): 1185.1194

DOI: 10.3844/jcssp.2020.1185.1194

1191

Table 1: Insertion of flow entry in the flow table in a switch

Flow entry 1 Flow entry 2 Flow entry N

--- --- --

 PortIn&Out VLAN PortIn&Out VLAN PortIn&Out VLAN

Header fields ID IP Port#.. Header fields ID IP Port#.. Header fields ID IP Port#..

Actions Val Actions Val Actions Val

Statistics Val Statistics Val Statistics Val

Fig. 7: Latency for packet processing in the proposed model using ONOS from one host to another

Experimental Results and Evaluation

In this section, we will show the obtained latency

time and the pinging rate for the proposed model. We

built our results through creating our network

topology by using Mininet (Mininet, 2018),

forwarding devices like OpenvSwitch, which is

multilayer virtual switch licensed under the open

source Apache 2.0 and Open Networking Operating

System (ONOS) version 2.0 (ONF, 2020), which had

been used as a controller in the topology with multi

controller feature to represent the proposed topology

on it. The test packets were captured many times by

using capturing applications installed on the ONOS

(northbound area), like packet generator, to ensure our

results. As shown in Fig. 7, the latency was much

better in multi-layer controllers compared to normal

state of any mono controller SDN topology. In our

topology, we set the ONOS as the SC and the other

DCs were created within the Mininet.

The test topology consisted of two levels of

controllers with four controllers and three

openvSwitches connected to each DC and all

controllers are connected to the SC. Finally, the

sender and receiver were presented in two Virtual PC

Simulator (VPCS), which allowed you to simulate a

frivolous PC supporting DHCP and ping features.

Furthermore, we did that latency test from specific

host to another and vice versa (Fig. 8 to 10) in

different domain (Scenario B) in two cases: Case 1;

activating the SC, which came out with better results

than case 2; deactivating it (normal SDN status).

We evaluated the number of network actions

handled by the SC (Control Plane) of the scenario B in

our proposed hierarchic architecture. Meanwhile, the

aim was to decrease the number of messages and

actions the controller’s exchanges. We used generated

packet of 64 bytes and sent it twice through two hosts

connected to different domains; firstly, without using

the SC (Fig. 11) and secondly, with activating the

proposed topology (Fig. 12).

The connections and messages are two important

factors. The number of connections means each link

from forwarding device to another and the number of

messages is the number of messages sent from and to

the SC. When the source and destination are located in

different domains and different levels, a message must

be sent from the sender DC to the SC and then the SC

must send messages replying back to the sender and

destination DCs.

 Consequently, the interference of the SC increases

and, thus, the number of messages increases; this

relation is a directly proportional relationship.

Therefore, when we need to eliminate that

interference, we must decrease the number of

messages. So one of our aims is represented in

increasing the number of nodes in each domain or

cluster. In our framework, we transformed the cluster

into two level hierarchal form. The probability of

sending and receiving without SC (between the

domains in the same level) will be increased. Then the

relationship between increasing scalability and

interference of the SC is inversely proportional.

Packets-in/S

Mono controller layer Vs multi
10

8

6

4

2

0

500 750 1000

T
im

e
in

 M
S

One layer controller Multi-layer controller

Ahmed Gaber Abu Abd-Allah et al. / Journal of Computer Science 2020, 16 (8): 1185.1194

DOI: 10.3844/jcssp.2020.1185.1194

1192

Fig. 8: Host1 sends to Host2 and Host3 in the two cases of activating and deactivating the SC with the same packets number

Fig. 9: Host2 sends to Host1 in two cases of activating and deactivating the SC with the same packets number

Fig. 10: Host3 sends to Host1 in two cases of activating and deactivating the SC with the same packets number

Super controller activated
13

12

11

10

9

8

7

6

5

4

3

2

1

0

Super controller deactivated

H2

500 750 1000 500 750 1000

H3 H3
H3 H3

H3

H3

H2

H2

H2

H2

H2

Super controller activated
16
15

14

13
12

11

10
9

8

7
6

5

4
3

2
1

0

Super controller deactivated

500 750 1000 500 750 1000

Super controller activated
18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Super controller deactivated

500 750 1000 500 750 1000

Ahmed Gaber Abu Abd-Allah et al. / Journal of Computer Science 2020, 16 (8): 1185.1194

DOI: 10.3844/jcssp.2020.1185.1194

1193

Fig. 11: Pinging results after disconnecting the SC

Fig. 12: Pinging results after activating the SC

Conclusion and Future Works

This paper offered a hierarchical SDN structural

design and addressed an established transmitting

methodology. Enhancement of scalability was the aim

in the offered architecture through fine-tuning the

control plane (reallocation and expanding of

controllers) in an SDN network by decreasing the

number of messages that a network main controller

can handle. The only case could the DC can

communicate with the SC when we have sender and

receiver from different levels. The experimental

results showed that the proposed network with super

controller handled less messages than those discussed

in the literature with very good latency time and

sustained performance. Moving forward to the deep

north bound area in SDN; we are encompassing our

proposed framework to deliver new classes of control

applications. Such applications can operate by having

access to the events generated by the DC and for

advanced level by the switch too.

Acknowledgement

Authors would like to thank editors and all reviewers

for appreciated comments.

Author’s Contributions

Ahmed G. AbuAbdallah: Conceptualization,

methodology, software, visualization and virtualization,

data creation and writing-original draft preparation.

Atef Z. Ghalwash: Conceptualization, Supervision

and Investigation.

Aya S. Adly: Writing-reviewing and editing.

The final manuscript has been approved by all

authors. All authors have read and approved the final

manuscript.

Ethics

This paper is original and innovative and it

contains unpublished material. There are no ethical

issues involved and all authors have no conflicts of

interest to release.

References

Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula,

P., Sharma, P., & Banerjee, S. (2011, August).

DevoFlow: Scaling flow management for high-

performance networks. In Proceedings of the ACM

SIGCOMM 2011 conference (pp. 254-265).

Farhady, H., Lee, H., & Nakao, A. (2015). Software-

defined networking: A survey. Computer Networks,

81, 79-95.

Hassas Yeganeh, S., & Ganjali, Y. (2012, August).

Kandoo: A framework for efficient and scalable

offloading of control applications. In Proceedings of

the first workshop on Hot topics in software defined

networks (pp. 19-24).

Karakus, M., & Durresi, A. (2015, March). A scalable

inter-as qos routing architecture in software defined

network (sdn). In 2015 IEEE 29th International

Conference on Advanced Information Networking

and Applications (pp. 148-154). IEEE.

Karakus, M., & Durresi, A. (2016). A survey: Control

plane scalability issues and approaches in software-

defined networking (SDN). Computer Networks,

112, 279-293.

Ahmed Gaber Abu Abd-Allah et al. / Journal of Computer Science 2020, 16 (8): 1185.1194

DOI: 10.3844/jcssp.2020.1185.1194

1194

Metzler, A., & Metzler, A. (2015). Ten Things to

Look for in an SDN Controller (p. 11). Technical

Report, May.

Mininet, 2018. http://mininet.org/

Oktian, Y. E., Lee, S., Lee, H., & Lam, J. (2017).

Distributed SDN controller system: A survey on

design choice. computer networks, 121, 100-111.

ONF, 2020. Open Networking Foundation.

https://www.opennetworking.org/onos/

Open Networking Foundation. (2015) Version 1.5.1.

https://www.opennetworking.org/wp-

content/uploads/2014/10/openflow-switch-

v1.5.1.pdf

Rana, D. S., Dhondiyal, S. A., & Chamoli, S. K. (2019).

Software defined networking (SDN) challenges,

issues and solution. Int. J. Comput. Sci. Eng, 7, 1-7.

Singha, T., Shami, A., Asal, R., & Li, Y. (2014).

Software defined networking: State of the art and

research challenges. Computer Networks, 72, 74-98.

Tavakoli, A., Casado, M., Koponen, T., & Shenker, S.

(2009, October). Applying NOX to the Datacenter.

In HotNets.

http://mininet.org/

