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Abstract: Hepatitis C refers to the inflammatory state of the liver caused by 
viruses, bacteria, fungi, and exposure to toxins such as alcohol and self-
immunity. The diagnosis requires investigating many laboratory tests and 
comparing the results to those of the former patients with the same conditions. 
This study presents the results of our experiments to build a hybrid system that 
combines both neural networks and logistic regression for the diagnosing of the 
hepatitis dataset using clinical and laboratory test results. The first experiment 
compared the performances of Multilayer Perceptual Neural Networks 
(MLPNN) and Radial Basis Function Neural Network (RBFNN) versus the 
conventional and stepwise Logistic Regression (LR) algorithms, where the 
results demonstrated the ability of neural networks to deliver better 
performance than LR models. In the second experiment, the features selected 
by backward and forward LR models have been evaluated for the improvement 
of the performances of MLPNN and RBFNN models. The hepatitis dataset was 
downloaded from the machine-learning repository by the University of 
California at Ervine. Missing values have been imputed with a separate 
Classification and Regression Tree (C&RT) for each attribute. Classification 
models have been evaluated in terms of statistical accuracy, specificity, 
sensitivity, F1-score and the Area Under the Receiver Operating Characteristic 
Curve (AUCROC). Experimental results showed that the performances of 
neural network models have been improved when employing stepwise LR 
models to select only the predictive attributes. The hybrid system which 
combined both backward stepwise LR for attribute selection and MLPNN for 
classification has outperformed other systems in the diagnosis of the hepatitis 
dataset with 0.973 AUCROC for the training subset and 0.886 for the test one. 
  
Keywords: Hepatitis Dataset, Stepwise Logistic Regression, Attribute 
Selection, Multilayer Perceptron Neural Networks, Radial Basis Function 
Neural Networks 

 

Introduction 

The liver is the largest and heaviest organ of the 
human body (Cohen, 1999). Its biological functions are 
to process nutrients from food, make bile, remove toxins 
from the body and build proteins. Hepatitis represents 
the greatest danger that causes chronic liver disease. It 
refers to an inflammatory condition of the liver, which is 
commonly caused by at least six different viruses 
(Daniel, 2018). Blood transfusions, tattoos, and piercing, 
drug abuse, hemodialysis, health workers, sexual contact 
with hepatitis carriers are some of the factors that 

increase the risk of infection (James and Foley, 2018; 
MayoClinic, 2018). According to the Global Hepatitis 
Report, it caused approximately 1.34 million deaths in 
2015 only and the danger is rapidly growing every year 
(Taylor, 2003). Infected patients often have some 
symptoms such as poor appetite, nausea, vomiting, fever, 
pain in the upper right part of the abdomen (where the 
liver is located) and jaundice (WHO, 2017). Usually, 
hepatitis is diagnosed through a routine blood donation 
or during blood screening. So far, many studies have 
been performed in the diagnosis of hepatitis diseases, 
which are mostly done by expert physicians. They have 
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to conduct several checking strategies including medical 
and laboratory tests and then compare the results to other 
past patients with the same conditions. From the literature, 
it has been found that data mining algorithms can assist 
physicians to improve their medical decisions. Recently, 
some researchers wonder about the possibility of 
substituting normal human physicians with artificial 
intelligence tools in the near future (Jiang et al., 2017).  

The data mining algorithm refers to the automated 
extraction of hidden, unknown and hypothetically 
valuable information from a large dataset. Different data 
mining models work to fetch and interpret the valuable 
information based on multidisciplinary fields such as 
statistics, artificial intelligence, machine learning, 
database management, etc., Gullo (2015). In general, 
different predictive models have different prediction 
capabilities that depend on the type of data and how it is 
preprocessed (Patel et al., 2009). This study aimed to 
develop a hybrid model that combines both statistical 
Logistic Regression (LR) and advanced Neural Network 
(NN) techniques for the diagnosis of hepatitis dataset as 
“Die” and “Live” state. Both LR and NN have many great 
characteristics that led to their widespread and use in many 
bioinformatics and biomedical applications. The purpose 
was to combine both methods to build a hybrid system for 
the purposes of attribute selection and record classification 
of hepatitis data. At first, the efficiency of conventional and 
stepwise LR models, as well as two commonly used neural 
networks; namely Multilayer Perceptron Neural Networks 
(MLPNN) and Radial Basis Function Neural Networks 
(RBFNN), were evaluated and compared on the hepatitis 
dataset. Then both forward and backward stepwise LR 
models were employed to select only the sets of predictive 
attributes to construct efficient neural network models.  

LR algorithm models the probability of an event in 
terms of suitable explanatory attributes with no prior 
assumptions about the distributions of these attributes 
(Sperandei, 2014). Stepwise attribute selection is an 
approach to construct regression models in which the 
selection of predictive attributes’ subset is carried out 
using an iterative procedure during the learning process. 
In each iteration, an attribute is considered for addition 
to or removal from the prediction process based on some 
prespecified criterion. Stepwise regression provides the 
ability to handle large amounts of possible attributes and 
to configure the model precisely (Hosmer and 
Lemeshow, 2000; Maxwell and Obinna, 2018). The 
order in which the attributes are added or removed can 
provide valuable information about their significances. 
In general, LR models are well-established statistical 
model and their coefficients can have clear clinical 
explanations. On the other hand, Artificial Neural 
Networks (ANNs) are prediction tools based on nonlinear 
models that are trying to mimic the brain’s neurons network 
concept (Haykin, 2009). They gain increasing popularity for 

their flexibility and high accuracy in complex data 
modeling. They are currently occupying the second rank 
among the most widely used methods in medical 
applications (Jiang et al., 2017; Lancashire et al., 2009; 
Amato et al., 2013). ANNs were found to outperform 
traditional statistical regression methods in different 
biomedical applications. In a recent study published in 
2019, the performances of ANN and LR have been 
evaluated for the diagnostic prediction of giant cell arteritis 
where ANN had higher sensitivity and accuracy than the 
LR, with a 17% lower FN rate (Ing et al., 2019).  

 In general, they are parallel algorithms, which 
consist of small processing units (neurons) organized in 
layers and connected through several links (weights). 
Haykin (2009) introduced in detail the most common 
ANN methods in terms of their structures, mathematics and 
potential benefits. Multilayer Perceptron Neural Network 
(MLPNN) and Radial Basis Function Neural Network 
(RBFNN) is a commonly used Artificial Neural Network 
(ANN) method (Lancashire et al., 2009). Both methods 
are feed-forward networks. However, they process the 
data with different mechanisms. RBFNN clusters the data 
into hyperspheres; while the MLPNN arbitrarily shapes 
the data into hypersurfaces. This study compared the 
predictive performance of both networks in the prediction 
of the hepatitis dataset.  

The remainder of the paper is organized as follows: 
Section 2 presents all the hepatitis dataset in detail as well 
as a literature review. Section 3 introduces the mathematical 
models of LRs and ANNs. Section 4 illustrates the 
statistical measures used to evaluate the classification 
performance. In section 5, all the experimental results and 
discussion are introduced. Finally, the conclusions and 
acknowledgments are presented.  

Hepatitis Dataset and Literature Review 

The hepatitis dataset is downloaded from the UCI 
machine learning repository (Blake and Merz, 1996). 
This data can be employed to construct predictive 
models to classify whether a hepatitis patient “Live” or 
“Die”. There are 155 observations; 32 cases belong to 
the ‘‘Die’’ class while the remaining 123 belong to the 
‘‘Live’’ one with a class distribution ratio of 1:4 
approximately. This biasing distribution increases the 
prediction challenge towards effective model 
construction. Each observation has 19 input attributes 
aside with them the corresponding output label. The list 
of attributes is shown in Table 1. There are 13 attributes 
with binary values and 6 have enumerated values. The 
dataset contains a lot of missing values. Table 1 shows 
the percentage of missing values for every attribute. The 
PROTIME attribute is the one that has the highest 
missing data values of 43.23%.  
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Table 1: Descriptions of hepatitis attributes (Cohen, 1999; Daniel, 2018; Blake and Merz, 1996) 

Attribute Description  Values Percentage of missing data 

AGE Patient (case) Age 10, 20, 30, 40, 50, 60, 70, 80  0.00% 

SEX Gender Male, Female  0.00% 

STEROID Response to corticosteroids treatment Yes, No  0.65% 
ANTIVIRALS Response to antiviral treatment  Yes, No 0.00% 

FATIGUE Fatigue is the most commonly encountered 

 symptom in patients with liver disease  Yes, No 0.65% 
MALAISE A general feeling of discomfort. Yes, No 0.65% 

ANOREXIA An eating disorder. Yes, No 0.65% 

LIVER BIG Enlarge liver Yes, No 6.45% 
LIVER FIRM The liver is typically palpable and firm,  Yes, No 7.10% 

 with a blunt edge  
SPLEEN PALPABLE When a spleen is felt via external examination.  Yes, No 3.23% 

SPIDERS type of telangiectasis (swollen blood vessels)  Yes, No 3.23% 

 found slightly beneath the skin surface,  
ASCITES Abnormal buildup of fluid in the abdomen Yes, No 3.23% 

VARICES Large blood vessels in the esophagus.   Yes, No 3.23% 

BILIRUBIN Level of bilirubin in the blood 0.39, 0.80, 1.20, 2.00, 3.00, 4.0 3.87% 
ALK PHOSPHATE Level of Alkaline phosphatase  enzyme 33, 80, 120, 160, 200, 250  18.71% 

SGOT Level of Serum glutamic-oxaloacetic 13, 100, 200, 300, 400, 500,  2.58% 

 transaminase "liver enzymes” 
ALBUMIN Level of Albumin protein made by the liver.  2.1, 3.0, 3.8, 4.5, 5.0, 6.0  10.32% 

PROTIME Prothrombin time in seconds 10, 20, 30, 40, 50, 60, 70, 80, 90  43.23% 

HISTOLOGY  Yes, No 0.00% 

 
The majority of published literature included the 

removal of records with missing values and only a few 
studies attempted to impute these values (Kaya and 
Uyar, 2013). However, some recent studies employed 
both methods. They removed the records that contain a 
lot of missing data and imputed those contain few ones. 
In (Borah and Nath, 2018), the authors firstly removed 
the PROTIME attribute and then removed all 
observations with more than 25% missing values and 
finally they imputed the rest with the mode value of the 
respective attribute. They used a rare association rule to 
build a medical diagnosis system by studying the 
infrequent correlations between dissimilar patient 
characteristics and diseases. Support Vector Machine 
(SVM) models have been used several times to classify 
the hepatitis dataset (Kaya and Uyar, 2013; Afif et al., 
2013; Sartakhti et al., 2012; Chen et al., 2011). There are 
two differences between these studies in terms of the 
attribute selection methods and optimization methods. 
For example, in (Sartakhti et al., 2012), the authors used 
the simulated annealing algorithm to optimize the SVM 
to find the best box constraint parameter and sigma. 
They also compared their proposed system to other 
published classification methods. In (Mitra and Samanta, 
2015; Çetin et al., 2015), artificial neural networks were 
applied for the diagnosis of hepatitis. All of them were 
using MLPNNs. However, in (Ansari et al., 2011), the 
performances of MLPNN are compared to the 
Generalized Regression neural network (GNRR) and 
Self-Organizing Feature Map neural network (SOFM). 
They reported that MLPNN and GNRR have diagnosed 
the dataset efficiently as compared to SOFM. Very 
recent works published in (Bhargav et al., 2018; 
Nilashi et al., 2019). In (Bhargav et al., 2018) the 

authors compared the performances of four classification 
algorithms namely; logistic regression, decision tree, 
linear support vector, and naive Bayes applied to classify 
the hepatitis dataset in terms of accuracy, precision, 
recall, and F1-score. They concluded that the ordinary 
logistic regression algorithm achieved the best accuracy 
of 87.17%. To the best of the authors’ knowledge, 
stepwise logistic regression models have used neither for 
the diagnosis nor for the attribute selection of the 
hepatitis dataset. Nilashi et al. (2019), a predictive 
method for hepatitis diagnosis has been developed using 
neuro-fuzzy techniques. 

Modeling Algorithms 

Logistic Regression (LR) 

LR is considered a parametric model that able to capture 
only a linear decision boundary between two classes 
(Sperandei, 2014). It uses the maximum log-likelihood 
principle to build a binary classification model that maps a 
d-dimensional input attributes vector x to one of two 
possible classes, i.e., y∈{0,1}. The attribute can be either 
nominal, ordinal, interval or ratio scale, while the output 
response can only take a binary value. In this modeling 
scheme, the input-output relationship is nonlinear. LR is 
considered as a special case of the generalized linear model 
(Hosmer and Lemeshow, 2000). That is since the output 
response is binary, the conditional distribution does not 
follow the Gaussian distribution but it follows Bernoulli 
distribution instead. The main task of LR modeling 
algorithm is to find a linear decision boundary (hyperplane) 
that partitions the attributes’ space at the point where the 
probability of the outcome (y = 1) equals 50%, i.e: 
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( ) ( )1| 0 |p y x p y x= = =  (1) 

 
The model uses the linear regression optimization 

algorithm to fit the logarithmic (sigmoid) form of the 
odds ratio as follows: 
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where βT is the transpose of the coefficients vector. 

The log of the odds ratio is called the logit function 
which linking the output of the linear model to the actual 
outcome. The use of Logit function is computationally 
easier than the use of normal distributions (Sperandei, 
2014). Equation (2) can be reformulated to find the 
probability of the outcome directly using the logistic 
(Sigmoid) function: 
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The decision hyperplane is described by a linear 

function with the coefficient vector β. Then, the LR 
algorithm searches for the optimal d-dimensional 
vector β = [β0, β1,…, βd] that best fits the training 
observations such that: 
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The schematic diagram of the LR algorithm and its 

logistic function (sigmoid) are shown in Fig. 1. 
The decision boundary can be found using all data 

points X∈ ℝ
d  such that: 
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The LR classifier assigns x to class (1) if βT

x is 
positive otherwise it is assigned to the other class (0) and 
the LR classification rule becomes: 
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The values of βs are determined by maximizing the 
Log-likelihood function with an iterative numerical 
algorithm (Hosmer and Lemeshow, 2000).  

Forward and backward stepwise selection methods 
are two different algorithms used to provide reliable LR 
models as well as to reduce the model complexity 
(Maxwell and Obinna, 2018). In the forward stepwise 

algorithm, the model is built by moving forward 
iteratively where the initial model has only the constant 
term, β0. Then, the attributes are added one-by-one to the 
model. At each iteration, the attributes that are still not 
used in building the model are evaluated and the one that 
gives the best improvement is added. This iterative 
process is continued until the best candidate attribute 
does not produce any significant difference and the 
final model is generated. On the other hand, the 
backward stepwise algorithm is an elimination method, 
where the model is built first with all attributes. Then, 
iteratively, the algorithm removes the attributes that do 
not influence the improvement of model performance. 
The process continues until no more attributes can be 
eliminated and the final model is generated.  

Multilayer Perceptron Neural Network (MLPNN) 

MLPNN is one of the most popular modeling tools in 
classification and regression applications. It has the 
ability to approximate complex and nonlinear functions 
effectively with no prior assumptions to the model 
characteristics or data distribution (Haykin, 2009). 
Figure 2 shows the structure of the MLPNN model with 
only one hidden layer. It is organized in a feed-forward 
structure where the stream flows from inputs, forwards 
through hidden layers and finally reaching the output 
layer. The input layer delivers the weighted input data to 
the hidden neurons. Hidden and output neurons 
accumulate their input data after multiplying them by the 
appropriate strengths of the respective connection 
weights. Then, the neuron fires its output using the 
activation function. The mathematical description of an 
artificial neuron can be written as in Equation (7): 
 

( ),i ij i
y f w x= ∑  (7) 

 
Where: 
yi = The output 
f = The activation function 
xi = The input and 
wij = The weight 
 

The activation function f may have a linear or nonlinear 
form. Back-Propagation (BP) is a popular learning 
algorithm for MLPNN (Lancashire et al., 2009). BP works 
by feeding training samples one-by-one to the network and 
then finds the squared difference between the real output 
(desired) and the network’s output (estimated) as follows: 

 

( )
21

2
dj j

j

E y y= −∑  (8) 

 
where ydj and yj are the desired and estimated output 
values of output neuron j.
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Fig. 1: Schematic diagram of the LR model and logistic function 
 

 
 

Fig. 2: Graphical representation of MLPNN with one hidden layer for hepatitis dataset 
 

BP corrects the network weights iteratively to 
reduce the summation of all squared errors, E. A 
network with high generalization characteristics will be 
able to reduce any future errors. However, such an 
optimal structure is still a challenging task. On one 
side, the structure has to be relatively small to increase 
the generalization. On the other side, the network has to 
classify the training samples efficiently. Some training 
algorithms start with a large network structure and then 
apply a pruning method to remove redundant and weak 
connections (Amato et al., 2013).  

Radial Basis Function Neural Network (RBFNN) 

RBFNN consists of only three fully interconnected 
layers: Input, hidden and output layer as shown in Fig. 3 
(Haykin, 2009). The input layer delivers the input data to 
the hidden neurons. The number of neurons in the hidden 
layer (NH) is determined during the training process. 

Every hidden neuron represents a basis function with 
equal dimensions to the input observations. They 
represent particular points in the input space and their 
responses depend on the distances between them and the 
input observations. The appropriate activation functions 
for RBFNN have to be strictly positive and radially 
symmetric with their corresponding unique maxima at 
their centers (Prez-Godoy et al., 2014). That is the closer 
the observation is to a given hidden neuron’s center, the 
stronger is its response. Gaussian activation functions are 
common in RBFNN (Haykin, 2009). They are 
characterized by their mean vectors, mi and spreads, σi, 
where i = 1, 2, …, NH. The activation function, gi, of the ith 
hidden neuron for an observation xj is given by: 
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Fig. 3: RBFNN with Gaussian basis function for hepatitis dataset 
 

The hidden layer neurons are fully connected to the 
output layer neurons through weights wik. The number of 
output neurons equals the number of classes. The output 
of the kth neuron of the output layer for an observation xj 
can be calculated as: 
 

( ) ( )
0

H
N

k j ik i j

i

y x w g x

=

=∑  (10) 

 
where g0(xj) = 1. 

Equation (10) shows that the RBFNN can be 
considered as an approximation of the output yk by the 
weighted sum of non-orthogonal Gaussian basis 
functions (Venkatesan and Anitha, 2006). The learning 
algorithm has to predefine the centers as well as the 
spreads of the Gaussians in the hidden layer. Then, it 
uses the training subset to adjust the weights of the 
output layer to minimize the classification error. 

Performance Measures 

In this work, to assess the modeling performance, 
some common measures have been used namely: Overall 
accuracy, sensitivity, specificity, F1-score, and 
AUCROC. These measures are derived from the 
confusion matrix, which records the correctly and 
incorrectly classified observations for each class. Table 2 
shows the confusion matrix for a binary classification 
problem. True Positive (TP) is the number of positive 
observations predicted correctly, False Positive (FP) is 
the number of negative observations classified as 
positives incorrectly, True Negative (TN) is the number 
of negative observations predicted correctly and finally, 

False Negative (FN) is the number of positive 
observations classified as negatives incorrectly.  

Accuracy quantifies the fraction of the correctly 
predicted observations to all observations; sensitivity 
quantifies the fraction of accurately predicted positive 
observations; specificity quantifies the correctly 
predicted negative observations (Hossin and Sulaiman, 
2015). These metrics are computed as follows: 
 

TP TN
Accuracy

N

+
=  (11) 
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TP FN
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+

 (12) 

 
TN

Specificity
TN FP

=

+

 (13) 

 
The dataset has imbalanced class distribution; it has 

more negative observations than the positives. Therefore, 
the overall accuracy is greatly affected by this large number 
of true negatives, which gives a misleading percentage. 
Typically, there are two different approaches to deal with 
such unbalanced data. The first approach works to achieve 
the balancing in the training data using different techniques 
whether by oversampling the minority records or 
undersampling the majority ones (Pourhabib, 2019). The 
second approach relies on the use of specific performance 
measures other than the general accuracy. 
 
Table 2: The confusion matrix for binary classification  
 Actual value 

Value predicted positives Negatives 

Positives True Positive TP False Positive FP 

Negatives False Negative TN True Negative FN 
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In this study, we applied the F1-score and AUCROC 
performance metrics that are not affected by such 
uneven distribution. F1-score equals the weighted 
harmonic mean between precision and recall as shown 
in Equation 15. Precision represents the fraction of 
true positives among the predicted positive ones, 
while recall is the same as sensitivity. The greater the 
F1-score the better the performance of the model 
(Hossin and Sulaiman, 2015; Marina et al., 2006): 

 
TP

Precision
TP FP

=

+

 (14) 

 

1 2
Precision Recall

F score
Precision Recall

×
− = ×

+

 (15) 

 
The Receiver Operating Characteristic (ROC) 

curve is a graphical general performance metric. It 
plots the sensitivity against one minus the specificity 
for different values of the threshold (Marina et al., 
2006). This curve evaluates the model’s ability to 
identify the positive observations from the negative 
ones. The area under this curve is called AUCROC, 
which represents the probability that the model will 
rank a randomly chosen positive observation higher 
than a randomly chosen negative one. AUCROC is 
commonly used in many applications to measure the 
performance of any model across all possible 
thresholds. Higher AUC indicates better model 
prediction power. However, it is not recommended for 
extremely imbalanced data which contains very rare 
events. In such situations, the area under the precision-recall 
curve is more appropriate (Sofaer et al., 2019). As stated by 
Equation (14), precision is a measure of result relevancy, 
while recall is the same as sensitivity. The precision-recall 
curve illustrates the compromise between precision and 
recall for different threshold values. 

Experimental Results  

IBM® SPSS modeler data mining workbench has 
been used to implement and validate the LR and ANN 
predictive models (IBM, 2016). Figure 4 shows the 
sequential processes for the analysis and diagnosis of 
the hepatitis dataset. The stream starts with the 
InputData node to read the data file. Then the 
subsequent nodes are used to define the attribute 
types, audit the data, check the distribution, explore 
the basic statistics and inspect the quality of all 
observations. Hence, the stream imputes the missing 
values, partitions the observations into training and 
testing subsets, develops all predictive models with 
the training subset, validates the trained models and 
finally scores all observations. 

Data Exploration and Preprocessing 

The data has been explored to evaluate the 
percentage of missing data among the attributes as 
well as the observations. It has been found that the 
“PROTIME” attribute has 43.23% percentage of 
missing values. It was totally deleted from any further 
processing. In addition, all observations with more 
than two missing values were excluded. The 
remaining dataset contained 141 observations with 
only 18 predictive attributes associated with their 
corresponding output classes. The type node specifies 
the properties of all attributes and defines the 
metadata whether it is for input attribute or output 
class. The DataAudit node is used to examine the 
basic statistics of each attribute, checks the quality of 
the whole dataset and finally generate the Imputation 
node to fill the missing values with a separated C&RT 
algorithm for each attribute (IBM, 2016; Buuren, 
2018). The multicollinearity among the input 
attributes has been calculated using Variance Inflation 
Factors (VIF) (Midi et al., 2013). Multicollinearity 
can lead to biased estimates and inflated standard 
errors. VIF measures how much the variance of a 
coefficient increases due to collinearity. A VIF value 
of greater than 5 is generally considered as evidence 
of multicollinearity (Midi et al., 2013). In this study, 
collinearity diagnostics showed that all attributes have 
VIFs below 5. Therefore, all attributes have been used 
in the LR analysis. The stream continues by 
partitioning the input data by the Partition node into 
70% for training and 30% for testing subsets.  

Models Construction  

LR Models 

Three LR models have been constructed and studied: 
traditional, forward stepwise and backward stepwise. 
The singularity tolerance, the maximum iterations, the 
Log-likelihood convergence and the parameter of 
convergence are the iteration process stopping criteria 
and their values were set to 1.0E05, 30, 1.0E-3 and 1.0E-
4, respectively. The entry and removal probability values 
of the forward and backward stepping methods were set 
to 0.01 and 0.1, respectively. These values were selected 
to avoid including less important attributes or removing 
more important ones. The iterative process continues 
until one of the above stopping criteria is reached. In the 
stream shown in Fig. 4, LR_Enter node was used to train 
the traditional LR model with the block entry of all 
attributes directly to predict the class outcomes. On the 
other hand, the LR_Forward and LR_Backward nodes 
represented forward and backward stepping classifiers. 
The classifiers’ outputs for the training and testing data 
were compared with the target classes for identifying the 
confusion matrix as illustrated in Table 3.  
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Fig. 4: Stream of analysis and prediction models for the diagnosis of hepatitis dataset 
 
Table 3: The confusion matrix for the three LR models: Enter, Forward and |Backward 

 Training    Testing 

 ------------------------------------  ----------------------------------------------------------------- 

Model TP TN FP FN TP TN FP FN 

LR_Enter 16 77 1 3 16 77 1 3 

LR_Forward 14 76 2 5 14 76 2 5 

LR_Backward 16 76 2 3 16 76 2 3 

 
The MLPNN model was built with only one hidden 

layer. The input layer consists of 18 neurons to accept the 
input attributes while the output layer has two neurons for 
the class outputs. To end up with the best structure, the 
hidden layer was tested with a different number of neurons, 
then the performance was evaluated for each case. The 
hidden layer was tested for the number of neurons from 1 to 
12. The maximum number of learning cycles was set to 
1000 and the learning process was unleashed to achieve 
100% training accuracy. Ten percent of the training subset 
has been reserved for validation to reduce the over-fitting 
and hence to increase the generalization. The network 
weights were not adjusted with this validation data set, but 
this set of data has been used to verify that any increase in 
classification accuracy over the training data set, on which 
the model was built, actually increases the accuracy of data 
that has not been used in the training process (i.e., our 
validation data set). However, if the model gets an increase 
in the accuracy over the training data set, while the value of 
the accuracy over the validation data set continues as is or 
decreased, then the network will be overfitted with low 
generalization capability and the training process must be 
stopped. Table 4 shows the resulting confusion matrix of 
MLPNN with 1, 3, 5, 7 and 9 neurons in the hidden layer. 

RBFNN Model 

In the case of the RBFNN model, the model was 
tested for a different number of RBF hidden neurons in 
each run. The network was built with a number of 
neurons from 6 to 17. Table 5 shows the confusion 

matrix of the results with 7, 9, 11 and 13 neurons in the 
hidden layer. The data set was divided in the same way 
as in the case of MLPNN with 10% of the training 
samples has been reserved for validation of the network. 

Analysis and Discussion 

The confusion matrices of different models have been 
used to compute the statistical metrics, which were 
discussed in section 4. The performance measures were 
calculated individually for each run and their values for 
training and testing subsets. Based on the results of the 
classification of testing data, MLPNN achieved the best 
F1-score with 7 neurons, while the RBFNN the best 
F1-score with 11 neurons. Tables 6 and 7 as well as 
Fig. 5a and 5b illustrate the values and graphical 
representation of the performance metrics for training 
and testing data, respectively. 

The overall accuracy is an indicator of the model's 
effectiveness. It is calculated in terms of the probability 
of the true positives and the true negatives of the 
predicted classes. Table 6 and Fig. 5a shows that the 
LR_Enter classifier has the best training accuracy, which 
is reached 95.88%. However, the RBFNN and 
LR_Forward classifiers have the worst training accuracy 
of 92.78%. Similarly, Table 7 and Fig. 5b illustrates that 
the RBFNN classifier achieves the best testing accuracy 
of 86.36% while the LR_Enter and LR_Backward have 
the worst value of 75.0%. Hence, the LR models are 
suffering much more from the overfitting problem. 

Data audit LR_Enter LR_Forward  LR_Backward 

InputData Type Imputation Type Partition LR_Enter 

Table 

Evaluation 

MLPNN RBFNN Fiter 

Analysis RBFNN_Red LR_Backward LR_Forward RBFNN MLPNN 

Table 

Distribution 
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Sensitivity and specificity approximate the ability of 
the model to correctly classify the data observations to 
“Die” and “Live” classes, respectively. Referring to 
Table 6 and Fig. 5a, it can be observed that the 
sensitivity of both LR_Enter and LR_Backward 
classifiers of the training data are better than the others. 
They have the same sensitivities which reach 84.21%. 

However, for the testing subset, the LR_Enter and 
RBFNN models perform better than the others. The 
specificity of LR_Enter, MLPNN and RBFNN models 
are found to be equal and reach 98.72% for training 
data. However, for the testing observations, both 
MLPNN and RBFNN achieve the same specificity 
value of 88.57%. 

 

 
 (a) 
 

 
 (b) 
 
Fig. 5: Performance metrics of classification models for; (a) training data; (b) test data; MLPNN and RBFNN have 7 and 11 hidden 

layer’s neurons, respectively 

 
Table 4: The confusion matrix for the MLPNN for different number of neurons 
 Training    Testing 

 --------------------------------------  ------------------------------------------------------------------- 

Neurons TP TN FP FN TP TN FP FN 

1 13 77 1 6 7 29 6 2 

3 15 77 1 4 6 29 6 3 

5 13 76 2 6 6 29 6 4 

7 14 77 1 5 6 31 4 3 

9 15 77 1 4 6 29 6 3 

 
Table 5: The confusion matrix for the RBFNN for different number of neurons 

 Training    Testing 

 ------------------------------------  ------------------------------------------------------------------------- 

Clusters TP TN FP FN TP TN FP FN 

7 11 77 1 8 5 30 5 4 

9 12 77 1 7 6 30 5 3 

11 13 77 1 6 7 31 4 2 

13 13 77 1 6 6 31 4 3 

Accuracy Sensitivity Specificity Precision F1 

LR_Enter LR_Forward LR_Backward MLPNN RBFNN 
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Performance metrics for test subset 
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Table 6: The values of the performance measures for the training subset 

Model Accuracy Sensitivity Specificity Precision F1-score 

LR_Enter 95.88 84.21 98.72 94.12 88.89 

LR_Forward 92.78 73.68 97.44 87.50 80.00 

LR_Backward 94.85 84.21 97.44 88.89 86.49 

MLPNN 93.81 73.68 98.72 93.33 82.35 

RBFNN 92.78 68.42 98.72 92.86 78.79 

 
Table 7: The values of the performance measures for the testing subset 

Model  Accuracy Sensitivity Specificity Precision F1-score 

LR_Enter 75.00 77.78 74.29 43.75 56.00 

LR_Forward 79.55 77.78 80.00 50.00 60.87 

LR_Backward 75.00 77.78 74.29 43.75 56.00 

MLPNN 84.09 66.67 88.57 60.00 63.16 

RBFNN 86.36 77.78 88.57 63.64 70.00 

 
Precision is the ratio between the correctly 

predicted positive observations of the total predicted 
positive ones. This metric answers this question: How 
many patients already died from those who are 
predicted as “Die”? High precision is related to the 
low false-positive rate. In this study, the LR_Enter 
classifier has the best precision for the training subset 
with 94.12% which is pretty good. In the testing 
subset, the RBFNN achieved the best with 63.64%. 

The F1-score is a combined metric that balances 
precision and sensitivity. It is preferred to use this 
metric when the dataset has biased distribution as in 
the current hepatitis dataset. In comparison, the 
classifier with a high F1-score is considered as 
superior to the others. Moreover, the classifier with a 
low F1-score value should be ignored. In the training 
dataset, the F1-score of the LR_Enter classifier 
achieved the highest value of 88.89% but it attained 
the worst value for the testing data. Among all 
classifiers, RBFNN achieved the best F1-score with 
70.00% for testing data.  

The ROC curves show the relation between the 
sensitivity and specificity of predictive algorithms, 
which give summaries of performances over the whole 
range of values. The areas under these ROC curves 
(AUCROCs) are independent measures, which weight 
the sensitivity and specificity in proportion to their 
occurrences. Figure 6 shows the ROC plots of the 
models under consideration. The higher lines indicate 
better models, especially on the left side of the chart.  

The AUCROCs of all models for the training and 
testing subsets are presented in Fig. 7. These plots illustrate 
that the LR-Enter that uses all attributes achieved the best 
performance on the prediction of the training set. 
Furthermore, it has comparable performance to both 
MLPNN and RFNNN when classifying the testing 
observations. Both MLPNN and RBFNN achieved different 
performances according to AUCROCs. MLPNN achieved 
0.883 while RBFNN achieved 0.873.  

LR Attribute Selection 

The LR models have been proved to be very useful 
for understanding the effect of every input attribute on 
the output response. The influence of each attribute can 
easily be captured from Equation 4. The magnitude of a 
coefficient β, assigned to a certain attribute on the Logit 
function, represents the importance degree of this 
attribute. On the other hand, the stepwise LR modeling is 
an iterative process that involves the inclusion or 
removal of attributes to or from the model during the 
learning process (Maxwell and Obinna, 2018). At every 
iteration, a specified fraction of attributes is included or 
eliminated based on the ranking of their weights, until the 
required number of attributes are left or the prediction errors 
do not decrease. This study employed forward and 
backward stepwise LR models to select the relevant 
attributes and remove the irrelevant ones. Figure 8 shows 
the relative importance of different attributes performed by 
different LR algorithms. Forward LR employed four 
attributes, which are added iteratively as follows ASCITES, 
BILIRUBIN, SPIDERS, and SEX. While Backward LR 
used eight ones which are ASCITES, BILIRUBIN, 
SPIDERS, ALBUMIN, SGOT, SEX, STEROID, and 
LIVER_BIG. From Fig. 8, it is shown that three attributes 
have the greatest importance among the three models, 
namely: ASCITES, BILIRUBIN, and SPIDERS.  

MLPNN and RBFNN classifiers have been re-applied 
again two times; first by using the attributes selected by the 
forward LR approach and second by using the attributes 
chosen by the backward one. The resulting AUCROCs are 
plotted for comparison in Fig. 9. It is shown that the 
attributes selected by the forward approach improved the 
performance of MLPNN on the training observations from 
0.906 to 0.928 and worsen the performance of the testing 
data from 0.883 to 0.854. On the other hand, the RBFNN 
classifier has improved significantly in both training and 
testing datasets. However, the attributes selected by the 
Backward approach improved the performances of both 
MLPNN and RBFNN on training and testing subsets. 
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Fig. 6:  ROC curves of three LR and two ANN predictive models for training and test subsets 

 

 
 

Fig. 7: The area under the receiver operating characteristic curves of all predictive models for training and test subsets 

 

 
 

Fig. 8: The relative importance of all attributes for the enter, forward and backward LR models 
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Fig. 9: AUCROC values of MLPNN and RBFNN with selected attributes by forward and backward LRs 

 
The comparisons between Fig. 7 and 9 demonstrate 

that the stepwise LR models provide efficient methods 
for examining potential underlying relationships between 
the input attributes and the output response. The feature 
selection with Backward LR combined with 
classification with MLPNN outperforms other 
algorithms with AUCROC 0.973 for training subset and 
0.886 for test one respectively. These results confirm 
the ability of LR models in selecting attributes. It is 
clear that the approach of the LR modeling does not 
assume any distribution assumptions neither on the 
explanatory attributes nor on the dependent variable. It 
is a direct probability model without any intermediate 
tool such as the Bayes rule for converting results into 
probabilities. Consequently, LR coefficients can be 
used directly to rank and select attributes for artificial 
intelligence applications.  

The resulting accuracies are comparable to those 
published in the most recent paper in (Nilashi et al., 
2019) where the maximum AUCROC the author got is 
0.9456. However, here in our study, we did not discard 
records with missing values but, on the contrary, they 
have been imputed using a separate Classification and 
Regression Tree (C&RT) for each attribute. 
Nevertheless, the use of feature reduction and structure 
tuning of neural networks were effective techniques in 
improving the classification accuracies. There is an 
opportunity for future work to develop a more effective 
neural network based on the techniques presented in the 
literature especially using bagging, boosting and other 
augmentation techniques. 

Conclusion 

Both ANN and LR are powerful tools to help 
physicians examining medical data, making decisions 

and diagnose correctly. They make the diagnosis more 
reliable and increase patient satisfaction. The purpose of 
this study is to combine both methods for the analysis 
and classification of the hepatitis data. The importance of 
this study comes from the increase in the yearly 
mortality rate due to hepatitis, which has become a major 
concern around the world. This paper presents LR 
models and MLPNN as well as RBFNN. Moreover, it 
introduces and analyzes the applications of these 
algorithms in predicting the status of hepatitis patients as 
“Die” or “Live” with the use of clinical and laboratory 
test results. The dataset has been imputed and 
preprocessed before the modeling phase. Besides the 
traditional LR, two stepwise LR classification models 
have been investigated: the forward and backward ones. 
These stepwise methods selected the predictive attributes 
using an iterative procedure during the learning process. 
The selected attributes have been used to build the 
MLPNN and RBFNN models. They succeeded to 
produce more efficient and generalized models. 
Particularly, the attributes selected by the backward LR 
algorithm have proved to be effective in improving 
the performance of both neural network models. The 
dataset has been divided into training, validation and 
test subsets where the role of the validation subset 
(10% of the training data) was to reduce the over-
fitting and increase the generalization capacity of the 
resulting neural models. The experimental results 
demonstrated that the MLPNN with the attributes 
selected by the backward LR model resulted in the 
best performance with AUCROCs 0.973 for training 
and 0.886 for test subsets. These results confirmed 
that better performance could be obtained based on 
hybrid algorithms that take advantage of the good 
characteristics of different prediction models. 
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