
 

 

 © 2022 Kommerla Siva Kumar, P. Bindhu Madhavi and K. Janaki. This open-access article is distributed under a 

Creative Commons Attribution (CC-BY) 4.0 license. 

 Journal of Computer Science 

 

 

 

Original Research Paper 

An Efficient Video Compression Framework using Deep 

Convolutional Neural Networks (DCNN) 
 

1Kommerla Siva Kumar, 2P. Bindhu Madhavi and 3K. Janaki 

 
1Department of Computer Science and Engineering, R.V.R and J.C College of Engineering, Andhra Pradesh, India 
2Department of AI and ML, The Oxford College of Engineering, Karnataka, India 
3Department of Computer Science and Engineering-AI, Faculty of Engineering, Jain Deemed to be University, Karnataka, India 

 

Article history 

Received: 30-03-2022 

Revised: 02-06-2022 

Accepted: 06-06-2022 

 

Corresponding Author:  

Kommerla Siva Kumar 

Department of Computer 

Science and Engineering, 

R.V.R and J.C College of 

Engineering, Andhra Pradesh, 

India 
Email: kommerlasivakumar@gmail.com 

Abstract: In the current world, video streaming has grown in popularity and 

now accounts for a large percentage of internet traffic, making it challenging 

for service providers to broadcast videos at high rates while utilizing less 

storage space. To follow inefficient analytical coding design, previous 

video compression prototypes require non-learning-based designs. As a 

result, we propose a DCNN technique that integrates OFE-Net, MVE-

Net, MVD-Net, MC-Net, RE-Net, and RD-Net for getting an ideal 

collection of frames by linking each frame pixel with preceding and 

following frames, then finding linked blocks and minimizing un needed 

pixels. In terms of MS-SIM and PSNR, the proposed DCNN approach 

produces good video quality at low bit rates. 
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Introduction 

People who watch videos on the internet are about 

90%, this is expected to rise in the near future. As a result, 

an effective video compression model is required to 

deliver higher-quality frames while using less bandwidth. 

Video codecs compress videos using hand-drawn 

models. Despite their superb design, the present models are 

poorly optimized. The video compression process can be 

improved even more by tweaking the entire codec model. 

Deep neural networks have outperformed classic 

picture codecs like the Joint Photographic Experts 

Group in video compression. Deep neural network-

based models that rely on extremely nonlinear 

transformations require end-to-end training. 

It's not easy to create a model that uses a variety of 

video compression algorithms. Motion estimation, which 

creates and compresses motion data, is the most important 

part. To remove temporal redundancy, video compression 

significantly relies on motion information. The only way 

to express motion vectors is to use an optical flow net. 

Although learning-based optical flow estimation focuses 

on obtaining exact flow data, proper optical flow isn't 

always the best solution for specific video applications. 

Furthermore, the ability of optical flow data is greater than 

that of existing models, resulting in high bit rate 

information when optical flow values are directly 

compressed using existing methods. 

Reduced rate-distortion aims to provide higher-quality 

reconstructed frames at the same bit rate. It is essential for 

proper video compression to technique. 

Rate distortion must be decreased to achieve the 

benefits of end-to-end training for deep learning-based 

video compression models. The following are the 

model's key benefits: All steps of the DCNN model are 

implemented using deep neural networks. The DCNN 

model is based on rate-distortion and uses a single loss 

function to combine all of the steps, resulting in a high 

compression ratio. This study will aid researchers 

working on computer vision, video compression, and 

deep model creation. 

Related Work 

Kumar and Janaki (2020), the video compression task 

can be categorized into three types.  They are the classical 

era, the era of generic heuristics, and the era of modern 

techniques with deep learning. Through the detailed study of 

the literature through the past decades, it is learned that 

various schemes have been proposed for video compression. 

These schemes have contributed a lot of efficient 

mechanisms in different ways. However, further 

improvements are also needed towards the same pertaining 

to the limitations observed as specified. 

Birman et al. (2020), illustrate and explain various issues 

for the video compression   process  in the field of DNNs. Still  ,
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additional investigation is looking to achieve  the upcoming 

generation and neural networks-based codecs. 

Ranjan and Black (2017)  ,have presented a deep network  

with a  fast and lightweight model for the optical flow  

process. The previous pyramid feature   is replaced  with a           

U-shaped network   and this  model btainso  better results. And  

this  model can help computer vision applications. 

Dai et al. (2009)  ,  described an optical flow 

approach that provides the features of deep learning-

based optical flow algorithms. This approach gives 

better accuracy results compared with an existing 

method and surpasses it in several benchmarks.  

Bao et al. (2019), the Estimation and Compensation of 

Motion (MEMC) neural network is proposed for learning 

and improving video frame interpolation. This model takes 

advantage of the MEMC framework's capabilities for 

managing massive amounts of motion data, as well as 

learning-based methods for extracting features quickly. 

Many video enhancement activities can be done with this 

MEMC framework. The qualitative and quantitative 

evaluation of these methods against state-of-the-art 

video interpolation and improvement algorithms on 

various standard data sets demonstrates that they 

outperform them. 

Wu et al. (2020), describes a video compression 

framework based on deep learning which provides MV and 

RP network. Here the experiment results show that MV and 

RP networks be able to improve the performance of 

compression by modeling spatial correlations among the 

frames accurately.  

Chen et al. (2017), present an efficient video 

compression framework based on deep learning. Here 

comparison of × 264, with this Deep Coder has shown a 

similar type of coding efficiency (lossy) with the familiar 

testing series used by the video coding society and video 

compression on deep learning is an alternative framework for 

the process of video coding in feature.   

Chen et al. (2019), propose PMCNN and modeled 

spatiotemporal to achieve predictive-based coding and 

a learning-based framework of an effective process for 

video compression is explored. Even though lack of 

entropy-based coding and still this achieves a better 

result for video compression, exhibiting new attainable 

handling of video compression. 

Balle et al. (2016), presented a nonlinear transform 

coding-based image compression method and a framework 

to optimize it end-to-end for rate-distortion performance. 

Nevertheless, additional visual improvements might be 

possible in terms of a perceptual metric like MSE, if the 

method were optimized. 

Balle et al. (2018)  ,provide a variational auto encoder-

based image compression trainable model. When evaluating 

rate-distortion performance using a traditional metric based 

on squared error, this model leads to picture compression 

when using the MS-SSIM index and it outperforms ANN-

based techniques when using a traditional metric based on 

squared error (PSNR). 

The limitations of existing work are:  

 

• Lu et al. (2019) and (Yang et al., 2020a), the encoding 

procedures are more complex due to the processing of 

large-size videos 

• Lu et al. (2019) and (Yang et al., 2020b), at decoding, 

the performance of video quality is degraded with very 

usual frame drops during the encoding process 

• Cheng et al. (2019), in the video transmission process, 

to send a greater number of frames an end-to-end delay 

has occurred 

• Cheng et al. (2019), in the video transmission process, 

to send a smaller number of frames, the compression 

ratio is decreased 

• Cheng et al. (2019), the deep learning scheme presented 

so far solely depends on training sample sets and video 

frames 

• Habibian et al. (2019), over-sampling and under-

sampling are the most common phenomena affecting 

these schemes 

• Habibian et al. (2019), the present schemes need more 

flexibility 

• Meda and Bhogapathi (2022), discussed the 

utilization of neural network models. 

• Kamal et al. (2022), still there is a need for standard 

deep learning mechanisms for video compression 

 

Materials and Methods 

The above limitations are overcome in the proposed 

approach and the objectives of the proposed work are:  

 

• To reduce the storage space occupied by video 

• To decrease the time taken for video during transfer 

• To enhance the video quality with a better 

compression ratio 

 

Introducing the symbols: Assume V = {F1, F2, ...Ft-1, 

Ft ...} represents the sequences of current video and at 

time step t, Ft is frame. The symbols F̅t and F̂t represent 

predicted frames and reconstructed or decoded frames. 

The residual   information or  error information between 

original frame Ft and predicted frame F̅t is Rt. 

The reconstructed (decoded residual) information is 

denoted by R̂t. In order, motion information is essential to 

reduce temporal redundancy. Among them, the optical flow 

or motion vector value represents Vt and its corresponding 

reconstructed form is V̂t. To improve the compression 

efficiency, either linear transform or nonlinear transform 

techniques can be used. Consequently, residual 

information Rt is converted to Yt, motion information Vt 

converted to Mt, and corresponding quantized versions  

https://arxiv.org/search/eess?searchtype=author&query=Yang%2C+R
https://arxiv.org/search/eess?searchtype=author&query=Yang%2C+R
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R̂t and M̂t respectively. The detailed architecture of 

proposed DCNN approach is shown in Fig. 1 and 

description of each step is as follows: 

 

Step 1: Motion estimation 

 

 We use an OFE Net to estimate the optical flow, which 

is considered as motion information Vt: 

 

Step 2:  Motion compression 

 

The MVE-MVD net is proposed for compressing and 

decoding optical flow values. A sequence of convolution and 

nonlinear-transform procedures are used to extract or provide 

the optical flow Vt. After then, M̂t is quantized to Mt. The 

MVD net obtains the quantized representation, which is 

subsequently used to reconstruct the motion information V̂t. 

Entropy coding will also be done using the quantized 

representation M̂t: 

 

Step 3: MC net 

 

The motion compensation network obtains 

predicted frame F̅t, which is near to the current frame 

Ft as possible, using both previously reconstructed 

frame F̂t-1 and motion vector V̂t. In beginning, the 

previous frame F̂t-1 warped to the present frame using 

motion information V̂t. However, there are still artifacts 

in the warped frame. To remove these artifacts, we send 

warped frame W (F̂t-1, Vt), reference frame F̂t-1, and the 

motion vector V̂t into another CNN, which produces the 

refined predicted frame F̅t. The proposed method 

follows a pixel -based motion compensation strategy 

that gives more precise temporal information: 

 

Step 4: RE net and RD net 

 

The residual encoder network encodes the 

remaining data that exists between the original frame 

and the forecasted frame. Our method may more 

effectively harness the potential of non-linear 

transform and produce higher compression efficiency 

as compared to the discrete cosine transform used in 

the conventional video compression system: 

 

Step 5: BRE net 

 

The quantized motion information M̂t from Step 2 

and residual information Ŷt from Step 4 is coded into 

bits and transmitted to the decoder during the testing 

stage. From the training stage, by employing CNNs for 

the number of bits costs are estimated (BRE Net in 

figure) and subsequently acquire the probability 

distribution of each symbol in M̂t and Ŷt: 

 

Step :6   Frame reconstruction 

 

By adding F̅t in Step 3 and R̂t in Step 4, obtains the 

reconstructed frame F̂t, i.e., F̂ t = F̅t +R̂t: 

Training and Testing 

Guo et al. (2019), provides the training (Vimeo) and 

testing (UVG & JCT-VC) datasets. Our proposed DCNN 

technique trained the 90k dataset (Vimeo) and tested 

the Ultra-Video-Group dataset (UVG) and Joint 

Collaborative Team-Video Coding dataset (JCT-VC). 

Results and Discussion 

The Average is calculated by PSNR and bpp in 

Tables 1, 2, 3, and 4. 

And drawn the corresponding Fig. 2 (a), (b), (c), (d) - 

Table 1, 2(b) -Table 2, 2(c)-Table 3 and 2(d) - Table 4, 

compared with existing methods like data1 (Lu et al., 

2019), data 2 (Yang et al., 2020a), data3(Yang et al., 

2020b) and data4 (Yang et al., 2020a) and produce 

better average psnr and average bpp values. 

The Average is calculated by MS-SSIM and bpp in 

Tables 5, 6, 7, and 8. 

And drawn the corresponding Fig. 3 (a), (b), (c), (d) 

- Table 5, 3(b)- 6, (c) - 7, and (d) -8, compared with 

existing methods like data1 (Lu et al., 2019), data2 

(Yang et al., 2020b), data 3 (Yang et al., 2020a) and 

data 4 (Yang et al., 2020b) and produce better average 

psnr and average bpp values. 

And also, the proposed approach (in terms of PSNR 

metric) proves to reduce the error rate with the 

following MSE Table 9, 10, 11, and 12 (mean square 

error rate) for the tested data sets are also given. 

Similarly, the proposed approach (in terms of MS-

SSIM metric) proves to reduce the error rate with the 

following MSE Table 13, 14, 15, and 16 (mean square 

error rate) for the tested data sets are also given.  

The proposed approach proves for better 

compression ratio (in terms of PSNR) with the 

following Tables 17, 18, 19 and 20 for the tested data 

sets are given. 

Similarly, the proposed approach proves for better 

compression ratio (in terms of MS-SSIM) with the 

following Tables 21, 22, 23, and 24 for the tested data 

sets are given. 

Similarly, the compressed/output video takes less 

transmission time than original/input video.

https://arxiv.org/search/eess?searchtype=author&query=Lu%2C+G
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Fig. 1: The architecture of our proposed DCNN approach 

 

 

 
 

Fig. 2: Average PSNR and bpp
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Fig. 3: Average MS-SSIM and bpp 

 

Table 1: PSNR on UVG 

Data set Video Avg PSNR Avg bpp 

UVG Beauty 40.59 0.40 

  Bosphorus 38.20 0.94 

  Honey Bee 36.46 1.99 

  Jockey 37.83 1.05 

  Ready set go 37.04 1.80 

  Shaken dry 36.05 2.00 

  Yacht ride 38.05 1.12 

 

Table 2: PSNR on JCT-VC class B 

Data set Video Avg PSNR Avg bpp 

JCT-VC class B Basketball drive 38.26 1.020 

  BQ terrace 38.22 1.530 

  Cactus 38.41 1.630 

  Kimono 37.94 1.180 

  Park scene 37.40 1.568 

 

Table 3: PSNR on JCT-VC class C 

Data set Video Avg PSNR Avg bpp 

JCT-VC class C Basketball drill 37.53 1.31 

  BQ mall 38.52 1.27 

  Party scene 37.09 2.34 

  Race horses 37.91 1.60 
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Table 4: PSNR on JCT-VC class D 

Data set Video Avg PSNR Avg bpp 

JCT-VC class D Basketball pass 39.41 0.86 

  Blowing bubbles 38.01 1.51 

  BQ square 38.65 1.76 

  Race horses 38.15 1.37 

 

Table 5: MS-SSIM on UVG 

Data set Video Avg MS-SSIM Avg bpp 

UVG Beauty 0.951 0.07 

  Bosphorus 0.983 0.10 

  Honey bee 0.913 0.14 

  Jockey 0.888 0.11 

  Ready set go 0.981 0.12 

  Shaken dry 0.983 0.15 

  Yacht ride 0.950 0.10 

 

Table 6: MS-SSIM on JCT-VC class B 

Data set Video Avg MS-SSIM Avg bpp 

JCT-VC class B Basketball drive 0.813 0.10 

  BQ terrace 0.993 0.11 

  Cactus 0.481 0.17 

  Kimono 0.941 0.12 

  Park scene 0.396 0.13 

 

Table 7: MS-SSIM On JCT-VC class C 

Data set Video Avg MS-SSIM Avg bpp 

JCT-VC class C Basketball drill 0.986 0.12 

  BQ mall 0.977 0.10 

  Party scene 0.984 0.15 

  Race horses 0.703 0.12 

 

Table 8: MS-SSIM on JCT-VC class D 

Data set Video Avg MS-SSIM Avg bpp 

JCT-VC class D Basketball pass 0.89 0.10 

  Blowing bubbles 0.28 0.12 

  BQ square 0.99 0.11 

  Race horses 0.69 0.11 

 

Table 9: MSE on UVG (PSNR metric) 

Data set Video MSE 

UVG Beauty 8.3600 

  Bosphorus 0.0001 

  Honey bee 0.0002 

  Jockey 0.0001 

  Ready set go 0.0001 

  Shaken dry 0.0002 

  Yacht ride 0.0001 

 
Table 10: MSE on JCT-VC class B (PSNR metric) 

Data set Video MSE 

JCT-VC class B Basketball drive                                                                                0.001 

  BQ terrace                                                                                       0.001 

  Cactus                                                                                              0.001 

  Kimono                                                                                            0.001 

  Park scene                                                                                        0.001 
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Table 11: MSE on JCT-VC class C (PSNR metric) 

Data set Video MSE 

JCT-VC class C Basketball drill 0.0001 

  BQ mall 0.0001 

  Party scene 0.0001 

  Race horses 0.0001 

 

Table 12: MSE on JCT-VC class D (PSNR metric) 

Data set Video MSE 

JCT-VC class D Basketball pass                                                                              0.001 

  Blowing bubbles                                                                            0.001 

  BQ square                                                                                      0.001 

  Race horses                                                                                    0.001 

 

Table 13: MSE on UVG (MS-SSIM metric) 

Data set Video    MSE 

UVG Beauty     0.09 

  Bosphorus     0.12 

  Honey bee     0.07 

  Jockey     0.06 

  Ready set go     0.08 

  Shaken dry     0.06 

  Yacht ride     0.11 

 

Table 14: MSE on JCT-VC class B (MS-SSIM metric)                   

Data set Video  MSE 

JCT-VC class B Basketball drive 0.03 

  BQ terrace 0.14 

  Cactus 0.10 

  Kimono 0.08 

  Park scene 0.09 

 

Table 15: MSE on JCT-VC class C (MS-SSIM metric) 

Data set Video MSE 

JCT-VC class C Basketball drill 0.04 

  BQ mall 0.05 

  Party scene 0.05 

  Race horses 0.07 

 

Table 16: MSE on JCT-VC class D (MS-SSIM metric) 

Data set Video MSE 

JCT-VC class D Basketball pass 0.00 

  Blowing bubbles 0.07 

  BQ square 0.16 

  Race horses 0.07 

 

Table 17: Compression ratio of UVG (PSNR metric) 

Data set Video Size of the input (MB's) Size of the output (MB's) Compression ratio 

UVG Beauty 13.43 9.800 1.36 

  Bosphorus 14.10 8.970 1.57 

  Honey bee 19.04 14.560 1.30 

  Jockey 15.68 11.410 1.16 

  Ready set go 17.17 11.740 1.46 

  Shaken dry 19.05 12.240 1.55 

  Yacht ride 15.18 9.990 1.51 



Kommerla Siva Kumar et al. / Journal of Computer Science 2022, 18 (7): 589.598 

DOI: 10.3844/jcssp.2022.589.598 

 

596 

Table 18: Compression ratio of JCT-VC class B (PSNR metric) 

Data set Video Size of the input (MB's) Size of the output (MB's) Compression ratio 

JCT-VC class B Basketball drive 15.69  11.80 1.32 

  BQ terrace 16.37  11.97 1.36 

  Cactus 17.24  11.83 1.45 

  Kimono 16.92  11.55 1.46 

  Park scene 17.70  11.22 1.57 

 

Table 19: Compression ratio of JCT-VC class C (PSNR metric) 

Data set Video Size of the input (MB's) Size of the output (MB's) Compression ratio 

JCT-VC class C Basketball drill 17.55 10.61 1.65 

  BQ mall 15.92 11.50 1.38 

  Party scene 19.57 13.03 1.50 

  Race horses 17.83 17.02 1.04 

 

Table 20: Compression ratio of JCT-VC class D (PSNR metric) 

Data set Video Size of the input (MB's) Size of the output (MB's) Compression ratio 

JCT-VC class D Basketball pass 12.94   9.54 1.35 

  Blowing bubbles 16.33 12.23 1.33 

  BQ square 15.66 12.31 1.27 

  Race horses 15.96 17.19 0.92

 

Table 21: Compression ratio of UVG (MS-SSIM metric) 

Data set Video Size of the input (MB's) Size of the output (MB's) Compression ratio 

UVG Beauty         13.43        10.84 1.23 

  Bosphorus         14.10        11.03 1.27 

  Honey bee         19.04        14.23 1.33 

  Jockey         15.68        12.83 1.22 

  Ready set go         17.17        13.81 1.24 

  Shaken dry         19.05        15.26 1.24 

  Yacht ride         15.18        12.19 1.24 

 

Table 22: Compression ratio of JCT-VC class B (MS-SSIM metric) 

Data set Video Size of the input (MB's) Size of the output (MB's) Compression ratio 

JCT-VC class B Basketball drive 15.69  11.38 1.37 

  BQ terrace 16.37  13.63 1.20 

  Cactus 17.24  14.04 1.22 

  Kimono 16.92  13.05 1.29 

  Park scene 17.70  13.73 1.28 

 

Table 23: Compression ratio of JCT-VC class C (MS-SSIM metric) 

Data set Video Size of the input (MB's) Size of the output (MB's) Compression ratio 

JCT-VC class C Basketball drill 17.55 13.13 1.33 

  BQ mall 15.92 12.95 1.22 

  Party scene 19.57 15.41 1.26 

  Race horses 17.83 15.77 1.13 

 

Table 24: Compression ratio of JCT-VC class D (MS-SSIM metric) 

Data set Video Size of the input (MB's) Size of the output (MB's) Compression ratio 

JCT-VC class D Basketball pass 12.94 11.54 1.12 

  Blowing bubbles 16.33 13.99 1.16 

  BQ square 15.66 14.52 1.07 

  Race horses 15.96 15.15 1.00
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Conclusion 

In this study, we propose an DCNN-based efficient 
video compression framework. We also demonstrate 
how our DCNN technique outperforms both commonly 
used traditional video compression standards and more 
recent deep learning-based video compression solutions. 
Our proposed DCNN model offers a higher compression 
ratio and lower error rates because it enhances better 
video quality while using low bit rates. 
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