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Abstract: Concept drift and class imbalanced data are major challenging 

processes involved in modern streaming data classification. Particularly, 

when integrated with difficult factors like the existence of noise, overlapping 

class distribution, concept drift, and data imbalance can considerably affect 

the classifier results. In addition, various challenges affect the performance 

of the existing oversampling schemes such as SMOTE and its derivatives. 

Regardless of that, several existing models concentrate on the data imbalance 

in the binary classification problems, whereas the complex multi-class 

counterparts are yet to be explored. With this motivation, this study develops 

an Adaptive Synthetic Oversampling Algorithm (ASYNO) based Multiclass 

Streaming Data Classification (ASYNO-MCSDC) model on Class 

Imbalance Handling and Concept Drift. The presented ASYNO-MCSDC 

method initially performs different stages of preprocessing such as label 

encoding, data normalization, and data splitting. Besides, the Adaptive 

Synthetic oversampling technique (ASYNO) is applied for handling class 

imbalance data problems. Also, the online bagging ensemble classifier is 

employed for the data classification process in which the Hoeffding Tree 

(HT) was utilized as the base classification and the number of estimators used 

in online bagging is set to 10. For the process of experimentation, two types 

of learning are used, one is batch learning and other is incremental learning. 

The experimental validation of the ASYNO-MCSDC model is tested using 

two datasets namely stationary imbalance stream and dynamic imbalance 

stream. The experimental results pointed out that the ASYNO-MCSDC 

model has accomplished promising results over other models. 

 

Keywords: Machine Learning, Class Imbalance, Concept Drift, Data 

Classification, Oversample, Streaming Data 

 

Introduction 

Classification methods have splendidly advanced in 

recent decades. Though much research in the domain is 

about batch learning from stagnant data repositories, for 

the past few years there comes a lot of studies focused on 

the scrutiny of huge data volumes energetically produced 

from the frame of the data stream (Priya and Uthra, 

2021a). In comparison to classifier stagnant data, the 

mission of studying through data stream presents 

restrictions over computational resources and drives 

classifications performing from the dynamic atmospheres, 

whereas the target and data models vary over time in a 

phenomenon known as Concept Drift (CD) (Wang et al., 

2018). Instances of real-life data streams comprise 

weather forecasting, monetary fraud recognition, and 

spam classification, Moreover, most realistic applications 

make learning classifiers from streams still more difficult 

by launching extra data complexities (Iwashita and Papa, 

2018). Individually, CD as well as class imbalance have 

already attained considerable research interest (Mehta, 

2017). CD has been completely examined for a couple of 

decades, especially in connection with non-stationary data 

streams, ending in drift taxonomies, evaluation 

techniques, detectors, and adaptive streaming classifiers. 

Studies about class imbalance have also directed many 

original approaches, namely, specialized classification 

approaches or dedicated classification performance 

measures and class resampling (Brzezinski et al., 2021). 

Figure 1 illustrates the process of drift detection. 

Even though class imbalance coincides with most 

realistic data stream classifier tasks, the volume of 
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specialized offers to imbalanced streams was still small 

(Ren et al., 2018). Additionally, prevailing research on 

imbalanced stream classifiers mainly aims at re-balancing 

classes and responding to the variations which influence 

the global imbalance ratio. Such works do not assume the 

above-mentioned local complexity element factors 

displayed by variations in local class dispersals and any 

other local drifts (Lu et al., 2019). Furthermore, drifting 

overlapping borderline areas amongst the majority and 

minority classes have monitored that tweet stream 

launching more hindrances for learning classifications. The 

conjunction of such data complexity elements and CD can be 

highly difficult for classifiers than the effects of every factor 

individually, provided that the classification has to adapt to 

local drifts based on fewer minority class samples 

(Korycki and Krawczyk, 2021).  

The presence of an imbalanced dataset could potentially 

affect the performance of conventional learning 

mechanisms. The imbalance between the count of minority 

and majority observations influences the optimization 

process concerning a zero-one loss function, resulting in 

degradation of the prediction abilities for the minority class 

and a bias towards the majority classes. In the literature, 

while the problem of imbalance dataset is well-determined 

then, it is widely investigated in terms of binary classification 

problem, with the single objective of minimizing the degree 

of imbalance. But, the current study points to the fact that it 

isn’t an imbalanced dataset, but instead other complexity 

factors, augmented with the imbalance dataset give rise to 

problems during the process of learning. That factor includes 

noisy observations, overlapping data distributions, smaller 

sample sizes, the presence of disjoints, and outliers. Further, 

a frequently overlooked and another important feature is the 

multiclass nature of classification problems can reinforce the 

challenge related to the imbalanced dataset classification.  

During the two-class classification tasks, the 

determination of relationships among classes is 

comparatively easy. In the case of multi-class tasks, the 

previously discussed relationships increasingly 

sophisticated. Developed classifiers dedicated to two-

class problems could not be easily adapted to multi-class 

tasks since they are incapable of modeling connections 

amongst the difficulties and classes constructed into the 

multi-class problems, namely the occurrence of 

borderline objects between one or more classes, or 

multiclass over-lapping. A large number of proposals 

draw attention to decomposing multi-class tasks into 

binary ones, but, the simplification of the multiclass 

imbalanced dataset problems results in the loss of relevant 

data regarding the relationship amongst a designated pair 

of classes. In the binary classification, one can quantify 

the degree of imbalances amongst the classes, along with 

determine the majority and the minority class easily. 

These relationships become increasingly complex while 

transmitting to multi-class settings. 

 

 
 

Fig. 1: Drift detection process
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The preliminary proposal for the classification of 

multiclass problems uses a single majority class along 

with multi-majority or multiple minority classes, a multi-

majority class together with a single minority class. But, 

practically, the relationships among the classes tend to be 

increasingly sophisticated and a single class acts as a 

minority towards others, a majority toward some, and has 

an equivalent amount of observations to the remaining 

classes. This situation is not well-included by the present 

classifications. Meanwhile, classifications like a 

significant role in the expansion of specified strategies for 

handling imbalanced datasets in the binary settings, lack 

of similar alternatives for the multi-class settings is 

viewed as a controlling factor for the detailed analysis. 

The complications related to the classification of 

imbalanced dataset becomes increasingly prominent in 

multiclass settings, whereby each class increases the 

difficulty of the classification problems. 

While a few techniques are suggested to handle class 

imbalance data, it can be considered that the data have 

only 2 classes such as minority as well as majority classes. 

This assumption doesn’t execute in real-time problems 

(Hidalgo et al., 2021). For instance, in fault recognition of 

a real-time running engineering model (discriminate fault 

and non-fault classes), it can be possible that one or more 

types of fault exist and it must that recognized. The multi-

class task has proved to be suffering further learning 

complexities than 2-class ones from offline learning since 

the multi-class improves the data complexity and 

aggravates the imbalanced distribution (Liu et al., 2021). 

It can be supposed that complexity for developing even 

further aggravated from online learning conditions 

provided that it can be impossible for realizing the entire 

picture of data and the data can be dynamic altering.  

This study develops an Adaptive Synthetic 

Oversampling Algorithm (ASYNO) based Multiclass 

Streaming Data Classification (ASYNO-MCSDC) model 

on Class Imbalance Handling and Concept Drift. The 

presented ASYNO-MCSDC technique initially performs 

different stages of preprocessing such as label encoding, 

data normalization, and data splitting. Besides, the 

ASYNO was executed for handling class imbalance data 

problems. Besides, the online bagging ensemble classifier 

is employed for the data classification process in which 

the Hoeffding Tree (HT) was utilized as the base 

classification and the number of estimators used in online 

bagging is set to 10. The experimental validation of the 

ASYNO-MCSDC model is tested using three datasets 

namely stationary imbalance stream, dynamic imbalance 

stream, and real-time NSLKDD dataset. In short, the 

paper's contributions are summarized as follows. 

To develop a new ASYNO-MCSDC model for 

handling class imbalance and CD in multiclass streaming 

data classification: 

• To perform data preprocessing in various ways like 

label encoding, data normalization, and data splitting 

• To develop the ASYNO technique to handle class 

imbalance data problems in streaming data 

classification 

• To employ online bagging ensemble classifier with 

Hoeffding Tree (HT) was utilized as the base 

classification model 

• To examine the performance of the ASYNO-

MCSDC model on three datasets namely stationary 

imbalance stream, dynamic imbalance stream, and 

real-time NSLKDD dataset 

 

Related Works 

This section focuses on the review of streaming data 

classification models. Yan et al. (2022) presented a 

Dynamic Weighted Selective Ensemble (DWSE) learning 

technique to imbalanced datasets using a CD. By re-

sampling, the minority sample in the prior data block, the 

minority sample of the existing data block is augmented and 

the data from the prior block is absorbed as a classification 

for alleviating the effects of CD. The researchers (Ancy and 

Paulraj, 2020) presented a dynamic sampling and ensemble 

classification method named Handling Imbalanced Data 

using CD (HIDC). To deliver higher statistical accuracy on 

imbalanced class distribution, HIDC chooses an optimum 

reservoir size utilizing the metrics about statistical properties 

of control parameters and data stream.  

The authors (Priya and Uthra, 2021b) proposed a 

powerful class imbalance using CD Detection (CIDD) 

with Adadelta optimizer-based DNN (ADODNN), called 

CIDD-ADODNN architecture for classifying imbalanced 

data stream. The suggested algorithm utilizes an adoptive 

synthetic (ADASYN) model to handle class imbalance 

dataset that uses the weight distribution for minority class 

instances dependent upon difficulty level in learning. Then, 

a drift detection method named adaptive sliding window 

(ADWIN) was applied for detecting the presence of CD. 

Further, the proposed technique is applied to the classifier 

process. Ng et al. (2018) developed an ensemble learning 

technique for managing class imbalance and CD difficulties. 

Zhang et al. (2018) presented an online active learning 

paired ensemble to drift stream with class imbalance. The 

paired ensemble comprises dynamic and long-term stable 

classifiers to address gradual and sudden CD. Also, it 

joins the benefit of an arbitrary approach and assists in 

capturing the drift within the decision boundary. In 

Halstead et al. (2021), a novel repair algorithm is 

proposed for correcting and identifying errors in CD. 

Calculation on synthetic dataset illustrates that the 

presented Airstream model has better performance when 

compared to the baseline method, while it is good at 

capturing the dynamics of the stream. Calculation on air 

quality inference tasks depicts that the Airstream system 
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offers improved real-time performance than the eight 

baseline models. In (Sun et al., 2021), the authors 

introduced a Cost-Sensitive based Data Stream (CSDS) 

classifier technique that considers cost datasets in the 

classification process and data pre-processing. In the 

process of classification, a cost-sensitive learning 

technique has been devised for the relief model to enhance 

the class imbalance at the data level. During the data 

preprocessing, a cost-sensitive weighted scheme is 

introduced for alleviating the entire performance.  

Wang et al. (2022) convert the problem of defining the 

best learning rate into the problem of selecting the 

optimum adaptive iteration while tuning GBDT. We have 

scientifically proven that drift severity is strongly 

connected with the convergence rate of models. 

Consequently, we present a novel drift adaptation model, 

named adaptive iteration which automatically selects the 

iteration number for drift severity to increase the 

predictive performance for flow data under conceptual 

drift. In (Lu et al., 2022), proposed an ensemble model of 

weighted online sequential ELM with an adoptive 

forgetting factor to imbalance on complex data flow and 

handle CD. The presented model incorporates forgetting 

and weighting mechanisms. To adapt to the complex data 

flow, online integrated strategies involving CD detection 

mechanisms and adaptive forgetting factors were 

developed as a classification.  

The researchers (Toor and Usman, 2022) present an 

Optimized Two-sided Cusum Churn Detector (OTCCD), 

i.e., considerable expansion of Cusum DM handles the 

CD and class imbalance problem by defining the error rate 

of the sliding window. This technique is employed in the 

Call Detail Record (CDR) of South Asian Telecom 

Company for predicting churn. While dealing with 

telecom data, resource-aware intelligent methods and 

higher performance computational power are needed as a 

result of the speed and velocity of the dataset. Zhang et al. 

(2022) present a data flow method based on Cosine 

Similarity to Replay Data (CSDR). The cosine similarity 

among the data distribution is compared afterward by 

replaying the fraud conceptual dataset and defining the 

quantity of replaying dataset at every moment of CD. To 

resolve the shortcoming of imbalance data, usage the 

clustering over-sampling model is used for balancing the data. 

In (to Cano and Krawczyk, 2022), an online ensemble 

classification can deal with each abovementioned problem. 

The key characteristics of ROSE are (i) online recognition of 

CD and formation of background ensembles for adapting to 

fast changes; (ii) sliding window for each class to generate 

skew-insensitive classifier nevertheless of the present 

imbalance ratio; and (iii) online training of base classifier on 

variable size random feature set. The researchers 

(Bernardo and Della Valle, 2022) presented a detailed 

analysis of Continuous Synthetic Minority Oversampling 

Technology (C-SMOTE), stimulated from the sampling 

technique Smote, as a meta-strategy to pipeline with SML 

algorithm. Then, benchmarked the C-SMOTE pipeline on 

real and synthetic data streams, encompassing a variety of 

class distributions, imbalance levels, and CDs.  

Emerald and Vengattaraman (2022) proposed a 

Chaotic Ant Swarm-based feature subset selection using 

the CD Detection and Classification (CASFS-CDDC) 

method. The primary motivation of the presented method 

is to select an optimum feature set previous to 

classification and CD procedures. The presented method 

includes the structure of the CASFS approach for 

selecting a subset of features. Furthermore, Earlier Drift 

Detection (EDD) method is employed for detecting the 

CD. Moreover, Autoencoder (AE) is utilized for 

classifying  information  into  suitable classes. Jain et al. 

(2022) presented Error Rate Based CD 

Detection and Data Distribution Based CD Detection and 

examined the impacts. In addition, sliding window-based 

drift analysis and data capturing integrated with K-Means 

Clustering are applied to decrease data size and upgrade 

training data. Next, employed the SVM classification to 

retrain the models and detect anomalies has been 

introduced according to statistical testing. 

In (Nikpour and Asadi, 2022), developed dynamic 

clustering of data flow with the consideration of CD i.e., 

an incremental supervised clustering model. In the 

presented method, data flow is clustered automatically in 

a supervised way, where the cluster value decreases over 

time are recognized and then removed. Additionally, the 

cluster is utilized for classifying unlabeled datasets.  

The Proposed Model 

In this study, a novel ASYNO-MCSDC model was 

established for multiclass Streaming Data Classification. 

The real-time or synthetic data stream is preprocessed and 

is split into training and testing. The training was done 

offline using the Online bagging ensemble. During the 

process of training the instances, there is a chance that few 

classes will be under-represented and because of it model 

cannot learn from the minority class samples. Hence, we 

check for the skewness in the distribution of classes in 

the training set. If the classes are imbalanced, it is 

handled first using the proposed ASYNO and then the 

balanced dataset is used for training the Online bagging 

ensemble classifier. If there is no class imbalance, then 

the dataset is trained directly by the online bagging 

ensemble classifier. In the Online bagging ensemble 

classifier, HT was utilized as the base classification and 

the number of estimators used in online bagging is set 

to 10. The training process is done offline, whereas the 

testing test is converted into streams and the ensemble 

classifier is used to predict the instances which come 

on the fly. Figure 2 illustrates the overall flow diagram 

for Imbalanced Data stream Classification. 
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Fig. 2: Overall flow diagram for imbalanced data stream classification 
 

Data Preprocessing 

The proposed ASYNO-MCSDC model initially 
performs different stages of preprocessing such as label 
encoding, data normalization, and data splitting. Primarily, 
the data samples are properly encoded into five class labels 
as class 0, 1, 2, 3, and 4. Then, min-max normalization was 
applied to scale the data into unit variance. It can be generally 
employed for computing the similarity degree amongst 
points. Let A as data that can be mapped in the data set ranges 
in Amin to Amax, utilizing in Eq. (1): 
 

min

max min

normalized

A A
A

A A

−
=

−  (1) 
 

The consumption of min-max normalized makes sure 

that the feature is exacting as to the same scales. 

Then, the dataset is split into 70% of training data and 

30% of testing data. 

Class Imbalance Data Handling 

Next to data preprocessing, the ASYNO technique was 

executed for handling the class imbalance data. The ASYNO 

model initially computes the degree of class imbalance and 

then determines the number of synthetic samples for 

the maximally tolerated degree of class imbalance 

ratio. For every minority class dataset sample xi, 

produce Tsyn synthetic dataset samples based on the 

subsequent steps as given in Algorithm 1. Figure 3 

depicts the flowchart of the AYSNO technique. 
 

Algorithm 1: Pseudocode of AYSNO Technique 

Input: Training dataset Dt with z instance {xi, yi}, i = 1, 2 

… z where xi refers to samples from the n dimension 

feature space X and the class identity label related to xi can 

be represented as yi  y = {1, 2, ….., C}.  

Define Zs as the amount of minority class instances and Zl 

as the amount of majority class samples, correspondingly. 

Thus, Zs ≤ Zl and Zs + Zl = Z 

Output: Synthetic examples for all Zs. 

Procedure: 

(1) Compute the degree of class imbalances: 

, 1,2...s
c

l

z
d c k

z
=  =

 
 
(2) If dc < dth then (dth is a pre-set thresholding value to the 

maximally tolerated degree of class imbalance ratio) then 

a) Compute the number of synthetic samples that should 

be produced for the minority class: 
 

( )c l sT z z = −   
 

The parameter  is utilized for defining the balance 

level after the generalization of the synthetic dataset. This 

means a fully balanced dataset is generated then the 

procedure of generalization: 
 

b) For every instance xi  Zs, consider K nearest neighbor 

dependent upon the Euclidean distance in n dimension 

space and compute the ratio ri determined as follows: 
 

,i
ir

K


=

 
 
where,  

In i represents the number of samples in the KNN that 

belongs to the majority class, thus  0,1 :ir   

 

c) Normalizing ri based on 

1

ˆ

,
s

i
i m

i

i

r
r

r
=

=



 hence îr refers to a 

density distribution ˆ 1i

i

r
 

= 
 
  

d) Compute the amount of synthetic dataset example that 

needs that produced for all the minority examples xi: 
 

ˆc

syn i cT r T= 
 

 
The above equation Tc refers to the overall amount of 

synthetic dataset samples that require that produced for 

the minority class: 
 
e) For every minority class dataset sample xi, produce Tsyn 

synthetic dataset samples based on the subsequent steps: 



Priya S. and Annie Uthra / Journal of Computer Science 2022, 18 (7): 650.664 

DOI: 10.3844/jcssp.2022.650.664 

 

655 

Do the Loop from 1 to 
i

synT :  

 

(i) Select minority class dataset sample xzi, in the KNN 

for dataset xi for which the ratio ri is greater than 0 

(ii) Produce the synthetic dataset sample: 

 

( )i i zi is x x x = + − 
 

 

 In difference vector in n-dimensional spaces can 

be represented by (xzi - xi) and  refers to a random 

value   [0, 1]. 

End Loop 

 

Multi-Class Classification 

When there is no class imbalance, then the dataset is 

trained directly by the online bagging ensemble classifier. 

During data stream classification, it can be trained a 

model to forecast a class label y to an unlabeled novel 

sample x, viz., a d vector feature. Let us consider that the 

real class labels of new upcoming samples were 

obtainable before the upcoming sample arrived, in such a 

way it is utilized for training instantly after it is utilized 

for testing (Chen and Zhang, 2021). Online bagging is a 

popular ensemble learning technique in developing data 

streams, due to its capabilities to update, add and remove 

base classifiers once drift occurs, but also it is greater 

performance when compared to single classifiers, i.e., it is 

not necessary to alter easy parallelizing and complex 

parameter. Assume that Y represents the set of class labels, S 

denotes the data stream, x signifies the feature vector of 

instance and M indicates the number of base models. The 

learning environment is described as the number of samples 

given for infinity in a batch setting. Now, the frequency w of 

every training sample appears in every base classifier hm 

approximately follows the distribution of Poisson, where  

equivalents 1. Once a sample is utilized for training, it would 

be utilized w times. The entire prediction class label for a new 

upcoming sample can be expressed as follows: 
 

( ) ( )( )
1

argmax M

o m

m

h x I h x y
y Y =

= =


  (2) 

 
where the indicator function is represented as I(.). We 

used different  values rather than 1 in Poisson 

distribution after and before CD to obtain better accuracy 

and encourage different levels of diversity.  value isn’t a 

predetermined value. In such a way, lower or higher  

values are related to lower or higher average Q statistics, 

correspondingly. Consecutively, lower or higher average 

Q statistics, signifies higher or lower diversity, 

correspondingly. This could adjust the space of the 

training set for the sub-classifier inside the ensemble.

 

 
 

Fig. 3: Flowchart of ASYNO technique
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During the developing data stream settings, the 

algorithm must be accurate and also capable of handling 

CD. It can be widely known that an earlier instance 

corresponds to a traditional concept, where the new 

instance is related to the most recent concept in the 

stream setting. The conventional way is to immediately 

reset the worst classifiers once the drift is identified. 

During the process of retraining, a new classifier 

decreases the classification accuracy of the ensemble. 

Since the new classifier hasn't been trained on any 

present instance, which predict the new concept very 

well is impossible. Therefore, instead of resetting the 

classifiers once drift occurs, we apply a threshold to 

characterize the existence of a warning and train 

backup classifiers on the latest instance alongside the 

ensemble without influencing the overall decisions. 

Whenever the drift is detected for a classifier, then it is 

replaced with the backup classifier. This technique has 

relatively two advantages. Firstly, it uses lesser time in 

positively impacting the entire ensemble decision due to 

the trained backup classifiers. Next, the backup classifiers 

are better than the present classifiers because it is trained 

based on the most recent instance. 

In the Online bagging ensemble classifier, HT is used 

as the base classifier and the number of estimators used in 

online bagging is set to 10. HT algorithm also called a 

famous incremental DT algorithm has been originally 

developed to address classification problems in largescale 

data stream mining. In the process of the HT algorithm, 

every training instance in the dataset is scanned only once. 

Therefore, this algorithm possesses a remarkable 

computation efficacy with comparatively low RAM 

(Lv et al., 2019). In addition, classification operation is 

carried out when the HT algorithm is growing, which is 

widely differing from the traditional DT model: 
 

2 1
ln

2 l

R

n




 
 
 =  (3) 

 
In Eq. (3), the number of independent observations of 

an arbitrary variable r can be represented as nl, where the 

value differs in codomain R and  denotes a preinstalled 

hyperparameter. In the presented algorithm, Information 

Gain (IG) was applied for selecting the optimal split 

attribute on interior and root nodes. IG is the variance 

among the corresponding conditional entropy (H(D|X)) 

and information entropy (H(D)). The accurate 

measurements of IG have been shown in Eq. (3) – (5). 

While constructing HT classifiers, then seeing m 

independent observation on a leaf node, given that Xa 

represents the attribute with maximum IG value (IG(|Xa)) 

and the next largest IG value (IG(Xa)) belonging to Xb 

attributes. Next, a novel IG variable is attained by using 

IG(X) minus (Xb). When IG is greater than , Xa is 

selected as the split attribute. But when IG is 

imperceptible, it takes a long time to define the optimal 

split attributes: 

 

( )
1

log
K

k k

k

C C
H D

D D=

= −  (4) 

 

( ) ( )
1

|
L

l

l

l

D
H D A H D

D=

= −  (5) 

 

( ) ( )|IG H D H D X= −  (6) 

 

IG      (7) 

 

Now Ck is the k - th class and |Ck| signifies the sample 

number in Ck (k = 1, 2, …, K). D symbolizes the training 

data and D is separated into different subsets Dl (l = 1, 2, 

…, L). |D| and |Dl| imply the sizes of D and Dl 

correspondingly. The process involved in the HT model 

is given in Algorithm 2. 

 

Algorithm 2: Hoeffding tree induction algorithm 

Consider HT to represent a tree with a single leaf (the 

root) 

For each trained example do 

 Sort sample into leaf l using HT 

 Upgrade appropriate statistics in l 

 Increase nl the number of samples seen at l 

 If nl mod nmin = 0 and samples have seen at l are not 

all classes then 

 Calculate ( )l iG x for every attribute 

 Given that Xa be attribute with highest lG  

 Given that Xb be attribute with second-

highest lG  

 Calculate Hoeffding bound 

2 1
ln

2 l

R

n



 
 
 

 

 If aX X  and 

( ) ( )( )l a l bG x G x or −    then 

 Replace l with internal node that 

splitting on Xa 

 For each branch of the split do 

 Add a novel leaf with initializing 

appropriate statistics 

 End for 

 End if  

 End if  

End for 
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Performance Validation  

In this section, the performance validation of the 

proposed model is carried out under distinct aspects. Here, a 

Synthetic Data stream generated based on the MADELON 

set is applied. The sudden concept of drifting data stream 

with static and dynamic imbalance is generated with binary 

class labels. The static class imbalance ratio of [0.3, 0.7] is 

handled by using ASYNO and the performance of ASYNO 

coupled with the ensemble classifier gives better-balanced 

accuracy and Gmean score. In dynamic imbalance, different 

imbalance ratio of 10, 20, 30, and 40% is used to check the 

performance of the proposed method the performance of the 

proposed method was better and it has handled well the 

problem of class imbalance and the proposed system has 

given better-balanced accuracy and Gmean. 

For the process of experimentation, two types of 

learning are used, one is batch learning and other is 

incremental learning. Batch learning is applied to the data 

which is synthetically generated based on the MADELON 

set. Streams also demonstrate higher and varying degrees 

of class imbalance and the imbalance data stream can be 

either a stationary imbalance stream or a dynamically 

imbalanced stream. In the stationary imbalance stream, the 

classes retain a predefined proportion in every chunk of the 

data stream. In the dynamically imbalanced data stream, the 

distribution of class is not constant during the course of a 

stream, but changes over time, similar to changing the 

concept presented in a gradual stream. The settings for 

generating the streaming data are shown in Table 1. 

Firstly, the experimental validation of the proposed 

ASYNO-MCSDC model on Synthetic Dataset 1-Static 

Imbalance is discussed. Figure 4 shows the sample set of 

data streams with statically imbalanced drift.  

Table 2 provides the experimental results of the 

ASYNO-MCSDC model offered under Synthetic Dataset 

1-Static Imbalance with distinct chunks. The experimental 

values indicated that the Synthetic Dataset 1-Static 

Imbalance has shown an effectual outcome under all chunk 

sizes. For instance, with chunk 1, the ASYNO-MCSDC 

model has provided recal, accuy, F1coure, BAS, and Gmean of 

0.9922, 0.9560, 0.9832, 0.9774, and 0.9801 respectively.  

Figure 5 illustrates a comparative recal examination of 

the ASYNO-MCSDC model with existing models on 

static imbalance data. The figure reported that the OOB 

model has shown lower values of recal over other 

techniques. At the same time, the OB and SEA models 

have demonstrated slightly improved values of recal. 

Followed by, the DWM model has accomplished 

reasonably increased recal values. However, the ASYNO-

MCSDC model has outperformed all the other models 

with maximum recal values under all chunks. 

Figure 6 depicts a comparative accuy analysis of the 

ASYNO-MCSDC technique with recent algorithms on 

static imbalance data. The figure exposed that the OOB 

approach has shown lower values of accuy over other 

algorithms. Besides, the OB and SEA models have 

demonstrated somewhat enhanced values of accuy. Next, 

the DWM system has accomplished reasonably improved 

accuy values. But, the ASYNO-MCSDC algorithm has 

outperformed all the other models with maximal accuy 

values under all chunks. 

Figure 7 depicts a comparative F1score inspection of the 

ASYNO-MCSDC system with existing models on static 

imbalance data. The figure revealed that the OOB model has 

shown lower values of F1score over other techniques. In 

addition, the OB and SEA models have demonstrated 

somewhat enhanced values of the F1score. Moreover, the 

DWM model has accomplished reasonably increased F1score 

values. At last, the ASYNO-MCSDC model has 

demonstrated all the other models with higher F1score values 

under all chunks. 

Figure 8 demonstrates a comparative BAS 

investigation of the ASYNO-MCSDC method with 

state-of-the-art techniques on static imbalance data. 

The figure depicted that the OOB model has shown 

lower values of BAS over other approaches. Likewise, 

the OB and SEA models have exhibited slightly 

superior values of BAS. Followed by, the DWM model 

has accomplished reasonably increased BAS values. 

Eventually, the ASYNO-MCSDC model outperformed 

all the other methodologies with higher BAS values 

under all chunks. 

Figure 9 showcases a comparative Gmean examination 

of the ASYNO-MCSDC model with existing models on 

static imbalance data. The figure reported that the OOB 

model has shown lower values of Gmean over other 

techniques. Similarly, the OB and SEA models have 

demonstrated somewhat increased values of Gmean. Next, 

the DWM approach has accomplished reasonably 

enhanced Gmean values. However, the ASYNO-MCSDC 

methodology has outperformed all the other approaches 

with maximal Gmean values under all chunks. 

To further ensure the better outcomes of the ASYNO-

MCSDC model, a comparison study is made on static 

imbalance data in Table 3. Figure 10 provides a brief 

comparative study of the ASYNO-MCSDC model with 

existing models on static imbalance data in terms of 

precn, recal, and accuy.  

The figure reported that the DWM model has shown poor 

performance over other models with lower precn, recal, and 

accuy of 0.7763, 0.9452, and 0.7647 correspondingly. Next, 

the online bagging, SEA, and OOB models have 

demonstrated moderately closer values of precn, recal, and 

accuy. However, the ASYNO-MCSDC model has 

outperformed other models with maximum precn, recal, and 

accuy of 0.9687, 0.9863, and 0.9879 respectively. 

Figure 11 offers a brief comparative analysis of the 

ASYNO-MCSDC method with existing models on static 

imbalance data in terms of F1score, BAS, and G-mean. The 
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figure demonstrated that the DWM model has outperformed 

poor performance over other models with lower F1score, 

BAS, and G-mean of 0.8503, 0.6389, and 0.5003 

respectively. In line with this, the online bagging, SEA, and 

OOB techniques have demonstrated moderately closer 

values of F1score, BAS, and G-mean. However, the ASYNO-

MCSDC model has outperformed other methods with 

maximal F1score, BAS, and G-mean of 0.9941, 0.9900, and 

0.9893 correspondingly. 

Next, the performance analysis of the proposed 

ASYNO-MCSDC model on Synthetic Dataset 1-

Dynamic Imbalance is elaborated. Figure 12 illustrates the 

sample set of data streams with dynamic imbalanced drift.  

Figure 13 depicts a comparative Gmean inspection of 

the ASYNO-MCSDC model with recent approaches to 

dynamic imbalance data. The figure depicted that the SEA 

model has shown reported the minimal values of Gmean over 

other techniques. Then, the OB and OOB models have 

established somewhat enhanced values of Gmean. Next, the 

DWM model has shown considerable values of Gmean. But 

the ASYNO-MCSDC model has surpassed existing 

techniques with higher values of Gmean under all chunks.  

To further ensure the better outcomes of the ASYNO-

MCSDC technique, a comparison study is made on 

dynamic imbalance data in Table 4. Figure 14 provides a 

brief comparative study of the ASYNO-MCSDC model 

with existing techniques on dynamic imbalance data for 

recal and accuy. The figure outperformed the DWM 

approach and has shown poor performance over other 

models with lower recal and accuy of 0.5619 and 

0.7605 respectively. Along with that, the online 

bagging, SEA, and OOB algorithms have exhibited 

moderately closer values of recal and accuy. However, 

the ASYNO-MCSDC approach has outperformed other 

models with maximal recal and accuy of 0.9909 and 

0.9743 correspondingly. 

Figure 15 gives a brief comparative study of the 

ASYNO-MCSDC algorithm with existing methods on 

dynamic imbalance data concerning F1score, BAS, and G-

mean. The figure exposed that the DWM technique has 

outperformed poor performance over other models with 

lower F1score, BAS, and G-mean of 0.5262, 0.5538, and 

0.2807 respectively. Next, the online bagging, SEA, and 

OOB methodologies have demonstrated moderately 

closer values of F1score, BAS, and G-mean. At last, the 

ASYNO-MCSDC approach has depicted other models 

with higher F1score, BAS, and G-mean of 0.9814, 0.9936, 

and 0.9894 correspondingly.

 

 

 

Fig. 4: Sample set of data streams with statically imbalanced drift 

 

 
 

Fig. 5: Recall analysis of ASYNO-MCSDC technique on static imbalance data 
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Fig. 6: Accuracy analysis of ASYNO-MCSDC technique on static imbalance data 

 

 
 

Fig. 7: F1-Score analysis of ASYNO-MCSDC technique on static imbalance data 

 

 
 

Fig. 8: BAS analysis of ASYNO-MCSDC technique on static imbalance data 
 

 
 

Fig. 9: G-mean analysis of ASYNO-MCSDC technique on static imbalance data 
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Fig. 10: Precn, recal and accuy analysis of technique on static imbalance data 

 

 

 

Fig. 11: F1score, BAS, and G-mean analysis of technique on static imbalance data 

 

 

 

Fig. 12: Sample set of data streams with dynamic imbalanced drift 
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Fig. 13: G-Mean analysis of ASYNO-MCSDC technique on dynamic imbalance data 

 

 
 

Fig. 14: Recal and accuy analysis of technique on dynamic imbalance data 

 

 
 

Fig. 15: F1score, BAS, and G-mean analysis of technique on dynamic imbalance data 
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Table 1: Parameter settings 

Stream generator Case: 1 Case: 2 

N_chunks       200        200 

Chunk_size       250        250 

N_features         20          20 

Random_state     1410      1410 

N_drifts           1           1 

Concept_sigmoid_spacing None None 

N_classes           2            2 

Weights 0.3, 0.7 2, 5, 0.9 

Y_flip      0.01       0.01 

Drift type Sudden drift Sudden drift 

Imbalance type Static imbalance Dynamic imbalance 

Base_estimator Hoeffding tree  Hoeffding tree 

Ensemble classifier Online bagging Online bagging 

 
Table 2: Result analysis of ASYNO-MCSDC technique on synthetic dataset 1-static imbalance  

Chunk Recall Accuracy F1-Score BAS G-Mean 

  0 0.9627 0.9080 0.9476 0.9476 0.9273 

  1 0.9922 0.9560 0.9832 0.9774 0.9801 

  2 0.9922 0.9560 0.9748 0.9663 0.9436 

  3 0.9917 0.9880 0.9970 0.9941 1.0000 

  4 0.9928 0.9600 0.9880 0.9759 0.9697 

  5 0.9992 0.9760 0.9955 0.9839 0.9770 

  6 0.9911 0.9440 0.9722 0.9719 0.9623 

  7 0.9878 0.9760 0.9969 0.9940 0.9954 

  8 0.9932 0.9440 0.9699 0.9376 0.9306 

  9 0.9982 0.9680 0.9928 0.9749 0.9832 

10 0.9922 0.9640 0.9895 0.9679 0.9907 

11 0.9801 0.9560 0.9829 0.9736 0.9773 

12 0.9922 0.9880 0.9640 0.9877 1.0000 

13 0.9922 0.9760 0.9076 0.9917 0.9924 

14 0.9922 0.9840 0.9449 0.9953 1.0000 

15 0.9924 0.9400 0.9379 0.9401 0.9438 

 

Table 3: Comparative analysis of ASYNO-MCSDC technique with existing approaches on static imbalance data  

Methods Precision Recall Accuracy F1-Score BAS G-Mean 

Online bagging  0.9134 0.8927 0.8673 0.9021 0.8498 0.8479 

SEA  0.9187 0.9017 0.8767 0.9098 0.8600 0.8585 

DWM 0.7763 0.9452 0.7647 0.8503 0.6389 0.5003 

OOB 0.9194 0.8909 0.8743 0.9014 0.8536 0.8636 

ASYNO-MCSDC (Proposed) 0.9687 0.9863 0.9879 0.9941 0.9900 0.9893 

 

Table 4: Comparative analysis of ASYNO-MCSDC technique with existing approaches on dynamic imbalance data  

Methods Recall Accuracy F1-Score BAS G-Mean 

Online bagging  0.8634 0.8834 0.8372 0.8324 0.8206 

SEA 0.8217 0.8605 0.8110 0.7649 0.7355 

DWM 0.5619 0.7605 0.5262 0.5538 0.2807 

OOB 0.9055 0.8864 0.8443 0.8620 0.8584 

ASYNO-MCSDC (Proposed) 0.9909 0.9743 0.9814 0.9936 0.9894 

 

Conclusion 

In this study, a novel ASYNO-MCSDC model was 

developed for multiclass Streaming Data Classification. 

The proposed ASYNO-MCSDC model comprises 

different subprocesses such as preprocessing, class 

imbalance data handling, CD detection, and classification. 

In this study, the online bagging ensemble classifier is 

employed for the data classification process in which the 

HT was utilized as the base classification and the number 

of estimators used in online bagging is set to 10. For the 

process of experimentation, two types of learning are 

used, one is batch learning and other is incremental 

learning. The experimental validation of the ASYNO-
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MCSDC model is tested using two datasets namely 

stationary imbalance stream, and dynamic imbalance 

stream. The experimental results pointed out that the 

ASYNO-MCSDC model has accomplished promising 

results over other models. The limitation of our study is that 

we have considered synthetic data for the experimentation. 

This can be further enhanced in the future by using the real-

time dataset. In the future, advanced deep learning with 

hyperparameter optimizers can be employed to boost the 

classification performance of the ASYNO-MCSDC model. 
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