

 © 2022 Nicolas Kolling Ribas and Marco Aurélio Spohn. This open-access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

 Journal of Computer Science

Original Research Paper

A New Approach to a Self-Organizing Federation of

MQTT Brokers

Nicolas Kolling Ribas and Marco Aurélio Spohn

Department of Computer Science, Federal University of Fronteira Sul, Brazil

Article history

Received: 19-04-2022

Revised: 18-06-2022

Accepted: 04-07-2022

Corresponding Author:

Marco Aurélio Spohn

Department of Computer

Science, Federal University of

Fronteira Sul, Brazil
Email: marco.spohn@uffs.edu.br

Abstract: In the Publish/Subscribe (PS) communication paradigm clients

producing content (i.e., publishers) send it to a broker, which relays the

content to consumers (i.e., subscribers). Communication can happen

asynchronously, leaving all the hurdles to the server/broker. MQ Telemetry

Transport (MQTT) is the most used P/S protocol in designing IoT

applications. The usual MQTT scenario comprises a single broker, making it

a potential bottleneck and a single point of failure. Clustering of brokers is

the typical approach for scaling MQTT, usually restricting deployment to a

single administrative domain. The federation of autonomous brokers is a

more flexible approach for scaling the MQTT protocol, with just one

representative self-organizing protocol at the moment. We present a new

variant for such protocol, providing a well-structured mechanism for building

and orchestrating the federation of brokers. The main contribution of this study

is to offer a feasible solution for deploying the MQTT federation without

requiring critical changes to regular clients. By following the topic naming

conventions, clients are unaware they rely on a federation of brokers. To provide

a glimpse of our solution in action, a case study demonstrates that the protocol

can easily provide flexible reliability with low complexity.

Keywords: Publish/Subscribe Communication, Federation of P/S

Brokers, MQTT

Introduction

The Publish/Subscribe (P/S) communication paradigm

decouples client-to-client communication from a traditional

direct interaction between clients to a brokering

communication model. It is also a consumer-producer

representative, where the producer (publisher) sends its

messages to a broker, which relays them to their consumers

(subscribers). Such decoupling makes asynchronous

communication easier to handle at the application layer.

MQ Telemetry Transport (MQTT) (Banks et al., 2019) is

one of the most employed P/S protocols for implementing

IoT applications. Its lower control overhead and support for

small packets address one primary requirement for most IoT

devices’ reduced computing and communication capacity.

On the other hand, the global number of IoT devices is

growing exponentially, requiring more scalable MQTT

systems. An MQTT system employs a single server on its

standard configuration, characterizing itself as a potential

bottleneck and a single point of failure.

MQTT systems can scale horizontally and vertically

(Pipatsakulroj et al., 2017; Al-Fuqaha et al., 2015;

Longo et al., 2020). When employing one physical

machine, it is possible to scale it vertically by boosting

processing and memory capacity. In addition to that, it is

feasible to scale a single machine horizontally by running

several broker instances, keeping the service running while

any of the brokers stay functional. However, the machine

remains a single point of failure in both scenarios.

Clustering of brokers is the de facto approach for

horizontal MQTT scalability (Jutadhamakorn et al.,

2017). Each broker can run on an independent physical

machine, considering that all clustering brokers are

mutually reachable throughout the network. Clients

access brokers through a load balancer, which strives to

spread the work evenly among brokers. Clients’ peers do

not need to use the same broker, leaving the proper

message routing between brokers as one of the main tasks

for the clustering system. Clustering usually entails a

single administrative domain, even though deploying

brokers over separate data centers is possible.

The federation of brokers is another way to scale the

system (Spohn, 2020). The orchestration of a set of

brokers can follow a centralized approach or an

autonomous one, possibly spanning several

administrative domains. There is not much evidence of

Nicolas Kolling Ribas and Marco Aurélio Spohn / Journal of Computer Science 2022, 18 (7): 687.694

DOI: 10.3844/jcssp.2022.687.694

688

how the federation and clustering compare in performance;

however, the federation can improve the availability and the

overall fault tolerance when the solution provides multiple

paths among the clients and their brokers.

To the best of our knowledge, there is just one self-

organizing MQTT federation protocol (Spohn, 2021) and

this study presents a new variant of such a model. Our

approach provides a more straightforward scheme to

orchestrate the federation, sticking to the original strategy

of handling all the necessary tasks at the application layer.

The main contribution of this study is to propose a viable

solution for deploying the MQTT federation without

requiring crucial changes to regular clients: By following

the topic naming conventions, clients are not even aware

they are relying on a federation of brokers.

Next, we present the related work, focusing on the

current self-organizing MQTT federation protocols. After

that, we deliver our approach for better organizing and

orchestrating an autonomous and self-organizing

federation of brokers, including a case study. Finally, we

present our last thoughts on the present work.

Related Work

Spohn (2020) proposed the first solution for brokers’

federation. The orchestration centers on the subscribers,

which self-organize to build a mesh structure that

interconnects them. A mesh has a central broker (i.e., core)

elected to build and maintain the mesh. As soon as a broker

receives the subscription of a new topic, it starts announcing

itself as the core of a new mesh. Core announcements

propagate throughout the federation network, allowing all

participating brokers to learn how to reach the core of any

mesh. Brokers with local subscribers send a mesh

membership announcement through the shortest paths to

the core to join a mesh. Depending on the federation

network topology, one can define the mesh redundancy to

achieve multiple paths between mesh members. All

brokers with local subscribers or those that interconnect

them to the core participate in a mesh.

Publishers must send their publications toward the

mesh with the core as a first target. Upon reaching any

mesh member, a publication then propagates throughout

the mesh. Therefore, it allows any publication to reach all

subscribers regardless of which broker they select.

Figure 1 illustrates the process of building a mesh

in a virtual network topology comprised of six brokers

and the redundancy of two parents (if the topology

allows). When broker one receives a local subscription,

it triggers the mesh creation process for the respective

topic. It sends a core announcement to neighboring

brokers, which will forward the announcement until it

reaches all brokers in the federation. This way, all

brokers learn of any core and how to reach it. So far,

only broker one is taking part in the mesh. Once a new

subscriber starts at broker five, it sends a mesh

membership announcement to its parents (i.e., brokers

three and four). When brokers three and four receive the

membership announcement, they become part of the

mesh, also passing the member announcement to their

parents, which in this case is the mesh core.

Figure 2 displays the routing process for two

publications in the newly constructed mesh. The first

publication takes place at broker four and, as it belongs to

the corresponding mesh, the broker routes the message to

all its mesh neighbors (brokers one and five). The

forwarding process continues until all mesh members

receive at least one message for the corresponding

publication (notice that message duplicates can happen

depending on the mesh redundancy). The second

publication takes place at broker zero and, as it is not a

mesh member, the broker forwards the publication

towards the corresponding mesh core (i.e., broker one). In

this example, once the publication reaches the core, the

publication is flooded throughout the mesh, reaching all

corresponding subscribers.

In its original solution, brokers must implement the

federation protocol, which might hinder its adoption.

Spohn (2021) proposed an endogenous self-organizing

federation approach, working at the application layer without

any modification to standard brokers. For this purpose, the

concept of a federator surfaces an application associated

with the broker, responsible for performing both the

creation and management of meshes and the routing of

control messages and publications. The whole system

works based solely on the P/S mechanism and it is

composed of two entities:

• Pub_Fed: Maintains direct connection with all

neighboring brokers, responsible for sending control

messages and routing regular messages

• Sub_Fed: Handles control and regular messages

received from neighbors

Figure 3 exhibits the architecture of the proposed

federator. Sub_Fed receives core and mesh member

announcements through publications from a

neighboring federated broker through two control

topics: CORE_ANN and MESH_MEMB_ANN,

respectively. Sub_Fed also subscribes to all regular

federated topics, so if there is a new publication, it can

forward them to Pub_Fed, which in turn will relay these

posts to neighbors by encapsulating the original

messages in a control topic data message. Although

there is no need for changes in the broker, the solution

mandates that clients meet a requirement: They must

report through a control topic (i.e.,

NEW_REGULAR_TOPIC) of every new subscription

or first post to a regular topic. It is necessary so that the

federator learns what regular topics it should handle.

Nicolas Kolling Ribas and Marco Aurélio Spohn / Journal of Computer Science 2022, 18 (7): 687.694

DOI: 10.3844/jcssp.2022.687.694

689

Fig. 1: Mesh construction process (Spohn, 2020)

Fig. 2: Publication routing process (Spohn, 2020)

Nicolas Kolling Ribas and Marco Aurélio Spohn / Journal of Computer Science 2022, 18 (7): 687.694

DOI: 10.3844/jcssp.2022.687.694

690

Fig. 3: Main federator entities (Spohn, 2021)

A New Federation Approach

To provide brokers with federation capabilities, we

propose a federation approach evolved from the protocol

presented by Spohn (2021), which uses only the native

MQTT publication and subscription mechanisms.

Changes were made to the protocol, effectively

introducing a new variant. We describe the new

application framework, changes to the original protocol,

and implementation details below.

Application Framework

We define as federated publications (i.e., publications

that need routing to other brokers) those targeting topics

with the first level equal to “federated”; that is, federated

topics follow the structure “federated/X”, where X is

indeed a federated topic. The federator subscribes to all

federated topics at its host broker using a multilevel

wildcard (i.e., “federated/#”).

In addition to the federated topics, the federator also

uses four control topics that observe a similar structure:

The first topic level identifies which message type it

carries and the last level specifies which federated topic

the message takes. The control topics to which the

federator subscribes are as follows:

• federator/core_ann/#: Intended for core

announcements

• federator/memb_ann/#: Intended for mesh

membership announcements

• federator/routing/#: Intended for routing of

federated publications

• federator/beacon/#: To receive beacons reporting

local subscribers

When using a multilevel wildcard replacing the last level

of control topics, the federator starts to receive control

messages referring to all federated topics. For example, a

message for the topic “federator/core_ann/sensor” implies a

core announcement referring to a federated topic “sensor”.

For the federator to perform its role, it needs to discover

new publications and subscriptions happening at the host

broker. For this purpose, in the original protocol, there is the

particular topic NEW_REGULAR_TOPIC: A topic where

clients must publish informing every first publication or

subscription to a federated topic. In our approach, the

federator subscribes to all federated topics without the need

to be informed of new publications, as it already receives

them from the broker.

However, clients need to explicitly notify their

subscriptions, as there is no other way for the federator to

identify them. For this purpose, subscribers must publish

to the control beacon topic corresponding to the

subscribing topic. For example, a customer subscribing to

the federated topic “sensor1” must publish to the

“federator/beacon/sensor1” topic. A beacon consists of an

empty message and it must happen regularly. The

expected interval between each beacon is configurable

through the federator configuration file. Suppose no

beacon message is received for a given topic for a period

longer than three times the expected interval. In that case, the

federator assumes that there are no more local subscribers

and it will take actions such as ceasing to be a mesh member

or stop advertising itself as the related topic’s core.

The traffic of federated publications occurs through

two distinct and already mentioned sets of topics:

Federated topics (i.e., “federated/#”) and routing topics

(i.e., “federator/routing/#”). What differentiates these two

sets is that in federated topics, posts are regular topic

messages in their “raw” format. Routing topics are for the

exclusive use of federators: In addition to the original

message content, they carry a unique identifier, source,

and forwarding broker ID.

The identifiers of federated publications are composed

of two values (Fig. 4): The originating broker ID; and a

sequence number, starting at 0 and incremented with each

new local publication, which helps identify duplicate

publications. The sender field indicates which

neighboring broker has forwarded the message; therefore,

we can ignore this neighbor when it requires forwarding

the message to other neighbors.
When receiving a new publication on a local federated

topic, the federator starts the routing process. The
federator encapsulates the original message in a routing
topic, assigning a unique identifier to it and itself as the
sender. If the current broker belongs to the related topic
mesh, the federator publishes the message to the
remaining mesh neighbors. Otherwise, the federator
forwards the publication toward the corresponding mesh
core. Figure 5 illustrates the initial process of routing a
local publication, having “sensor1” as a federated topic.

Nicolas Kolling Ribas and Marco Aurélio Spohn / Journal of Computer Science 2022, 18 (7): 687.694

DOI: 10.3844/jcssp.2022.687.694

691

For federated publications received on a routing topic,

the federator must first ensure that they are not duplicates,

which is possible by keeping a record of new routed

messages. In our approach, we assume an LRU cache

(Froelich, 2022) (new entries replace older ones, keeping

the records for the identifiers of newly routed

publications) and that the cache size is configurable

through the federation’s configuration file.

If a publication is not a duplicate, the federator forwards

the publication to the required mesh neighbors, following the

same logic as routing a local publication. The federator also

unwraps the original content and publishes it to the

corresponding local federated topic if there are any local

subscribers (Fig. 6 illustrates this process, where “sensor1”

stands out as an example of a federated topic).

One could argue that publishing to the federated topics

the federator subscribes to would get it into a loop due to

receiving its posts and rerouting them with new identifiers,

yielding duplicates. Our approach prevents loops because,

when subscribing to federated topics, the federator utilizes

the No Local MQTT option that informs the broker that we

should not receive our publications. This option is not present

in MQTT versions 3.1.1 and earlier, limiting its use to

brokers supporting version 5 of the protocol.

The routing of a publication starting at a non-mesh broker

operates using all available parents leading to the core, unlike

the original solution based on unicasting the publication

towards the mesh. Our procedure explores all available

redundancy for routing, inside and outside the meshes.

Implementation

Our implementation relies on two sound MQTT

open-source projects under the Eclipse Foundation:

Paho (Eclipse-Foundation, 2022) and Mosquitto (Light,

2017). Paho aims to provide client implementations for

the MQTT protocol. Having support available for

various platforms and programming languages, the Paho

client facilitates the implementation of the federator,

providing the association of the application with the

federated broker. In its turn, Mosquitto is a single-

threaded MQTT broker implementation.

The federator implementation1 was carried out in the

Rust 2021 programming language using the Tokio

runtime system (Lerche, 2022) and the MQTT Paho client

library. The application’s architecture, as illustrated in

Fig. 7, includes as main elements the dispatcher, multiple

message queues, and multiple topic workers. Both the

dispatcher and the various topic workers consist of

asynchronous execution units called tasks: Similar to

system threads, however, being managed by the Tokio

runtime system. Compared to system threads, Tokio's

tasks are lighter to create, execute and destroy.

1Source code available at https://github.com/ nicolaskribas/mqtt-fed

Topic workers are the main components carrying out a

federation’s work: They manage the fabrics and the routing

of messages. For each federated topic and consequently, for

each mesh, there is a companion topic worker.

A configuration file following the TOML format2

defines the federator's settings according to the

following parameters:

• Redundancy: Positive integer that designates the

redundancy of the created meshes

• Core_Ann_Interval: Positive integer that designates

the interval, in seconds, between core announcements

• Beacon_Interval: Positive integer that designates the

interval, in seconds, expected between beacons

coming from local subscribers

• Cache_Size: Positive integer specifying the

maximum size for caches employed to filter topic

messages duplicates

• Host: Defines the virtual identifier and URI for the

federator’s broker

• Neighbors: Virtual identifier and URI for each

neighboring broker

Listing 1 contains an example of a federator

configuration file associated with a broker with identifier 1

and whose neighbors are brokers with identifiers 2 and 4.

Listing 1: Federator configuration file example

redundancy = 2

core_ann_interval = 10

beacon_interval = 5

cache_size = 5000

[host] id = 1

uri = “tcp: //local host:1881”

[[neighbors]]

id = 2

uri = “tcp: //local host:1882”

[[neighbors]]

id = 4

uri = “tcp: // local host:1884”

Case Study

It is not our purpose to provide a thorough

performance evaluation of our federation approach. An

autonomous federation of brokers primarily targets

strengthening MQTT services’ overall reliability and

availability. Therefore, we present a case study to describe

how to build a broker federation topology while taking

some performance statistics for the particular scenario.

2https://toml.io/en/v1.0.0

Nicolas Kolling Ribas and Marco Aurélio Spohn / Journal of Computer Science 2022, 18 (7): 687.694

DOI: 10.3844/jcssp.2022.687.694

692

Evaluation Scenarios

The evaluation scenarios are an attempt to replicate

those used by Spohn (2021). Therefore, the topology has

nine federated brokers arranged in a 3 × 3 grid (Fig. 8),

with mesh redundancy of value two. There are two

subscribers, one at node three and the other at node eight.

Each federation node comprises a Mosquitto broker and a

federator instance running in a Docker container. The

standard settings for all federators are present in Table 1.

MQTT broker latency measure tool (Zhang Xiang,

2022), written in Go language, can measure broker

latency in sending messages. The tool allows defining

several configuration parameters, such as clients’ QoS,

message size, number of clients, and number of messages

published by each client. In addition to latency, the tool

can also compute other metrics such as publication rate

and success rate in sending messages. This tool allows

testing of the most common MQTT application based on

a single broker. Therefore, to comply with a federation

of MQTT clients, we had to make internal changes to

the tool by adding the feature to entitle subscribers and

publishers in different brokers.

There is a publisher at node seven, one hop away from

node eight, and four hops away from node three. The

publisher performs with two publication patterns: One with

500 messages and the other with 1000 messages, each being

64 bytes long. The publication delay is the primary

performance metric under consideration. Each scenario is

run ten times on a local machine with 16 GB of RAM and an

AMD Ryzen™ 51500 X 3.5 GHz processor.

To evaluate a single broker scenario and to be able

to make the necessary comparisons with the federated

approach, we run both subscribers at the same node:

First with both subscribers at node three and then with

both at node eight.

Table 1: Standard federator’s settings

Parameter Value

The interval between core announcements 10 s

The expected interval between beacons 5 s

Cache size 5000

Fig. 4: Structure of routing packet

Fig. 5: Local publish routing

Fig. 6: Handling routed publication

Nicolas Kolling Ribas and Marco Aurélio Spohn / Journal of Computer Science 2022, 18 (7): 687.694

DOI: 10.3844/jcssp.2022.687.694

693

Fig. 7: Application architecture

Fig. 8: Evaluation scenario

Results

Table 2 displays the results collected in the

federation scenario. The subscriber at broker three, further

away from the publisher, showed higher latency values

than the subscriber at broker eight, closer to the publisher.

We can see that the total number of publications did not

quite affect the subscriber’s latency at broker three. The

same is not true for the subscriber at node eight. Higher

latency is expected for a larger number of messages, as

node eight must also handle the forwarding of messages

throughout the mesh to reach node three.

Tables 3 and 4 show the results for the single broker

scenarios. Again, we can observe the relation between

latency results and the subscribers' distance to the

publisher. In the scenario where both subscribers are on

node three, aggregate latency increases compared to the

federated solution, as the broker has to deal with twice the

load on average. When both subscribers are on node eight,

there is a substantial reduction in latency compared to the

federated scenario. A possible explanation for such

difference relates to the routing procedure. In both the

federated and single broker scenarios, message routing

happens using all the parents that the redundancy allows,

incurring significant routing overhead. In the single

broker scenario at node eight, routing overhead is

minimal because the subscribers’ broker is one hop

from the publisher.

Nicolas Kolling Ribas and Marco Aurélio Spohn / Journal of Computer Science 2022, 18 (7): 687.694

DOI: 10.3844/jcssp.2022.687.694

694

Table 2: Federated solution: Delay in publishing messages

Publications Subs. at broker 3 Subs. at broker 8

 500 17.21±9.17 ms 9.51±6.58 ms

1000 16.71±9.53 ms 12.35±10.70 ms

Table 3: Centralized solution: Broker on node 3

Publications Sub. 1 Sub. 2

 500 19.81±16.21 ms 18.80±13.05 ms

1000 17.66±15.47 ms 17.68±15.49 ms

Table 4: Centralized solution: Broker on node 8

Publications Sub. 1 Sub. 2

 500 3.33±4.35 ms 3.34±4.35 ms

1000 5.04±7.05 ms 5.10±7.12 ms

Conclusion

The federation of MQTT brokers provides means for
scaling the system while qualifying for manageable system
availability through the multiple connections among brokers.
Even though it is not clear how clustering and federation
compare in terms of performance, it is clear that the myriad
of virtual federation topologies entitles a flexible redundancy
degree to the interconnected brokers. Nonetheless, while
redundancy adds to processing and communication costs, the
overall gain in reliability might be invaluable.

We present a new framework for building and managing
an autonomous federation of MQTT brokers. Our solution
builds on a previous protocol, providing a structured way for
setting and managing all the federation entities.

Even though our first implementation is in the Rust
language, it provides a realization of our framework and
is an application architecture model for the federation.
The application architecture paves the way for scaling the
federation starting from the bottom up: Lightweight tasks
handle all the necessary functions related to federated
topics, both at the control and data planes. In future work,
we intend to extend the paho client libraries so that the
federated infrastructure stays transparent to the clients.

Acknowledgment

The authors feel grateful to the anonymous reviewers
for their valuable suggestions and comments on
improving the quality of the paper. They would like to
thank the editors of the journal as well. This study was
partially funded by the Universidade Federal da
Fronteira Sul (Research Project PES-2021-0471, under
call 121/GR/UFFS/2021).

Author’s Contribution

Nicolas Kolling Ribas: Contribution to conception
and design. Performed the implementation and the case
study. Contributions to draft the article.

Marco Aurélio Spohn: Designed the research plan
and supervised its execution. Contributions to conception
and design. Most of the writing.

Ethics

This article is original and contains unpublished material.

The authors confirm that they have read and approved this

document and that no ethical issues are involved.

References

Al-Fuqaha, A., Khreishah, A., Guizani, M., Rayes, A., &

Mohammadi, M. (2015). Toward better horizontal

integration among IoT services. IEEE Communications

Magazine, 53(9), 72-79.

 https://ieeexplore.ieee.org/abstract/document/7263375/

Banks, A., Briggs, E., Borgendale, K., & Gupta, R.

(2019). MQTT Version 5.0. OASIS Standard, 7, 102.

 http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-

v5.0.html

Eclipse-Foundation (2022). Eclipse paho.

 https://www.eclipse.org/paho/

Froelich, J. (2022). An implementation of a lru cache.

https://github.com/jeromefroe/lru-rs

Jutadhamakorn, P., Pillavas, T., Visoottiviseth, V.,

Takano, R., Haga, J., & Kobayashi, D. (2017,

November). A scalable and low-cost MQTT broker

clustering system. In 2017 2nd International

Conference on Information Technology (INCIT)

(pp. 1-5). IEEE.

 https://ieeexplore.ieee.org/abstract/document/8257870

Lerche, C. (2022). Tokio api docs.

 https://github.com/tokio-rs/tokio

Light, R. A. (2017). Mosquitto: Server and client

implementation of the MQTT protocol. Journal of

Open-Source Software, 2(13). https://nottingham-

repository.worktribe.com/index.php/outputs?Type=J

ournal%20Article&page=111&Year=2017

Longo, E., Redondi, A. E., Cesana, M., Arcia-Moret, A., &

Manzoni, P. (2020, June). MQTT-ST: A spanning tree

protocol for distributed MQTT brokers. In ICC

2020-2020 IEEE International Conference on

Communications (ICC) (pp. 1-6). IEEE.

https://ieeexplore.ieee.org/abstract/document/9149046

Pipatsakulroj, W., Visoottiviseth, V., & Takano, R.

(2017, June). muMQ: A lightweight and scalable

MQTT broker. In 2017 IEEE International

Symposium on Local and Metropolitan Area

Networks (LANMAN) (pp. 1-6). IEEE.

 https://ieeexplore.ieee.org/abstract/document/7972165/

Spohn, M. A. (2020). Publish, subscribe and federate!

Journal of Computer Science, 16(7):863–870.
Spohn, M. A. (2021). An Endogenous and Self-organizing

Approach for the Federation of Autonomous MQTT

Brokers. In ICEIS (1) (pp. 834-841).

Zhang Xiang, J. (2022). Mqtt broker latency measure tool.

https://github.com/hui6075/mqtt-bm-latency

https://ieeexplore.ieee.org/abstract/document/9149046
https://ieeexplore.ieee.org/abstract/document/7972165/

