Journal of Computer Science

Original Research Paper

Geolocation System Module Creation to Validate User

Location Coordinates in an Android Application Using Flutter

Framework

1EImer Matthew Japara, 2Samsul Arifin and 3Edy Irwansyah

!Department of Mathematics, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
2Department of Statistics, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
3Department of Computer Science, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia

Article history
Received: 07-05-2023
Revised: 16-06-2023
Accepted: 07-07-2023

Corresponding Author:
Samsul Arifin

Department of Statistics,
School of Computer Science,
Bina Nusantara University,
Jakarta, Indonesia

Email: samsul.arifin@binus.edu

Abstract: The target audience for this scientific paper's writing is anyone
who is interested in the statistical information that will be used to create a
method for determining the separation between two coordinate points. Given
that as technology advances, a growing number of applications will make use
of geolocation data for economic purposes, such as processing location data
to maximize product sales. The development of satellite constellations,
coordinate arrangements and even more sophisticated tasks like the
construction of a space station require a high degree of accuracy. These are
not just economic problems. However, no one is certain at this time of the
precise calculation of the separation between the two coordinate points. The
Haversine method and the Vincenty method are two of the several techniques
used today to calculate coordinates. Each approach yields, naturally, different
outcomes due to its basic differences. The variation in the results is
anticipated to serve as a database for future study into the creation of new
techniques to measure the distance between two coordinates at the point of
the earth and to determine the size of the earth with a more precise value.
However, if the application needs to calculate longer distances with higher
accuracy, the Vincenty method may be more appropriate.

Introduction

As the era progresses, almost every aspect of human life
goes hand in hand and is also influenced by technology.
This forces various parties, both from a company or
individual, to implement technology in business practices
or daily needs. As the global economy has entered the
industry 4.0 stage, which means that traditional
manufacturing and production practices are starting to
switch to using smart technology, Machin to Machine
(M2M) communication, and the Internet of Things (IoT) on
a large-scale integrated for increased automation, increased
self-monitoring and communication and production of
intelligent machines that can analyze and diagnose
problems without the need for human intervention
(Dalenogare et al., 2018). In recent years, geolocation
services (geolocation services) have become important in
various fields and applications. Although end users may not
be aware of this, many websites visited daily use
geolocation information for local advertising, local content

’7///4 Science

Publications

Keywords: Geolocation, Vincenty, Haversine, Flutter Android

(such as local news and weather forecasts), and compliance
with local laws. Mathematical concepts are needed to
process geolocation data such as calculating distances
between coordinates. There are several ways to calculate
the distance between two coordinates, in which the author
will take a method, namely the Vincenty Inverse, and will
compare it with the numbers generated by the Haversine
method, which is used by Google Maps (Great Circle
Distance) (Hartanto et al., 2018; Setyorini et al., 2019). To
process geolocation data, of course, a specially assigned
module is needed. This module will be simulated through
an application based on the Flutter Android framework
(Tyagi, 2021; Arb and Al-Majdi, 2020).

Each method used to find the distance between two
coordinates has its drawbacks or limitations. Vincenty
Inverse will fail when calculating the distance between
two coordinate points that are antipodal, whereas
Haversine uses the assumption that the earth is round.
Thaddeus Vincenty uses the assumption that the earth is
an ellipsoid and claims that his method has an accuracy of

© 2023 Elmer Matthew Japara, Samsul Arifin and Edy Irwansyah. This open-access article is distributed under a Creative

Commons Attribution (CC-BY) 4.0 license.

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

up to 0.5 mm (Azdy and Darnis, 2020; Arifin et al.,
2021). Until now, a more accurate method has not been
found than these two methods. However, the required
level of accuracy in calculating the distance between
coordinates varies for the user. In its application in the
realm of satellite system constellations, of course, the
level of accuracy is very much considered to the
millimeter. However, in local or close-range use, the
level of accuracy is not too important. This research
will discuss the differences and analyses between the
two methods and their implementation in the creation
of geolocation modules. The application is expected to
have an accurate Geolocation system that can validate
the location coordinates entered by the user. The need
for accurate Geolocation data is essential in several
applications such as ride-hailing, food delivery, e-
commerce, etc. Flutter framework is used for mobile
application development due to its flexibility, ease to
learn, and efficient coding. Geolocation system module
creation is crucial to provide accurate location data in
several applications such as ride-hailing, food delivery,
and e-commerce. The accuracy of the geolocation
system is essential to validate the user location
coordinates (Hernandez-Lamas et al., 2021; Al Maki et al.,
2023). However, it is challenging to create a
geolocation system that can validate user location
coordinates accurately. This problem becomes more
challenging when the user is in a location with poor
GPS signals, such as inside a building. Flutter
framework is a popular framework used for mobile
application development due to its flexibility, ease to
learn, and efficient coding. Therefore, this research
aims to develop a geolocation system module to
validate user location coordinates in an Android
application using the Flutter framework. Based on the
background above, the main problem to be solved in
this research is how to develop a geolocation system
module to validate user location coordinates in an
Android application using the Flutter framework. The
specific issues to be addressed are how to design a
geolocation system module that can validate the user
location coordinates accurately, how to integrate the
geolocation system module into the Android
application, and how to test the accuracy of the
geolocation system module (Winoto and Christanto,
2020; Zammetti, 2019).

The Haversine method, commonly used to calculate
the distance between two points on the Earth's surface,
has important limitations that need to be considered.
This method is based on the assumption that the Earth is
a perfect sphere, with a uniform shape over the entire
surface. However, the Earth is not a perfect sphere, but
an oblate spheroid. Therefore, when using the Haversine
method to calculate distances between geographic
points, the results may experience slight deviations or
errors due to discrepancies with the actual shape of the
Earth. In cases where greater precision is required or

when the calculated distance involves significant
elevation differences, an alternative method such as the
Vincenty may be a more appropriate choice. Haversine's
method is a fairly accurate estimate in most cases, but
it does not take into account certain factors that may
affect distance calculations. These include atmospheric
refraction, which is the bending of light as it passes
through Earth's atmosphere. This can cause errors in
distance calculations, especially at very large
distances, where the effect of atmospheric refraction
becomes more significant. If the application or research
requires very accurate distance calculations and
involves very large distances, the Haversine method
may not be the optimal choice. Other methods such as
Vincenty or other methods that take into account
factors such as atmospheric refraction can provide
more accurate and reliable results. The Vincenty
method is considered one of the most accurate methods
for calculating the distance between two points on the
Earth's surface, but it has certain limitations. These
include difficulty reaching convergence and producing
inaccurate results when two points are very close to
each other, as well as difficulty when used to calculate
the distance between points located close to the Earth's
poles due to the changing shape of the Earth around the
area. In these cases, alternative methods may need to
be used to ensure more accurate and reliable results
(Cagol and Colombi, 2016).

The Flutter framework for Android app development
has a larger file size than native Android apps due to the
presence of the Flutter engine and other components
required to run the application. This can affect the user
experience, especially for users with limited storage or
slow internet connections. Therefore, careful
consideration is needed when deciding to use Flutter as a
framework for Android application development,
especially when efficient file size is an important factor.
Computer-based localization methods have significantly
advanced the field of positioning and navigation. Two
notable methods, "Enhancement of GPS Position
Accuracy Using Machine Vision and Deep Learning
Techniques" and "Improving GPS Position Accuracy by
Identification of Reflected GPS Signals using Range Data
for Modeling of Urban Structures,” offer innovative
solutions for improving GPS accuracy in different
contexts. These methods have the potential to
revolutionize the field of positioning and navigation by
leveraging advanced technologies such as machine vision,
deep learning, and urban modeling. Research and
development in these areas will continue to drive
advancements in the field and pave the way for more
accurate and reliable localization technologies (Kumar et al.,
2014). The purpose of this research is to develop a
geolocation system module to validate user location
coordinates in an Android application using the Flutter

1051

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.106:
DOI: 10.3844/jcssp.2023.1050.1064

4

framework. The specific objectives of this research are
(1) To design a geolocation system module that can
validate the user location coordinates accurately, (2) To
integrate the geolocation system module into the
Android application and (3) To test the accuracy of the
geolocation system module. The significance of this
research is to provide a solution to the problem of
inaccurate geolocation data in several applications such
as ride-hailing, food delivery, and e-commerce. This
research will contribute to the development of a
geolocation system module that can validate the user
location coordinates accurately in an Android
application using the Flutter framework. This research
will also contribute to the advancement of mobile
application development using the Flutter framework.
The results of this research are expected to be useful
for researchers and developers in the field of mobile
application development and geolocation system
module creation (Shavitt and Zilberman, 2011; Jackson
and Jackson, 2017).

Materials and Methods

The research stages that will be carried out in this
study are using the waterfall model, with a sequential or
sequential approach starting from analysis, design,
coding, and testing as well as supporting stages. The
following figure is a diagram of the research stages (Arifin
and Muktyas, 2018). Figure 1 is about the research stages
of the waterfall diagram.

First, we will talk about Stage |: Communication. In
this first stage, there are two sequential parts, the first is
problem identification and the second is literature study.

Tahap |

Identifikasi Tahap Il

Masalah

Studi
Literatur

]

-

P
Perancangan
Modul

-

//Fiancamgan\ >
N A\gumtma)
N

T

/' Analisa _

/ N
(Kebutuhan)

/
\\ Modul /

| Tahap III

Here, we will study problem identification and literature
study (Pamunuwa et al., 2022). Problem Identification:
This section is the first part of writing this research. In this
section, the authors identify the problems encountered and
start looking for solutions to these problems and identify
some of the variables needed. Based on the formulation of
the problem listed, the problem that will be discussed in
this study is how the process of making a geolocation
module is to be used in an application as well as the
application and comparison or analysis of the results of
the Haversine and Vincenty method algorithms. The
process of making this module covers the analysis of
differences or discrepancies in the results of each of the
computational algorithms of the Haversine and Vincenty
methods in general and under certain conditions. Further,
the use of the two mathematical concepts as mentioned in
the previous paragraph is due to the difference in
complexity in the Haversine method which is not so
complex compared to the Vincenty method, which is
complex but, according to literature studies, has a higher
level of accuracy than the Haversine method. The use of
these two methods in the manufacture of this system
module aims to determine the difference in results, both
processing speed and nominal differences in certain
parameters embedded in the two methods. Of course, in
making geolocation modules, especially for measuring
distances between coordinates, the level of accuracy of an
algorithm is very necessary. Therefore, knowing the
difference in results between the two methods as well as
the correct implementation of the algorithms of the two
methods in a special code script for the Flutter framework
is something important.

N
mplementasi LBS\/

<

/ Implementa5|
Formula Matematika)|

Pembuatan Tahap IV
Integrasi

A Modul

\J

1| Tah ap V

v » Evaluasi

i

f
- Selesai)

AN /

-

Fig. 1: Research stages waterfall diagram

1052

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

Literature Study: After the problems on this research
topic have been identified, the writer continues the
research by starting a literature study. A literature study is
needed to deepen the understanding of related theories.
Theories related to this research such as trigonometry,
Haversine formula, and Vincenty's formula are very
important theories to understand more deeply because
they are complex theories. These three theories have
relationships with each other such as Haversine which is
a trigonometric function that is rarely used in the modern
era and correlates with other trigonometric functions
(such as sine and cosine) and Vincenty's Formula which
requires a very deep understanding of trigonometry. In
addition to studying the theories mentioned in the
previous paragraphs, the author also studies the theories
and terms regarding navigation, geolocation, coordinates,
or the system in question. Literature study regarding these
subtopics has proven to be important because the author
knows that there are certain standards for geolocation
systems such as the WGS-84 standard which is commonly
used by various countries in the world. The author also
delves deeper into matters related to the programming
side in writing this research such as the Flutter framework,
the Dart programming language, asynchronous
programming, and Android as well as the rules needed in
developing a neat system or application (Kumar et al.,
2014; Gade, 2010).

Next, in the second part, we will talk about. Stage
II: Planning. At this stage, the authors analyze and
design system requirements to meet the required
criteria. Some of the criteria that need to be met are
making the module work quickly so that it can process
data in real-time, accessing location data,
implementing the Haversine and Vincenty methods, the
module operating automatically without manual input
from the user, and the variables according to the
Haversine and Vincenty methods. Regarding the
integration side of the application, the author will
design and create a programming algorithm for the
module so that it can meet the desired criteria. Here is
the flowchart for this module. The following Fig. 2 is
about the flowchart diagram for the module we made.

Moreover, in the third part, we will talk about Stage IlI:
Modelling. At this stage, the author will implement the
logic or algorithms from both the Haversine and Vincenty
methods in the form of programming code in the Dart
programming language and adapt it to the Flutter
framework. Here, we will study the implementation of
mathematical formulas and the implementation of LBS
(Location-Based Service). Implementation of
Mathematical ~ Formulas: In this section, the
implementation of the mathematical formulas from the
Haversine and Vincenty methods will be explained so that
the module can calculate the distance between coordinates.
The use of these two methods is because these methods

have fundamentals that are suitable for use in calculating
coordinates on a spherical plane. As explained on the
theoretical basis, Haversine and Vincenty each have
different fundamentals in their application to calculating
distances between earth coordinates, namely, Haversine
assumes that the earth is round, while Vincenty assumes
that the earth is slightly ellipsoid. Therefore, there are
significant formula differences based on what is learned
from the theoretical basis and because of these differences
in formulas, the way to implement them is also different.
Of course, because this module uses two methods of
calculating distances between coordinates, this module will
have two classes that have templates in their abstract class
with variables that have been initialized according to the
WGS84 standard (Nabie et al., 2018). Figure 3 is the code
of the WGSB84 standard.

Fig. 2: Flowchart diagram for the module

1053

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

Haversine Method: The Haversine method in this
module is used to calculate distances between coordinates
with the assumption that the earth is spherical and uses a
trigonometry function that is rarely used now namely the
Haversine function. It is known that the Haversine
formula on coordinates is as follows:

hav (0) = hav(p, — ¢,) +cos(¢,) cos(¢,)hav(4, — 4,)

hav(9) = %versin(@)
. . ,(6
ver sin(8) =1-cos(6) = 2sin (E)

. ,(0
hav(6) = sin [Ej

By changing the haversine function to a sine form, the
Dart programming language can calculate this method. Here
is the code in the Fig. 4.

Vincenty’s Method: The implementation of the
Vincenty method into a programming algorithm is
complicated because of the complexity of the logic or
algorithm in the method. The Vincenty method has certain
numbers that have been given by its inventor. The
numbers in question are; 16, 47, 74, 128, 175, 256, 320,
768, 1024, 4096, and 16384 are constant numbers. In
Vincenty's Formula, there are two methods, namely the
direct method and the inverse method. This module will
use the inverse method from Vincenty to find the distance
between two coordinate points. The direct method from
Vincenty will not be used because it is not necessary to
find the azimuth of two coordinate points (Mahmoud and
Akkari, 2016; Pressman, 2005). The Vincenty method has
its own mathematical notations, therefore the notations to
be declared in the code are as in Fig. 5:

e flattening = 1

earthRadius = equatorRadius;

double pi = 3.14159265;

double degToRadian(double deg) =» deg * (pi

double radianToDeg(

Fig. 3: Code of WGS84 standard

Fig. 4: Code of distance function

H
= 1, lambdaP;

Fig. 5: Code of distance function

At the beginning of the operation of the Vincenty
formula, the value of A must be found by finding the value
of the sine and cosine of the delta (Nystedt, 2017; Arifin
and Garminia, 2019). After the equations have been
entered into the algorithm, then do as many repetitions as
desired with conditions of accuracy level of 107(-12) or
0.6 mm (Utami and Mampouw, 2020). Here's the code.

At the beginning of the operation of the Vincenty
formula, the value of A must be found by finding the value of
sine and cosine of delta first using the following equation:

sing = \/(cosUzsin ,1)2 +(cosUlsin U, -sin Ulcosuzcosi)
cosg =sinU,sinU, +cosU,cosU, cos A

o =arctan2(sin o, cos o)

_cosU, cosU, sinA
sinc

sina

2sinU, sinU
cos(20,,) =coso - L2
cos’c

f 2 2
C:Bcos al4+ f(4-3cos’ a) |

A=L+(+C)fsin a{a +Csino| cos(20,,) + Ccoso(-1+ 2cosz(20m))]}

After the equations have been entered into the algorithm,
then do as many repetitions as desired with conditions of
accuracy level of 107°(-12) or 0.6 mm (Utami and
Mampouw, 2020). Here's the code in Fig. 6. Furthermore,
after finding the lambda value, you can only operate the
following equation to find the distance between the two
coordinates (Maor, 2019). Fig. 7 is about the code of
distance of two coordinates.

1054

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064
DOI: 10.3844/jcssp.2023.1050.1064

sinLambda = sin(lambda);
cosLambda = cos(lambda);
sinSigma = sqrt((cosU2 * sinlLambda) * (cosU2 * sinLambda) +
cosUl * sinU2 - sinUl * cosU2 * cosLambda) *
cosUl * sinU2 - sinUl * cosU2 * coslLambda));

if (sinSigma == @) {
0.9;

}

cosSigma = sinUl * sinU2 + cosUl * cosU2 * coslLambda;
sigma = atan2(sinSigma, cosSigma);

sinAlpha = cosUl * cosU2 * sinLambda / sinSigma;
cosSgAlpha = - sinAlpha * sinAlpha;

cos2SigmaM = cosSigma - 2 * sinUl * sinU2 / cosSqAlpha;

£ (cos2SigmaM.isNaN) {
cos2SigmaM = 0.9;

}

C=f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSgAlpha));
lambdaP = lambda;
lambda = 1 +
1-0=
£*
sinAlpha *
(sigma +
C*
sinSigma *
cos2SigmaM +
C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)));
> ((lambda - lambdaP).abs() > le-12 & --maxIterations > 0);

inLambda) * (cosU2 * sinLambda) +
inUl1 * cosU2 * coslLambda) *
cosUl * sinU2 - sinUl * cosU2 * coslLambda));

inSigma == @) {
2.9;

cosSigma = sinUl * sinU2 + cosUl * cosU2 * coslLambda;
sigma = atan2(sinSigma, cosSigma);

Alpha = cosUl * cosU2 * sinlLambda / sinSigma;
cosSgAlpha = 1 - sinAlpha * sinAlpha;
cos25igmaM = cosSigma - 2 * sinUl * sinU2 / cosSqAlpha;

if (cos2Sigm
cos2SigmaM

}.
C =f / 16 * cosSgAlpha * (4 + f * (4 - 3 * cosSqAlpha));
lambdaP = lambda;
lambda = 1 +
(1-¢)=
F =
sinAlpha *
(sigma +
c=*
sinSigma *
cos25igmaM
C* igma * (-1 + 2 0s2SigmaM * cos2SigmaM)));
(lambda - lambdaP).abs() > le-12 && --maxIterations > @);

Fig. 6: Code of sinLambda, cosLambda, and sinSigma

With dist having results in the distance between the two
coordinates. Keep in mind that when the two coordinates
are in the antipodal position, which means on the opposite
side of the earth (180" difference in longitude and 0
difference in both latitudes from point 0°), the Vincenty
method will fail to calculate (Maor, 2019). Implementation
of LBS (Location-Based Service): In this section, the
process that the author will carry out is to design an

algorithm to use LBS in the geolocation module. There are
two algorithms that will be used in the geolocation module,
namely the algorithm for the Haversine method and for the
Vincenty method. Each of these algorithms is required to
meet the module criteria, namely requiring the algorithm to
process dynamically as quickly as possible so that it can
process real-time input data or change input data. Initialize
the variables related to the module: This initial step is the
process of initializing any variables that will be needed by
the module to function as intended. This module has a
dependency on the Flutter library (Hartanto et al., 2018;
Jackson and Jackson, 2017). We can see the module
function in Fig. 8.

Validate user device location access permission: The
next step in LBS implementation, it is very important for
applications to be able to access the user's device location.
The algorithm needed at this stage is to validate the
permission to access the device location. Figure 9 is about
the code of LBS implementation.

dist = b * A * (sigma - delta5Sigma);

return dist;

postalCo

coumtr

Fig. 8: The module to function

1055

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

if(permissionStatus

ted || permissionStatus == rantedLimited){

Fig. 9: Code of LBS implementation

tion.longitude!

ation.longitude!);

Fig. 11: Code of display data in real-time

Sertajayd, Kecamatan Clkarang Tlmur

Jawa Barat, Indonasia

Profile

= ?

Conversation ﬁ Location History

Upcaming Fvants

Tap here to Check-in

Fig. 12: Display of dashboard apps

Detect device location data: The algorithm will take
input data from the user which is a coordinate. Data
capture requires device location data access
permission. The image below shows the validation of
device location data access permissions and data
capture. Figure 10 is about the code to detect device
location data. Display data in real-time: To display data
in real-time, it is necessary to register several variables
to broadcast data changes to the stream. The variables
whose values you want to display in real-time or create
a stream are as in Fig. 11.

Further, in the fourth part, we will talk about Stage
IV: Construction. At this stage, the author will carry
out the module integration process with the application
aiming to test whether the module meets the criteria and
whether the functionality of the module runs fully. To
integrate the module into the application, there will be
changes in the application code script, especially
changes to the class on the application screen. There
are two types of State in the main class used in the
screen in Flutter, namely the Stateful Widget class and
the Stateless Widget class. A stateful Widget indicates
that the screen can display dynamic data, Widget
shapes change (transition), and animation. Meanwhile,
the stateless widget indicates that the screen will not
display dynamic data, only static. Therefore, applications
are required to use Stateful Widgets on certain screens that
this module will integrate. Apart from that, Flutter also
prepares builders in the form of Widgets for data types
and Stream classes which must be used when you want
to use the real-time data processing functions of this
module (Arb and Al-Majdi, 2020). Figure 12, we can see
the display of Dashboard apps.

The value contained in the red box in the image
above is the value obtained from the module that was
created. These values are dynamic and are obtained
from Stream data. The data changes in real-time for
both place-name data and coordinates (below the place-
name box). The author also tests whether the displayed
data can be stored in the application database by
pressing the "Tap here to Check-in" button at the
bottom of the screen. The app outputs information like
the following in the Debug Console box in the IDE
(Restrepo-Calle et al., 2020). Figure 13 is about the
value obtained from the module.

1056

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064
DOI: 10.3844/jcssp.2023.1050.1064

Fig. 13: The value obtained from the module

latitude,
snapshotlatlng.data! . longitude

snapshotlatlng.

1

.whenComplete(() =» initDB());

currentLatls

et.currentLatls

Fig. 14: Code of distance between the current user's
coordinates

Seen in the first line in the image above are the
coordinates detected by the application and obtained
from the module. After detecting the coordinates, the
application will query to store data in the database as
shown in the next line. The words “Successfully
removed from outboxPendingMutation mutations” mean
that the back-end process of the application has
successfully entered data into the database because the

outbox Pending Mutation mutations are no longer needed.
In the second line I/amplify: Aws-datastore (5298), there
are the coordinates as well as the location. The events in the
above figures indicate a successful integration of the
module for accessing real-time location data. Furthermore,
the author will test if other functions of the application
function successful, such as testing the process of
calculating the distance between the two coordinates (Wu,
2019). After module integration in the main menu, it will
be continued with integration in other sections using the
same method. In the location history section (Location
History), there will be a calculation of the distance between
the current user's coordinates to the available item
coordinates using the following code script.

Figure 14 shows the use of the Vincenty method in
finding the distance between two coordinates. User
coordinates are represented by the widget. currentLatLong
where the data from the variable is the data passed from the
previous class, namely the main menu. Figures 14-16 show
data passed from the previous class (main menu) in Fig. 16
to the next class in Fig. 15. This passed data is static data
obtained from the last data in a stream on the main menu.
The use of static data is due to the complexity of the Vincenty
algorithm (Vincenty, 1975), which requires a long
processing time with many different data as shown below.

Because the author uses the same emulator and location
preset, there are items that are 0 m away to validate whether
the module has errors in the form of bugs. The author also
created a new button on the AppBar to display the analytical
mode view to see the deviation between the two methods.
The image above shows a little analysis of the data for each
item. If the distance between the device and the item is 0 m,
the application will display "No Deviation" (Azdy and
Darnis, 2020). To find the deviation in percent of the two
methods, a function has been prepared in this module.

The above functions are contained in the
LocationService class, a class that contains LBS
(Location Based Service) access functionality as well as
functions that require using both methods such as finding
the average between the results of the two methods and
the deviation in percent. The module developed in the
Flutter framework is an extension package that must be
listed in the pubspec.yaml file in the application's project
folder (Hartanto et al., 2018). Figure 17 is a snippet of the
pubspec. yaml file so that the module can be used in the
application.

1057

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064
DOI: 10.3844/jcssp.2023.1050.1064

|

£ Location History 1]

Distance office
0 m Sarlajoya, Kecamuoatan Cikorang Timur, Jawo

away Borat, Incdanasia _

garas (ute 7) 307/ 2007

Distance PQrk
737 km

PERE+HPAR, Kacamaotan C\kUth, Banten, Indanasic
away 20568 (UTC 7) 2872022

seanee Minimart Near Office
0 m Serlojoya, Kecamolan Cikerang Timur, Jawo

away Barat, Incdonesia

1mE (UTC 7) 3577027

Distanca Unnamed Location

0 | eatitLactes: -6.3183917
m Longituds: 107178505
away Date and Time: E (UTe ¥) 257200z

Distonce WhRamed Locdation
Latitucle:
om

Lohgitude:
away Date and Times:

-6.3163917
10778505
101821 (UTC 7) 25(7/2022

pistance Neighbor's house
73.8km PERE+PAR, Kacamatan Clkupo, Banten, Indanasic

away WI8:28 (UTEC 7) 5/7/2022

Distance Unnamed Location
Leatituicle:
738 km Longituce:
ity Dretes eand Tirmes

-5.260544]
08515124
05530 (UTE 7) 572007

< Location History =1

Distance Deviaton Wincenty-Heoversing
om No deviation

Current lobtude -6 3163877, langituds 107176505

awery Olsjact lotitude 63153817, longituda 107178505
Distance Daviciton Winconty-Hovorsing
737 km 0.002448 %
Currant lottuce BIF langitucis 1078000
away GG DG~ 2 1071 Tch 0B 5152359
Distance Deviaton Vincenty-Haversine
om Mo deviation
Curtent It Lde -3 52977, longiluss 107778505
away Oljsct lotitude -5.315337, langituos 10078808
Disteince Deviaton Vincenty-Heoversine
om Mo deviation
Currant loftude -5.3153917, |OI'|C_liﬂ.’.‘e orEs0s
away Gzl bl -5.315307, langllugs 107178505
Distance Deviaton Vincenty-Haversine
om No deviation
Currant lubLde—5.31 53977, longiluss 10778505
awcy Okject Intitude -6 315387, longituos 107178508
Distance Deviatan Wincenty-Heoversing
73_8 km 0.002452 %
Currant lotftude - 3183917, |0I1qi'| Ca WTITEENS
away Objeet lotilude - 2507851 longiluds 1065154757
Distance Devicton Vincenty-Haversine
738 km 0.002480 %
i Current lablude—5215397, longiluss 107178505
away Object lotitide - 87505481 longitude 103 M8174
Analytics Turned On
F s

Fig. 15: Display of location history

rage(Latlng pl, Latlng p2){

{}.distance(pl,p2} + Ha () .distance(pl,p2))/2;

Fig. 17: Code of dependencies

Finally, in the fifth part, we will examine Tahap V:
Deployment. This stage is the final stage which includes
the launch of a project or module in the real world. At this
stage, the author will launch a module that has been
integrated into the GeoSoc application and test and
evaluate the deficiencies contained in the module so that
it meets the specified standards, namely, specifically for
screen design (UI), the Eight Golden Rules standard and
evaluates UX. using methods such as the User Experience
Questionnaire (Kusuma et al., 2023; Arifin et al., 2022).

Results and Discussion

The article discusses the creation of a geolocation
system module to validate user location coordinates in an
Android application using the Flutter framework. Despite
using advanced algorithms and techniques, there were
instances where the obtained coordinates deviated from
the actual location. Additionally, there were challenges
related to privacy and security concerns, such as data
encryption, secure transmission, and storage of user
location coordinates. Additionally, computational
challenges emerged during the processing of large
volumes of location data, such as the efficiency and
scalability of the algorithms used in the module. These
challenges significantly influenced the development and
implementation of the module and it is important to
discuss them to provide a comprehensive view of the
study's limitations and potential areas for improvement.
The challenge of creating a geolocation system module
was to ensure that it could handle a large number of user

1058

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

requests without compromising performance or
introducing delays in the validation process. Optimization
techniques, parallel processing, and memory management
strategies were explored to address these challenges.
Additionally, practical limitations such as connectivity
issues, signal interference from buildings or natural
obstacles, and limitations imposed by the hardware or
software components of Android devices had to be
considered. Additionally, geographical challenges such as
variations in satellite coverage, signal availability, or
environmental factors in different regions affected the
accuracy and reliability of the module. These discussions
contribute to the advancement of geolocation technology,
guide future research efforts, and aid in the development
of more reliable and robust geolocation system modules
in Android applications.

In the user location validation stage, testing is
carried out by testing the user's location at several
points and comparing the results with the actual
coordinates. Tests are performed at different times of
the day to ensure accurate results. The test results show
that the system successfully retrieves the user's
coordinates with high accuracy and sends them
correctly to the server. The test results show that the
geolocation system that has been created has high
accuracy in determining the user's location. In the tests
carried out, the coordinates sent by the system to the
server have a small difference from the actual
coordinates. This shows that the system can retrieve the
user's location with high accuracy. In testing
application performance, testing is carried out to see
how quickly the application responds to changes in the

map. The test results show that the application responds
quickly and can display the user's location accurately
in a short time. This shows that the application can be
used properly and can help users to determine their
location accurately. This section will describe the
mathematical analysis of the methods used in module
development. The intended mathematical analysis is
the deviation of the numbers resulting from calculating
the distance between coordinates. The Fig. 18 is the data
and its mathematical analysis.

Information and explanations regarding the picture.
The table in the image is the result of calculating the
deviation between the numbers from the Vincenty and
Haversine methods and the condition when the starting
point is at coordinates (0, 0) (latitude 0, longitude 0) or
at the equator to the coordinates at the point according
to the image. The latitude limit is -90 < latitude < 90.
The longitude limit is -180 < longitude < 180. In the
picture above, you can see that there is column A
represents the longitude value from the destination
point, and columns B to N represent the latitude value.
For longitude, the data is being simulated from -180°
up to 179° in column A. For latitude, the data is being
simulated from -90° up to 90° with increments of 15°
each column except for column H because it has a value
of 1°. The value of 1° is given in column H because the
Vincenty method fails to calculate at points close to the
equator. It can be seen that the calculation of the
deviation in the image above has a symmetrical pattern
in which the difference in distance between points (0.0)
to points (-15,-1), (-15,1), (15,1), (15, 1) have the same
number. Therefore, data retrieval can be simplified into

user's location and displays the user's location on the the Fig. 19.

A B C D E F G H | J K L M N

-19 0.1675702 02559356 034965 0.4209761 0.419812 0.2469191 0.0018091 02469191 0.419812 0.4209761 034965 0.2559356 0.1675702]
-18 0.1675702 02567208 0.3521783 04270441 04324084 0.2639195 0.002019 02639185 0.4324084 0.4270441 03521783 0.2567208 0.1675702]
-17 01675702 02574678 0.3545991 04329303 0.4449962 0.282234 0.0022667 0282234 0.4449962 0.4329303 0.3545991 02574678 0.1675702]
-16 0.1675702 02581758 0.3569081 0.4386153 04575139 03019206 0.0025622 03019206 0.4575139 0.4386153 0.3569081 02581758 0.1675702]
-15 0.1675702 02588443 0.3591011 0.4440794 0.4698938 0.3230182 0.0029183 03230182 0.4698938 0.4440794 03591011 0.2588443 0.1675702]
-14 0.1675702 02594727 0.3611737 0.4493033 0.4820623 0.3455377 0.0033529 03455377 0.4820623 0.4493033 03611737 0.2594727 0.1675702]
-13 0.1675702 02600603 03631222 04542675 0.4939402 03694504 0.0038908 03694504 0.4939402 0.4542675 03631222 0.2600603 0.1675702]
-12 0.1675702 02606066 0.3649427 0.4589532 05054438 03946745 0.0045675 03946745 05054438 0.4589532 03649427 0.2606066 0.1675702]
11 0.1675702 02611111 0.3666316 04633418 05164855 0.4210586 0.005435 0.4210586 05164855 04633418 03666316 02611111 0.1675702]
-10 01675702 02615734 0.3681855 0.4674156 0526975 0.4483652 0.0065722 0.4483652 0526975 0.4674156 0.3681855 0.2615734 0.1675702]
-9 0.1675702 02619929 0.3696013 04711577 05368208 0476254 0.0081029 0476254 05368208 04711577 0.3696013 02619929 0.1675702]
0.1675702 02623694 0.3708761 04745523 05459319 05042677 00102311 05042677 05459319 04745523 0.3708761 0.2623694 0.1675702]

7 0.1675702 02627025 0.3720073 04775845 05542193 05318258 00133108 05318258 05542193 04775845 0.3720073 0.2627025 0.1675702]

6 0.1675702 02629917 03729925 0.480241 05615982 05582282 0018 05582282 05615982 0.480241 03729925 02629917 0.1675702]

s 0.1675702 0.263237 03738298 0.4825098 056799 05826755 0.0256307 05826755 056799 0.4825098 03738298 0263237 0.1675702]

4 0.1675702 02634379 0.3745172 0.4843807 05733238 06043073 00392204 06043073 05733238 0.4843807 03745172 0.2634379 0.1675702]

3 01675702 0.2635945 0.3750534 0.485845 0577539 06222608 0.0667074 06222608 0577539 0.485845 0.3750534 0.2635945 0.1675702]

2 0.1675702 02637064 0.3754372 04868958 05805863 06357437 0.1334921 06357437 05805863 0.4868958 03754372 0.2637064 0.1675702]

1 0.1675702 02637735 0.3756678 0.4875283 05824294 06441142 0.3341064 06441142 05824294 0.4875283 0.3756678 0.2637735 0.1675702]
0 0.1675702 02637959 0.3757447 04877394 05830463 0546953 0.6693367 0546953 05830463 04877394 03757447 0.2637959 0.1675702]

1 0.1675702 02637735 0.3756678 04875283 05824294 06441142 03341064 06441142 05824294 0.4875283 03756678 02637735 0.1675702]

2 0.1675702 02637064 03754372 0.4868958 05805863 06357437 0.1332921 06357437 05805863 0.4868958 03754372 0.2637064 0.1675702]

3 0.1675702 02635945 0.3750534 0.485845 0577539 06222608 0.0667074 06222608 0577539 0.485845 03750534 0.2635945 0.1675702]

4 01675702 02634379 0.3745172 0.4843807 05733238 06043073 00392204 06043073 05733238 0.4843807 03745172 0.2634379 0.1675702]

s 0.1675702 0.263237 0.3738298 04825098 056799 05826755 0.0256307 05826755 056799 0.4825098 03738298 0.263237 0.1675702]

6 0.1675702 02629917 0.3729925 0.480241 05615982 05582282 0.018 05582282 05615982 0.480241 0.3729925 0.2629917 0.1675702]

7 0.1675702 02627025 0.3720073 04775845 05542193 05318258 00133108 05318258 05542193 04775845 0.3720073 0.2627025 0.1675702]

8 0.1675702 02623694 0.3708761 04745523 05459319 05042677 00102311 05042677 05459319 0.4745523 03708761 0.2623694 0.1675702]

9 0.1675702 02619929 0.3696013 04711577 05368208 0476254 0.0081029 0476254 05368208 04711577 03696013 02619929 0.1675702]
10 0.1675702 02615734 0.3681855 04674156 0526975 0.4483652 0.0065722 0.4483652 0526975 0.4674156 0.3681855 02615734 0.1675702]
11 01675702 02611111 0.3666316 04633418 05164855 0.4210586 0.005435 0.4210586 05164855 0.4633418 03666316 02611111 0.1675702]
12 0.1675702 0.2606066 0.3649427 0.4589532 05054438 0.3946745 0.0045675 03946745 05054438 0.4589532 03649427 0.2606066 0.1675702]
13 0.1675702 0.2600603 0.3631222 04542675 0.4939402 0.3694504 0.0038908 03694504 0.4939402 0.4542675 03631222 0.2600603 0.1675702]
14 0.1675702 02594727 0.3611737 0.4493033 0.4820623 0.3455377 0.0033529 03455377 0.4820623 0.4493033 03611737 0.2594727 0.1675702]
1s 0.1675702 02588443 0.3591011 0.4440794 0.4698938 03230182 0.0029183 03230182 0.4698938 0.4440794 03591011 02588443 0.1675702]
16 0.1675702 02581758 0.3569081 04386153 04575139 03019206 0.0025622 03019206 0.4575139 04386153 0.3569081 0.2581758 0.1675702]
17 0.1675702 02574578 0.3545591 04329303 0.4449962 0.282234 0.0022667 0282234 0.4249962 0.4329303 03545991 02574678 0.1675702]
18 01675702 02567208 03521783 04270441 04324084 0.2639195 0.002019 0.2639195 0.4324084 0.4270441 03521783 0.2567208 0.1675702]
19 0.1675702 02559356 0.34965 04209761 0.419812 0.2469191 0.0018091 02469191 0.419812 0.4209761 0.34965 0.2559356 0.1675702]
20 0.1675702 02551129 0.347019 0.4147457 0.4072621 0.2311633 0.0016299 0.2311633 0.4072621 0.4147457 0347019 0.2551129 0.1675702]

Fig. 18: The data and its mathematical analysis

1059

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

A E c u] E F G H | J
35 0.0005103 0.0M24358 00453832 0.0358571 01500025 02016185 0.2454 316 02753833 0303357
34 00005427 0.0132 754 00437526 01003351 01571454 02033561 0.25424fd 0 2574515 03031263
33 00005782 0.011278 0.0527426 01085051 01647146 0.2187413 0.2633043 02961253 0316976
32 0.0006T7 0.0150556 0.0553333 0.1124105 01727284 0.2273332 0.2726703 0.3050002 0.324335
3 00006536 0.0960718 00535043 0157497 0181218 0.2374743 0.2823443 03140701 0.3323344
30 00007065 0.01ma7e 00633354 01255616 0.1302131 0.2474803 0.2923272 03233273 0.3411433
23 00007554 0.0184157 0.067513 01326883 01397444 0.2573236 03026163 03327621 03433713
26 0.000318 0.0137723 00720784 0407781 0 2038432 0 2688331 03132032 03423623 03576635
27 000088 0.0212763 00770782 01432501 02205413 02501334 03240371 0 352116 03660057
26 0.0003576 0.0223436 00825652 01584501 0.2318706 0.2920346 0.3352708 03620051 03743815
25 0.0010318 0.0243167 0.058504 01653452 0.2438621 0.3043415 03467166 0.3720114 03827731
24 0.001224 0026309 00352623 01790383 0.2565453 0.317185 0.3554172 0.3821135 039161
23 0.0012243 00232638 01026226 0130531 0.2633475 0.3303535 0370351 0.3922872
22 0.0013417 0.0313253 0. 107785 0.2030773 02840317 03440521 03824317
21 0.0014755 0.0343507 013535 0 2165758 0 238336 03581771 0.3348077
20 0.0016233 00354035 01293254 02311633 0.3146707 0.3727073
13 0.0013031 0.0423634 0.1471833 02463131 0.331M63 0.357E063
18 0.002013 0.0463513 01537753 0.2833135 0.3453231
17 00022667 00522734 01676875 0.282234 03662626
16 00025622 0.0555158 01837238 0.3013206 03848836
15 0 0023163 0 NBSE607 02015365 03230182
14 00033523 00746376 02215631 03455377
13 0.0038303 0.0851442 02440302 0.3634504
12 00045675 00378662 0.26336 0.334E745
il 0.005435 0.1134139 02376532
10 00065722 01326166 0.32531437
0.0081023 01565462 (03633204
00702311 01866167
0.0133108 02248263
0.0 02726936
00256307 03328966
00332204
00667074
01334321
0 3341064
0.36422

Fig. 19: The data retrieval

The table shows that the accuracy of the Haversine
method is lower as it approaches the equator and the
longitude is 0°. The difference in the numbers
calculated by the Haversine and Vincenty methods at a
distance of (0.0)—(1.0) has a deviation of 0.6%. The
difference in these figures is due to the different
fundamentals of the two methods. Haversine has a
fundamental assumption that the earth is round while
Vincenty assumes that the earth is an ellipsoid. Please
note that the image above only represents data up to
latitude represents data up to 40° latitude. However, as
the point is further away from 0° longitude, the
deviation becomes smaller. This is because, in the
operation of the Vincenty method, the method has
constant variables which, according to Thaddeus
Vincenty, optimize the level of accuracy in calculating
distances. The curvature of the line based on the ratio
of flatness of the earth affects this difference in
distance. Compared to the Haversine method, this
method does not have a constant variable or even
assumes that the earth is an ellipsoid, so we can see the
difference. Fig. 20 consists of the level of accuracy in
calculating distances.

The table in the image shows the area where the
calculation of the distance between coordinates (0,0) —
(Latitude, Longitude) using both the Vincenty and

Haversine methods has the smallest deviation. The
smallest deviation point is located at the distance
(0,0)—(1, 119)~(1, 120). The following is a radar chart
to support the visualization of deviation data for the
table in Fig. 21.

The description is as follows: The red line is the
deviation in percent at latitude 1° of the point of
destination. The yellow line for latitude is 30° from the
point of destination. The green line for latitude 60° of the
point of destination. The blue line for latitude 90° of the
point of destination. The conclusions that can be drawn
from the visualization with the graph above are: The
deviation becomes more stable as it approaches the poles.
Therefore, the pole can be assumed as a stable point to
explore further the deviation of these two methods. As
seen in the graph above, when the distance approaches -
180° latitude at 1° latitude, which is the point approaching
the antipodal, the deviation spikes. This proves Thaddeus
Vincenty's statement that the method will fail to find a
solution when approaching an antipodal point or even
calculating a line at the equator. The analysis will be
continued with the next parameter, which is centered on
the polar point. What is meant by centered on the polar
point is the starting point centered on one of the earth's
poles. The following Fig. 22 is an image regarding the
graph for the deviation of the polar parameters.

1060

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

Lang

(1] Dew fdeg % | DevBdeg % [+ | Dew 0deg % | Dev fGdeg (=] Dev 20deg % | Dev 26deg % = | Dev30den
1
140
133
138
137
136
135
134
133
132
131
130
123
128
127
126
125
124
123
12z
121
120
13
b1
7
116
hi]
™
3
11z
1
o
103
06
o7
106
05
104
03
0z

Fig. 20: The level of accuracy in calculating distances

Haversine vs \ﬁncemv%dzwali%fmm point {0,0) to coordinates

— atilminde et atude” %atedlttude —— at 3l btkude

Fig. 21: The radar chart to support the visualization of deviation data

1061

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064
DOI: 10.3844/jcssp.2023.1050.1064

Polar to polar % Deviation
Intersect at latitude B(-24.73569)

Fig. 22: The graph for the deviation of the polar parameters

The graph in the image above visualizes the
deviation between the two numbers from the Vincenty
and Haversine methods. As seen in the initial iteration,
namely (-90, -180) — (89, 0), both methods have a
deviation of around -0.33631% where the distance
calculated using the Haversine method is smaller than
Vincenty. This deviation will continue to shrink to -
24.73569° latitude and expand to -35° latitude and then
shrink again until it approaches the antipodal point at
the south pole. From this graph, it can be concluded
that the deviation will shrink when approaching the
antipodal point and when the latitude is closer to the
polar. Using the Haversine method is much easier than
the Vincenty method. However, based on data from
WGS84, the earth is not round but has an ellipsoid
shape. The level of the earth's ellipsoid is represented
by the flattening variable which is 298.257223563. The
use of the Haversine method can be superior when
calculating the distance approaching the antipodal
point from the initial distance even though the level of
accuracy is less. The visualized data can be used as a
reference for further research to improve the Vincenty
method by using the deviation between the two
methods considering that the polar radius and
equatorial radius are only less than 100 km apart.

In this research, a geolocation system module has
been successfully developed that can be used to
validate user location coordinates in Android
applications using the Flutter framework. Validation of
the coordinates of the user's location is carried out by
comparing the coordinates obtained from the
geolocation module that has been made with the user's
original coordinates obtained from Google Maps. The
validation results show that the built geolocation
module can produce coordinates of the user's location
with a good level of accuracy. Application performance
has also proven to be good with an average application
response time that is quite fast. Although this research
has succeeded in producing a geolocation system
module that can be used to validate the coordinates of
a user's location on an Android application, there are
several things that can serve as suggestions for further

research. First, future research can try to integrate the
geolocation module that has been built with the existing
geolocation system on Android devices, such as using
GPS services or network-based locations. This is
expected to increase the accuracy of the results of the
geolocation module that has been built. Second, future
research can try to develop a geolocation module that
can be used to validate user location coordinates on iOS
applications or other mobile platforms. Third, future
research can try to integrate the geolocation module
that has been built with the navigation system on the
Android application so that users can see the closest
route to their destination in real-time.

Conclusion

The conclusions drawn by the authors in this study
can be grouped into several aspects which include
aspects of mathematics and programming (Ul design
and User Experience). In the mathematical aspect, the
use of the Haversine method in matters requiring high
accuracy such as setting the satellite constellation is
very dangerous because if it is assumed that the
Vincenty method is an accurate method, then the
difference in distance of 0.6% as shown in the analysis
section is very large from the point of interest. The
deviation data between the calculation results of the
two methods prepared at the time of writing this
research is intended for future researchers to be able to
refine the Vincenty method by creating an equation
based on the deviation with the results from the
Haversine method. This equation is expected to be able
to complete what is lacking in the use of the Vincenty
method such as failure and inaccuracy of calculations
approaching the antipodal point. In the programming
aspect, the application of the Vincenty method to
modules is made unreliable in conditions where the
distance calculation is close to the antipodal point
because the programming algorithm will error (not
finding the meeting point even though it has gone
through the highest iteration).

Aspects of separate programming can still be
divided into 2 parts, namely as follows: (a) In the Ul
design section, applications that are integrated with
modules meet the criteria based on the Eight Golden
Rules theory. This statement can be proven by survey
results which are dominated by “good” and “very
good” responses to the 8 questions according to the
eight golden rules. (b) In the User Experience (UX)
section, applications integrated with modules have
varied responses. It can be concluded that this
application lacks attractiveness because the value
achieved on the UEQ during the evaluation process has
a value below the average (1.05). Even though it does
not have so high attractiveness, the highest score is
obtained on the accuracy scale with a very good value

1062

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

(1.97) which means that the module is made according
to its purpose. Further, it is hoped that the data
contained in this study will be used to develop a new
method of calculating the distance between the two
coordinates on the earth's surface, at least a method that
enhances the Vincenty method. For the programming
side, it is expected that the algorithms of the two
methods obtained in the research can be developed
using other mathematical knowledge to make the
method a hybrid. If the algorithm is too complex and
requires integral operations, it is advisable not to use
Flutter/Dart because the programming language and
framework do not yet support something complex and it
will take a long time to process the data. It is also
recommended, to find a method that has results close to
real results, further surveys and research are needed
including dedicated hardware that can guarantee accurate
results such as laser rangefinders and micro-satellite.

The Haversine and Vincenty methods are both used
to calculate the distance between two points on the
surface of a sphere, such as the Earth. The Haversine
method is simpler and faster but assumes that the earth
is a perfect sphere. The Vincenty method is more
complex and slower but takes into account the fact that
the earth is an oblate spheroid, which is more accurate
than the Haversine method. In the context of a
geolocation system module creation, the choice
between the two methods depends on the required level
of accuracy and the computational resources available.
If the application only needs to calculate short distances
and speed is a priority, the Haversine method may be more
suitable. However, if the application needs to calculate
longer distances with higher accuracy, the Vincenty
method may be more appropriate.

Acknowledgment

The authors would like to thank the reviewers for
their informative comments, and suggestions ideas,
which have helped mould this manuscript into
something that is worthy of publication. This study is
supported by the research and technology transfer
office, Bina Nusantara University.

Funding Information

This study is supported and funded by Bina
Nusantara University Research and Technology
Transfer Office under the terms of the university's
International Research Grant (PIB 2023) under contract
number 029/VRRTT/I11/2023.

Author’s Contributions

Elmer Matthew Japara and Samsul Arifin: Coding
the program, written, and finalizing the manuscript.

Edy Irwansyah: Simulating the data, tidying up the
theoretical basis and the methods we use.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that there
is no conflict of interest in this study and no ethical
issues involved.

References

Al Maki, W. F., Tajrial, R, & Arifin, S. (2023).
Automated Classification of Multi-Class Human
Protozoan Parasites using Xception as Transfer
Learning. International Journal of Intelligent
Systems and Applications in Engineering, 11(2),
817-825.
https://www.ijisae.org/index.php/IJISAE/article/vie
w/2895

Arb, G. I., & Al-Majdi, K. (2020, May). A freights
status management system based on Dart and
Flutter programming language. InJournal of
Physics: Conference Series (Vol. 1530, No. 1, p.
012020). IOP Publishing.
https://doi.org/10.1088/1742-6596/1530/1/012020

Arifin, S., & Garminia, H. (2019). Uniserial dimension of
module zm x zn over Z using python. Int. J. Sci.
Technol. Res, 8, 194-9.
https://www.researchgate.net/publication/33476979
7_Uniserial_Dimension_Of_Module_ZmxZn_Over
_Z Using_Python

Arifin, S., & Muktyas, I. B. (2018). Membangkitkan suatu
matriks unimodular dengan python. Jurnal Derivat:
Jurnal Matematika dan Pendidikan Matematika,
5(2), 1-9.
https://doi.org/10.31316/j.derivat.v5i2.361

Arifin, S., Muktyas, I. B., & Sukmawati, K. I. (2021,
February). Product of two groups integers modulo m,
n and their factor groups using python. In Journal of
Physics: Conference Series (Vol. 1778, No. 1, p.
012026). I0P Publishing.
https://doi.org/10.1088/1742-6596/1778/1/012026

Arifin, S., Muktyas, 1. B., Al Maki, W. F., & Aziz, M. M.
(2022). Graph coloring program of exam scheduling
modeling based on Bitwise coloring algorithm using
Python. Journal of Computer Science, 18(1), 26-32.
https://doi.org/10.3844/jcssp.2022.26.32.

Azdy, R. A., & Darnis, F. (2020, April). Use of Haversine
formula in finding distance between temporary
shelter and waste end processing sites. In Journal of
Physics: Conference Series (Vol. 1500, No. 1, p.
012104). I0P Publishing.
https://doi.org/10.1088/1742-6596/1500/1/012104

1063

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

Cagol, M., & Colombi, A. E. (2016). Pythagoras on the
rocks. A proof with bricks. Form@ re-Open Journal
Per La Formazione in Rete, 16(1), 268-274.
https://doi.org/10.13128/formare-17903

Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank,
A. G. (2018). The expected contribution of Industry
4.0 technologies for industrial performance.
International Journal of Production Economics, 204,
383-394. https://doi.org/10.1016/j.ijpe.2018.08.019

Gade, K. (2010). A non-singular horizontal position
representation. The Journal of Navigation, 63(3),
395-417.
https://doi.org/10.1017/S0373463309990415

Hartanto, A. D., Susanto, M. R., llham, H. D,
Retnaningsih, R., & Nurdiyanto, H. (2018, July).
Mobile Technologies of Formulation Haversine
Application and Location Based Service. In ICASI
2018: Joint Workshop KO2PI and The 1st
International Conference on Advance & Scientific
Innovation (p. 92). European Alliance for Innovation.
ISBN: 1631901621.

Hernandez-Lamas, P., Cabau-Anchuelo, B., de Castro-
Cuartero, O., & Bernabéu-Larena, J. (2021). Mobile
Applications, Geolocation and Information
Technologies for the Study and Communication of
the Heritage Value of Public Works.
Sustainability, 13(4), 2083.
https://doi.org/10.3390/su13042083

Setyorini, I., & Ramayanti, D. (2019). Finding nearest
mosque using Haversine formula on Android
platform. Jurnal Online Informatika, 4(1), 57-62.
https://doi.org/10.15575/join.v4i1.267

Jackson, W., & Jackson, W. (2017). An Introduction to
Android 7.0 Nougat. Android Apps for Absolute
Beginners: Covering Android 7, 1-15.
https://doi.org/10.1007/978-1-4842-2268-3_1

Kumar, A., Sato, Y., Oishi, T., Ono, S., & Ikeuchi, K.
(2014). Improving gps position accuracy by
identification of reflected gps signals using range
data for modeling of urban structures. Seisan Kenkyu,
66(2), 101-107.
https://doi.org/10.11188/seisankenkyu.66.101

Kusuma, W. A, Jantan, A. H., bin Abdullah, R., &
Admaodisastro, N. (2023). Mapping User Experience
Information Overload Problems Across
Disciplines. JOIV: International ~ Journal on
Informatics Visualization, 7(1), 22-29.
https://doi.org/10.30630/joiv.7.1.1588

Mahmoud, H., & Akkari, N. (2016, March). Shortest path
calculation: A comparative study for location-
based recommender system. 1In2016 world
symposium on computer applications & research
(WSCAR) (pp. 1-5). IEEE.
https://doi.org/10.1109/WSCAR.2016.16

Maor, E. (2019). The Pythagorean theorem: A 4,000-year
history. Princeton University Press. ISBN: 0691196885.

Nabie, M. J., Akayuure, P., lbrahim-Bariham, U. A., &
Sofo, S. (2018). Trigonometric Concepts: PRE-
Service Teachers' Perceptions and Knowledge.
Journal on Mathematics Education, 9(1), 169-182.

Nystedt, P. (2017). A proof of the law of sines using the law
of cosines. Mathematics Magazine, 90(3), 180-181.
https://doi.org/10.4169/math.mag.90.3.180

Pamunuwa, V. P. Waidyaratne, P. R. Weerakoon, DS. S.
Wisidagama, N. S. Rmdkn, R., Pamunuwa, P.
Waidyaratne, P. Weerakoon, S. Wisidagama, N .
Rathnayake, D. (2022). “Study on Waterfall Model over
PcD. UcT Model,” Softw. Model. Cl. Work., no. May,
https://doi.org/10.13140/RG.2.2.33241.60007

Pressman, R. S. (2005).Software engineering: A
practitioner's approach. Palgrave macmillan.

ISBN: 007301933X.

Restrepo-Calle, F., Ramirez-Echeverry, J. J., & Gonzalez, F.
A. (2020). Using an interactive software tool for the
formative and summative evaluation in a computer
programming course: An experience report. Global
Journal of Engineering Education, 22(3), 174-185.

Shavitt, Y., & Zilberman, N. (2011). A geolocation
databases study. IEEE Journal on Selected Areas in
Communications, 29(10), 2044-2056.
https://doi.org/10.1109/JSAC.2011.111214

Tyagi, P. (2021). Introduction to Flutter, in Pragmatic Flutter,
15t Ed. CRC Press of Taylor & Francis Group, pp: 8.

Utami, A. N., & Mampouw, H. L. (2020). Pengembangan
Media Smart Trigo untuk Pembelajaran
Trigonometri. Jurnal Cendekia: Jurnal Pendidikan
Matematika, 4(2), 939-949.
https://doi.org/10.31004/cendekia.v4i2.227

Vincenty, T. (1975). Direct and inverse solutions of
geodesics on the ellipsoid with application of nested
equations. Survey Review, 23(176), 88-93.
https://doi.org/10.1179/sre.1975.23.176.88

Winoto, D. A., & Christanto, F. W. (2020). Implementasi
Google Maps Api Dalam Pengembangan Sistem
Informasi Geografis Taman Kota Dan Kampung
Tematik Berbasis Android Di Kota Semarang (Studi
Kasus: Pejabat Pengelola Informasi Dan
Dokumentasi Kota Semarang). Jurnal Teknologi
Informasi dan limu Komputer, 7(1), 9-16.

Wu, Z. Y. (2019). An radio-frequency identification
security authentication mechanism for Internet of
things applications. International ~ Journal of
Distributed Sensor Networks, 15(7),
https://doi.org/10.1177/1550147719862223

Zammetti, F. W. (2019). Practical Flutter: Improve Your
Mobile Development with Google’s Latest Open-
Source SDK, 1% Editio. New York: Apress.

1064

