

 © 2023 Elmer Matthew Japara, Samsul Arifin and Edy Irwansyah. This open-access article is distributed under a Creative

Commons Attribution (CC-BY) 4.0 license.

 Journal of Computer Science

Original Research Paper

Geolocation System Module Creation to Validate User

Location Coordinates in an Android Application Using Flutter

Framework

1Elmer Matthew Japara, 2Samsul Arifin and 3Edy Irwansyah

1Department of Mathematics, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
2Department of Statistics, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
3Department of Computer Science, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia

Article history

Received: 07-05-2023

Revised: 16-06-2023

Accepted: 07-07-2023

Corresponding Author:

Samsul Arifin

Department of Statistics,

School of Computer Science,

Bina Nusantara University,

Jakarta, Indonesia
Email: samsul.arifin@binus.edu

Abstract: The target audience for this scientific paper's writing is anyone

who is interested in the statistical information that will be used to create a

method for determining the separation between two coordinate points. Given

that as technology advances, a growing number of applications will make use

of geolocation data for economic purposes, such as processing location data

to maximize product sales. The development of satellite constellations,

coordinate arrangements and even more sophisticated tasks like the

construction of a space station require a high degree of accuracy. These are

not just economic problems. However, no one is certain at this time of the

precise calculation of the separation between the two coordinate points. The

Haversine method and the Vincenty method are two of the several techniques

used today to calculate coordinates. Each approach yields, naturally, different

outcomes due to its basic differences. The variation in the results is

anticipated to serve as a database for future study into the creation of new

techniques to measure the distance between two coordinates at the point of

the earth and to determine the size of the earth with a more precise value.

However, if the application needs to calculate longer distances with higher

accuracy, the Vincenty method may be more appropriate.

Keywords: Geolocation, Vincenty, Haversine, Flutter Android

Introduction

As the era progresses, almost every aspect of human life

goes hand in hand and is also influenced by technology.

This forces various parties, both from a company or

individual, to implement technology in business practices

or daily needs. As the global economy has entered the

industry 4.0 stage, which means that traditional

manufacturing and production practices are starting to

switch to using smart technology, Machin to Machine

(M2M) communication, and the Internet of Things (IoT) on

a large-scale integrated for increased automation, increased

self-monitoring and communication and production of

intelligent machines that can analyze and diagnose

problems without the need for human intervention

(Dalenogare et al., 2018). In recent years, geolocation

services (geolocation services) have become important in

various fields and applications. Although end users may not

be aware of this, many websites visited daily use

geolocation information for local advertising, local content

(such as local news and weather forecasts), and compliance

with local laws. Mathematical concepts are needed to

process geolocation data such as calculating distances

between coordinates. There are several ways to calculate

the distance between two coordinates, in which the author

will take a method, namely the Vincenty Inverse, and will

compare it with the numbers generated by the Haversine

method, which is used by Google Maps (Great Circle

Distance) (Hartanto et al., 2018; Setyorini et al., 2019). To

process geolocation data, of course, a specially assigned

module is needed. This module will be simulated through

an application based on the Flutter Android framework

(Tyagi, 2021; Arb and Al-Majdi, 2020).

Each method used to find the distance between two
coordinates has its drawbacks or limitations. Vincenty
Inverse will fail when calculating the distance between
two coordinate points that are antipodal, whereas
Haversine uses the assumption that the earth is round.
Thaddeus Vincenty uses the assumption that the earth is
an ellipsoid and claims that his method has an accuracy of

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1051

up to 0.5 mm (Azdy and Darnis, 2020; Arifin et al.,
2021). Until now, a more accurate method has not been
found than these two methods. However, the required
level of accuracy in calculating the distance between
coordinates varies for the user. In its application in the
realm of satellite system constellations, of course, the
level of accuracy is very much considered to the
millimeter. However, in local or close-range use, the
level of accuracy is not too important. This research
will discuss the differences and analyses between the
two methods and their implementation in the creation
of geolocation modules. The application is expected to
have an accurate Geolocation system that can validate
the location coordinates entered by the user. The need
for accurate Geolocation data is essential in several
applications such as ride-hailing, food delivery, e-
commerce, etc. Flutter framework is used for mobile
application development due to its flexibility, ease to
learn, and efficient coding. Geolocation system module
creation is crucial to provide accurate location data in
several applications such as ride-hailing, food delivery,
and e-commerce. The accuracy of the geolocation
system is essential to validate the user location
coordinates (Hernández-Lamas et al., 2021; Al Maki et al.,
2023). However, it is challenging to create a
geolocation system that can validate user location
coordinates accurately. This problem becomes more
challenging when the user is in a location with poor
GPS signals, such as inside a building. Flutter
framework is a popular framework used for mobile
application development due to its flexibility, ease to
learn, and efficient coding. Therefore, this research
aims to develop a geolocation system module to
validate user location coordinates in an Android
application using the Flutter framework. Based on the
background above, the main problem to be solved in
this research is how to develop a geolocation system
module to validate user location coordinates in an
Android application using the Flutter framework. The
specific issues to be addressed are how to design a
geolocation system module that can validate the user
location coordinates accurately, how to integrate the
geolocation system module into the Android
application, and how to test the accuracy of the
geolocation system module (Winoto and Christanto,
2020; Zammetti, 2019).

The Haversine method, commonly used to calculate

the distance between two points on the Earth's surface,

has important limitations that need to be considered.

This method is based on the assumption that the Earth is

a perfect sphere, with a uniform shape over the entire

surface. However, the Earth is not a perfect sphere, but

an oblate spheroid. Therefore, when using the Haversine

method to calculate distances between geographic

points, the results may experience slight deviations or

errors due to discrepancies with the actual shape of the

Earth. In cases where greater precision is required or

when the calculated distance involves significant

elevation differences, an alternative method such as the

Vincenty may be a more appropriate choice. Haversine's

method is a fairly accurate estimate in most cases, but

it does not take into account certain factors that may

affect distance calculations. These include atmospheric

refraction, which is the bending of light as it passes

through Earth's atmosphere. This can cause errors in

distance calculations, especially at very large

distances, where the effect of atmospheric refraction

becomes more significant. If the application or research

requires very accurate distance calculations and

involves very large distances, the Haversine method

may not be the optimal choice. Other methods such as

Vincenty or other methods that take into account

factors such as atmospheric refraction can provide

more accurate and reliable results. The Vincenty

method is considered one of the most accurate methods

for calculating the distance between two points on the

Earth's surface, but it has certain limitations. These

include difficulty reaching convergence and producing

inaccurate results when two points are very close to

each other, as well as difficulty when used to calculate

the distance between points located close to the Earth's

poles due to the changing shape of the Earth around the

area. In these cases, alternative methods may need to

be used to ensure more accurate and reliable results

(Cagol and Colombi, 2016).

The Flutter framework for Android app development

has a larger file size than native Android apps due to the

presence of the Flutter engine and other components

required to run the application. This can affect the user

experience, especially for users with limited storage or

slow internet connections. Therefore, careful

consideration is needed when deciding to use Flutter as a

framework for Android application development,

especially when efficient file size is an important factor.

Computer-based localization methods have significantly

advanced the field of positioning and navigation. Two

notable methods, "Enhancement of GPS Position

Accuracy Using Machine Vision and Deep Learning

Techniques" and "Improving GPS Position Accuracy by

Identification of Reflected GPS Signals using Range Data

for Modeling of Urban Structures," offer innovative

solutions for improving GPS accuracy in different

contexts. These methods have the potential to

revolutionize the field of positioning and navigation by

leveraging advanced technologies such as machine vision,

deep learning, and urban modeling. Research and

development in these areas will continue to drive

advancements in the field and pave the way for more

accurate and reliable localization technologies (Kumar et al.,

2014). The purpose of this research is to develop a

geolocation system module to validate user location

coordinates in an Android application using the Flutter

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1052

framework. The specific objectives of this research are

(1) To design a geolocation system module that can

validate the user location coordinates accurately, (2) To

integrate the geolocation system module into the

Android application and (3) To test the accuracy of the

geolocation system module. The significance of this

research is to provide a solution to the problem of

inaccurate geolocation data in several applications such

as ride-hailing, food delivery, and e-commerce. This

research will contribute to the development of a

geolocation system module that can validate the user

location coordinates accurately in an Android

application using the Flutter framework. This research

will also contribute to the advancement of mobile

application development using the Flutter framework.

The results of this research are expected to be useful

for researchers and developers in the field of mobile

application development and geolocation system

module creation (Shavitt and Zilberman, 2011; Jackson

and Jackson, 2017).

Materials and Methods

The research stages that will be carried out in this

study are using the waterfall model, with a sequential or

sequential approach starting from analysis, design,

coding, and testing as well as supporting stages. The

following figure is a diagram of the research stages (Arifin

and Muktyas, 2018). Figure 1 is about the research stages

of the waterfall diagram.

First, we will talk about Stage I: Communication. In

this first stage, there are two sequential parts, the first is

problem identification and the second is literature study.

Here, we will study problem identification and literature

study (Pamunuwa et al., 2022). Problem Identification:

This section is the first part of writing this research. In this

section, the authors identify the problems encountered and

start looking for solutions to these problems and identify

some of the variables needed. Based on the formulation of

the problem listed, the problem that will be discussed in

this study is how the process of making a geolocation

module is to be used in an application as well as the

application and comparison or analysis of the results of

the Haversine and Vincenty method algorithms. The

process of making this module covers the analysis of

differences or discrepancies in the results of each of the

computational algorithms of the Haversine and Vincenty

methods in general and under certain conditions. Further,

the use of the two mathematical concepts as mentioned in

the previous paragraph is due to the difference in

complexity in the Haversine method which is not so

complex compared to the Vincenty method, which is

complex but, according to literature studies, has a higher

level of accuracy than the Haversine method. The use of

these two methods in the manufacture of this system

module aims to determine the difference in results, both

processing speed and nominal differences in certain

parameters embedded in the two methods. Of course, in

making geolocation modules, especially for measuring

distances between coordinates, the level of accuracy of an

algorithm is very necessary. Therefore, knowing the

difference in results between the two methods as well as

the correct implementation of the algorithms of the two

methods in a special code script for the Flutter framework

is something important.

Fig. 1: Research stages waterfall diagram

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1053

Literature Study: After the problems on this research

topic have been identified, the writer continues the

research by starting a literature study. A literature study is

needed to deepen the understanding of related theories.

Theories related to this research such as trigonometry,

Haversine formula, and Vincenty's formula are very

important theories to understand more deeply because

they are complex theories. These three theories have

relationships with each other such as Haversine which is

a trigonometric function that is rarely used in the modern

era and correlates with other trigonometric functions

(such as sine and cosine) and Vincenty's Formula which

requires a very deep understanding of trigonometry. In

addition to studying the theories mentioned in the

previous paragraphs, the author also studies the theories

and terms regarding navigation, geolocation, coordinates,

or the system in question. Literature study regarding these

subtopics has proven to be important because the author

knows that there are certain standards for geolocation

systems such as the WGS-84 standard which is commonly

used by various countries in the world. The author also

delves deeper into matters related to the programming

side in writing this research such as the Flutter framework,

the Dart programming language, asynchronous

programming, and Android as well as the rules needed in

developing a neat system or application (Kumar et al.,

2014; Gade, 2010).

Next, in the second part, we will talk about. Stage

II: Planning. At this stage, the authors analyze and

design system requirements to meet the required

criteria. Some of the criteria that need to be met are

making the module work quickly so that it can process

data in real-time, accessing location data,

implementing the Haversine and Vincenty methods, the

module operating automatically without manual input

from the user, and the variables according to the

Haversine and Vincenty methods. Regarding the

integration side of the application, the author will

design and create a programming algorithm for the

module so that it can meet the desired criteria. Here is

the flowchart for this module. The following Fig. 2 is

about the flowchart diagram for the module we made.

Moreover, in the third part, we will talk about Stage III:

Modelling. At this stage, the author will implement the

logic or algorithms from both the Haversine and Vincenty

methods in the form of programming code in the Dart

programming language and adapt it to the Flutter

framework. Here, we will study the implementation of

mathematical formulas and the implementation of LBS

(Location-Based Service). Implementation of

Mathematical Formulas: In this section, the

implementation of the mathematical formulas from the

Haversine and Vincenty methods will be explained so that

the module can calculate the distance between coordinates.

The use of these two methods is because these methods

have fundamentals that are suitable for use in calculating

coordinates on a spherical plane. As explained on the

theoretical basis, Haversine and Vincenty each have

different fundamentals in their application to calculating

distances between earth coordinates, namely, Haversine

assumes that the earth is round, while Vincenty assumes

that the earth is slightly ellipsoid. Therefore, there are

significant formula differences based on what is learned

from the theoretical basis and because of these differences

in formulas, the way to implement them is also different.

Of course, because this module uses two methods of

calculating distances between coordinates, this module will

have two classes that have templates in their abstract class

with variables that have been initialized according to the

WGS84 standard (Nabie et al., 2018). Figure 3 is the code

of the WGS84 standard.

Fig. 2: Flowchart diagram for the module

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1054

Haversine Method: The Haversine method in this

module is used to calculate distances between coordinates

with the assumption that the earth is spherical and uses a

trigonometry function that is rarely used now namely the

Haversine function. It is known that the Haversine

formula on coordinates is as follows:

2 1 1 2 2 1() () ()cos() ()hav hav cos hav         

1
() ()

2
hav versin 

2() 1 () 2

2
ver sin cos sin


 

 
    

 

2()

2
hav sin




 
  

 

By changing the haversine function to a sine form, the

Dart programming language can calculate this method. Here

is the code in the Fig. 4.

Vincenty’s Method: The implementation of the

Vincenty method into a programming algorithm is

complicated because of the complexity of the logic or

algorithm in the method. The Vincenty method has certain

numbers that have been given by its inventor. The

numbers in question are; 16, 47, 74, 128, 175, 256, 320,

768, 1024, 4096, and 16384 are constant numbers. In

Vincenty's Formula, there are two methods, namely the

direct method and the inverse method. This module will

use the inverse method from Vincenty to find the distance

between two coordinate points. The direct method from

Vincenty will not be used because it is not necessary to

find the azimuth of two coordinate points (Mahmoud and

Akkari, 2016; Pressman, 2005). The Vincenty method has

its own mathematical notations, therefore the notations to

be declared in the code are as in Fig. 5:

Fig. 3: Code of WGS84 standard

Fig. 4: Code of distance function

Fig. 5: Code of distance function

At the beginning of the operation of the Vincenty

formula, the value of λ must be found by finding the value

of the sine and cosine of the delta (Nystedt, 2017; Arifin

and Garminia, 2019). After the equations have been

entered into the algorithm, then do as many repetitions as

desired with conditions of accuracy level of 10^(-12) or

0.6 mm (Utami and Mampouw, 2020). Here's the code.

At the beginning of the operation of the Vincenty

formula, the value of λ must be found by finding the value of

sine and cosine of delta first using the following equation:

   sin cos sin cos sin sin cos cos

cos sin sin cos cos cos

2

2 1 2 1 2

1 2 2 1

σ = U λ + U U - U U λ

σ = U U + U U λ

2(sin ,cos)arctan  

1 2cos cos sin
sin

sin

U U 





  1 2

2

2sin sin
cos 2 cos

cos
m

U U
 


 

2 2cos 4 (4 3cos)
16

f
C f     

 2(1) sin sin cos(2) cos (1 2cos (2))m mL C f C C              

After the equations have been entered into the algorithm,

then do as many repetitions as desired with conditions of

accuracy level of 10^(-12) or 0.6 mm (Utami and

Mampouw, 2020). Here's the code in Fig. 6. Furthermore,

after finding the lambda value, you can only operate the

following equation to find the distance between the two

coordinates (Maor, 2019). Fig. 7 is about the code of

distance of two coordinates.

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1055

Fig. 6: Code of sinLambda, cosLambda, and sinSigma

With dist having results in the distance between the two

coordinates. Keep in mind that when the two coordinates

are in the antipodal position, which means on the opposite

side of the earth (180` difference in longitude and 0`

difference in both latitudes from point 0`), the Vincenty

method will fail to calculate (Maor, 2019). Implementation

of LBS (Location-Based Service): In this section, the

process that the author will carry out is to design an

algorithm to use LBS in the geolocation module. There are

two algorithms that will be used in the geolocation module,

namely the algorithm for the Haversine method and for the

Vincenty method. Each of these algorithms is required to

meet the module criteria, namely requiring the algorithm to

process dynamically as quickly as possible so that it can

process real-time input data or change input data. Initialize

the variables related to the module: This initial step is the

process of initializing any variables that will be needed by

the module to function as intended. This module has a

dependency on the Flutter library (Hartanto et al., 2018;

Jackson and Jackson, 2017). We can see the module

function in Fig. 8.

Validate user device location access permission: The

next step in LBS implementation, it is very important for

applications to be able to access the user's device location.

The algorithm needed at this stage is to validate the

permission to access the device location. Figure 9 is about

the code of LBS implementation.

Fig. 7: Code of distance of two coordinates

Fig. 8: The module to function

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1056

Fig. 9: Code of LBS implementation

Fig. 10: Code of detecting device location data

Fig. 11: Code of display data in real-time

Fig. 12: Display of dashboard apps

Detect device location data: The algorithm will take

input data from the user which is a coordinate. Data

capture requires device location data access

permission. The image below shows the validation of

device location data access permissions and data

capture. Figure 10 is about the code to detect device

location data. Display data in real-time: To display data

in real-time, it is necessary to register several variables

to broadcast data changes to the stream. The variables

whose values you want to display in real-time or create

a stream are as in Fig. 11.

Further, in the fourth part, we will talk about Stage

IV: Construction. At this stage, the author will carry

out the module integration process with the application

aiming to test whether the module meets the criteria and

whether the functionality of the module runs fully. To

integrate the module into the application, there will be

changes in the application code script, especially

changes to the class on the application screen. There

are two types of State in the main class used in the

screen in Flutter, namely the Stateful Widget class and

the Stateless Widget class. A stateful Widget indicates

that the screen can display dynamic data, Widget

shapes change (transition), and animation. Meanwhile,

the stateless widget indicates that the screen will not

display dynamic data, only static. Therefore, applications

are required to use Stateful Widgets on certain screens that

this module will integrate. Apart from that, Flutter also

prepares builders in the form of Widgets for data types

and Stream classes which must be used when you want

to use the real-time data processing functions of this

module (Arb and Al-Majdi, 2020). Figure 12, we can see

the display of Dashboard apps.

The value contained in the red box in the image

above is the value obtained from the module that was

created. These values are dynamic and are obtained

from Stream data. The data changes in real-time for

both place-name data and coordinates (below the place-

name box). The author also tests whether the displayed

data can be stored in the application database by

pressing the "Tap here to Check-in" button at the

bottom of the screen. The app outputs information like

the following in the Debug Console box in the IDE

(Restrepo-Calle et al., 2020). Figure 13 is about the

value obtained from the module.

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1057

Fig. 13: The value obtained from the module

Fig. 14: Code of distance between the current user's

coordinates

Seen in the first line in the image above are the

coordinates detected by the application and obtained

from the module. After detecting the coordinates, the

application will query to store data in the database as

shown in the next line. The words “Successfully

removed from outboxPendingMutation mutations” mean

that the back-end process of the application has

successfully entered data into the database because the

outbox Pending Mutation mutations are no longer needed.

In the second line I/amplify: Aws-datastore (5298), there

are the coordinates as well as the location. The events in the

above figures indicate a successful integration of the

module for accessing real-time location data. Furthermore,

the author will test if other functions of the application

function successful, such as testing the process of

calculating the distance between the two coordinates (Wu,

2019). After module integration in the main menu, it will

be continued with integration in other sections using the

same method. In the location history section (Location

History), there will be a calculation of the distance between

the current user's coordinates to the available item

coordinates using the following code script.

Figure 14 shows the use of the Vincenty method in
finding the distance between two coordinates. User
coordinates are represented by the widget. currentLatLong
where the data from the variable is the data passed from the
previous class, namely the main menu. Figures 14-16 show
data passed from the previous class (main menu) in Fig. 16
to the next class in Fig. 15. This passed data is static data
obtained from the last data in a stream on the main menu.
The use of static data is due to the complexity of the Vincenty
algorithm (Vincenty, 1975), which requires a long
processing time with many different data as shown below.

Because the author uses the same emulator and location
preset, there are items that are 0 m away to validate whether
the module has errors in the form of bugs. The author also
created a new button on the AppBar to display the analytical
mode view to see the deviation between the two methods.
The image above shows a little analysis of the data for each
item. If the distance between the device and the item is 0 m,
the application will display "No Deviation" (Azdy and
Darnis, 2020). To find the deviation in percent of the two
methods, a function has been prepared in this module.

The above functions are contained in the
LocationService class, a class that contains LBS
(Location Based Service) access functionality as well as
functions that require using both methods such as finding
the average between the results of the two methods and
the deviation in percent. The module developed in the
Flutter framework is an extension package that must be
listed in the pubspec.yaml file in the application's project
folder (Hartanto et al., 2018). Figure 17 is a snippet of the
pubspec. yaml file so that the module can be used in the
application.

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1058

Fig. 15: Display of location history

Fig. 16: Code of deviation in percent

Fig. 17: Code of dependencies

Finally, in the fifth part, we will examine Tahap V:

Deployment. This stage is the final stage which includes

the launch of a project or module in the real world. At this

stage, the author will launch a module that has been

integrated into the GeoSoc application and test and

evaluate the deficiencies contained in the module so that

it meets the specified standards, namely, specifically for

screen design (UI), the Eight Golden Rules standard and

evaluates UX. using methods such as the User Experience

Questionnaire (Kusuma et al., 2023; Arifin et al., 2022).

Results and Discussion

The article discusses the creation of a geolocation

system module to validate user location coordinates in an

Android application using the Flutter framework. Despite

using advanced algorithms and techniques, there were

instances where the obtained coordinates deviated from

the actual location. Additionally, there were challenges

related to privacy and security concerns, such as data

encryption, secure transmission, and storage of user

location coordinates. Additionally, computational

challenges emerged during the processing of large

volumes of location data, such as the efficiency and

scalability of the algorithms used in the module. These

challenges significantly influenced the development and

implementation of the module and it is important to

discuss them to provide a comprehensive view of the

study's limitations and potential areas for improvement.

The challenge of creating a geolocation system module

was to ensure that it could handle a large number of user

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1059

requests without compromising performance or

introducing delays in the validation process. Optimization

techniques, parallel processing, and memory management

strategies were explored to address these challenges.

Additionally, practical limitations such as connectivity

issues, signal interference from buildings or natural

obstacles, and limitations imposed by the hardware or

software components of Android devices had to be

considered. Additionally, geographical challenges such as

variations in satellite coverage, signal availability, or

environmental factors in different regions affected the

accuracy and reliability of the module. These discussions

contribute to the advancement of geolocation technology,

guide future research efforts, and aid in the development

of more reliable and robust geolocation system modules

in Android applications.

In the user location validation stage, testing is

carried out by testing the user's location at several

points and comparing the results with the actual

coordinates. Tests are performed at different times of

the day to ensure accurate results. The test results show

that the system successfully retrieves the user's

coordinates with high accuracy and sends them

correctly to the server. The test results show that the

geolocation system that has been created has high

accuracy in determining the user's location. In the tests

carried out, the coordinates sent by the system to the

server have a small difference from the actual

coordinates. This shows that the system can retrieve the

user's location with high accuracy. In testing

application performance, testing is carried out to see

how quickly the application responds to changes in the

user's location and displays the user's location on the

map. The test results show that the application responds

quickly and can display the user's location accurately

in a short time. This shows that the application can be

used properly and can help users to determine their

location accurately. This section will describe the

mathematical analysis of the methods used in module

development. The intended mathematical analysis is

the deviation of the numbers resulting from calculating

the distance between coordinates. The Fig. 18 is the data

and its mathematical analysis.

Information and explanations regarding the picture.

The table in the image is the result of calculating the

deviation between the numbers from the Vincenty and

Haversine methods and the condition when the starting

point is at coordinates (0, 0) (latitude 0, longitude 0) or

at the equator to the coordinates at the point according

to the image. The latitude limit is -90 < latitude < 90.

The longitude limit is -180 ≤ longitude < 180. In the

picture above, you can see that there is column A

represents the longitude value from the destination

point, and columns B to N represent the latitude value.

For longitude, the data is being simulated from -180°

up to 179° in column A. For latitude, the data is being

simulated from -90° up to 90° with increments of 15°

each column except for column H because it has a value

of 1°. The value of 1° is given in column H because the

Vincenty method fails to calculate at points close to the

equator. It can be seen that the calculation of the

deviation in the image above has a symmetrical pattern

in which the difference in distance between points (0.0)

to points (-15,-1), (-15,1), (15,1), (15, 1) have the same

number. Therefore, data retrieval can be simplified into

the Fig. 19.

Fig. 18: The data and its mathematical analysis

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1060

Fig. 19: The data retrieval

The table shows that the accuracy of the Haversine

method is lower as it approaches the equator and the

longitude is 0°. The difference in the numbers

calculated by the Haversine and Vincenty methods at a

distance of (0.0)➝(1.0) has a deviation of 0.6%. The

difference in these figures is due to the different

fundamentals of the two methods. Haversine has a

fundamental assumption that the earth is round while

Vincenty assumes that the earth is an ellipsoid. Please

note that the image above only represents data up to

latitude represents data up to 40° latitude. However, as

the point is further away from 0° longitude, the

deviation becomes smaller. This is because, in the

operation of the Vincenty method, the method has

constant variables which, according to Thaddeus

Vincenty, optimize the level of accuracy in calculating

distances. The curvature of the line based on the ratio

of flatness of the earth affects this difference in

distance. Compared to the Haversine method, this

method does not have a constant variable or even

assumes that the earth is an ellipsoid, so we can see the

difference. Fig. 20 consists of the level of accuracy in

calculating distances.
The table in the image shows the area where the

calculation of the distance between coordinates (0,0) ➝

(Latitude, Longitude) using both the Vincenty and

Haversine methods has the smallest deviation. The

smallest deviation point is located at the distance

(0,0)➝(1, 119)~(1, 120). The following is a radar chart

to support the visualization of deviation data for the

table in Fig. 21.

The description is as follows: The red line is the

deviation in percent at latitude 1° of the point of

destination. The yellow line for latitude is 30° from the

point of destination. The green line for latitude 60° of the

point of destination. The blue line for latitude 90° of the

point of destination. The conclusions that can be drawn

from the visualization with the graph above are: The

deviation becomes more stable as it approaches the poles.

Therefore, the pole can be assumed as a stable point to

explore further the deviation of these two methods. As

seen in the graph above, when the distance approaches -

180° latitude at 1° latitude, which is the point approaching

the antipodal, the deviation spikes. This proves Thaddeus

Vincenty's statement that the method will fail to find a

solution when approaching an antipodal point or even

calculating a line at the equator. The analysis will be

continued with the next parameter, which is centered on

the polar point. What is meant by centered on the polar

point is the starting point centered on one of the earth's

poles. The following Fig. 22 is an image regarding the

graph for the deviation of the polar parameters.

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1061

Fig. 20: The level of accuracy in calculating distances

Fig. 21: The radar chart to support the visualization of deviation data

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1062

Fig. 22: The graph for the deviation of the polar parameters

The graph in the image above visualizes the

deviation between the two numbers from the Vincenty

and Haversine methods. As seen in the initial iteration,

namely (-90, -180) ➝ (89, 0), both methods have a

deviation of around -0.33631% where the distance

calculated using the Haversine method is smaller than

Vincenty. This deviation will continue to shrink to -

24.73569° latitude and expand to -35° latitude and then

shrink again until it approaches the antipodal point at

the south pole. From this graph, it can be concluded

that the deviation will shrink when approaching the

antipodal point and when the latitude is closer to the

polar. Using the Haversine method is much easier than

the Vincenty method. However, based on data from

WGS84, the earth is not round but has an ellipsoid

shape. The level of the earth's ellipsoid is represented

by the flattening variable which is 298.257223563. The

use of the Haversine method can be superior when

calculating the distance approaching the antipodal

point from the initial distance even though the level of

accuracy is less. The visualized data can be used as a

reference for further research to improve the Vincenty

method by using the deviation between the two

methods considering that the polar radius and

equatorial radius are only less than 100 km apart.

In this research, a geolocation system module has

been successfully developed that can be used to

validate user location coordinates in Android

applications using the Flutter framework. Validation of

the coordinates of the user's location is carried out by

comparing the coordinates obtained from the

geolocation module that has been made with the user's

original coordinates obtained from Google Maps. The

validation results show that the built geolocation

module can produce coordinates of the user's location

with a good level of accuracy. Application performance

has also proven to be good with an average application

response time that is quite fast. Although this research

has succeeded in producing a geolocation system

module that can be used to validate the coordinates of

a user's location on an Android application, there are

several things that can serve as suggestions for further

research. First, future research can try to integrate the

geolocation module that has been built with the existing

geolocation system on Android devices, such as using

GPS services or network-based locations. This is

expected to increase the accuracy of the results of the

geolocation module that has been built. Second, future

research can try to develop a geolocation module that

can be used to validate user location coordinates on iOS

applications or other mobile platforms. Third, future

research can try to integrate the geolocation module

that has been built with the navigation system on the

Android application so that users can see the closest

route to their destination in real-time.

Conclusion

The conclusions drawn by the authors in this study

can be grouped into several aspects which include

aspects of mathematics and programming (UI design

and User Experience). In the mathematical aspect, the

use of the Haversine method in matters requiring high

accuracy such as setting the satellite constellation is

very dangerous because if it is assumed that the

Vincenty method is an accurate method, then the

difference in distance of 0.6% as shown in the analysis

section is very large from the point of interest. The

deviation data between the calculation results of the

two methods prepared at the time of writing this

research is intended for future researchers to be able to

refine the Vincenty method by creating an equation

based on the deviation with the results from the

Haversine method. This equation is expected to be able

to complete what is lacking in the use of the Vincenty

method such as failure and inaccuracy of calculations

approaching the antipodal point. In the programming

aspect, the application of the Vincenty method to

modules is made unreliable in conditions where the

distance calculation is close to the antipodal point

because the programming algorithm will error (not

finding the meeting point even though it has gone

through the highest iteration).

Aspects of separate programming can still be

divided into 2 parts, namely as follows: (a) In the UI

design section, applications that are integrated with

modules meet the criteria based on the Eight Golden

Rules theory. This statement can be proven by survey

results which are dominated by “good” and “very

good” responses to the 8 questions according to the

eight golden rules. (b) In the User Experience (UX)

section, applications integrated with modules have

varied responses. It can be concluded that this

application lacks attractiveness because the value

achieved on the UEQ during the evaluation process has

a value below the average (1.05). Even though it does

not have so high attractiveness, the highest score is

obtained on the accuracy scale with a very good value

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1063

(1.97) which means that the module is made according

to its purpose. Further, it is hoped that the data

contained in this study will be used to develop a new

method of calculating the distance between the two

coordinates on the earth's surface, at least a method that

enhances the Vincenty method. For the programming

side, it is expected that the algorithms of the two

methods obtained in the research can be developed

using other mathematical knowledge to make the

method a hybrid. If the algorithm is too complex and

requires integral operations, it is advisable not to use

Flutter/Dart because the programming language and

framework do not yet support something complex and it

will take a long time to process the data. It is also

recommended, to find a method that has results close to

real results, further surveys and research are needed

including dedicated hardware that can guarantee accurate

results such as laser rangefinders and micro-satellite.

The Haversine and Vincenty methods are both used

to calculate the distance between two points on the

surface of a sphere, such as the Earth. The Haversine

method is simpler and faster but assumes that the earth

is a perfect sphere. The Vincenty method is more

complex and slower but takes into account the fact that

the earth is an oblate spheroid, which is more accurate

than the Haversine method. In the context of a

geolocation system module creation, the choice

between the two methods depends on the required level

of accuracy and the computational resources available.

If the application only needs to calculate short distances

and speed is a priority, the Haversine method may be more

suitable. However, if the application needs to calculate

longer distances with higher accuracy, the Vincenty

method may be more appropriate.

Acknowledgment

The authors would like to thank the reviewers for

their informative comments, and suggestions ideas,

which have helped mould this manuscript into

something that is worthy of publication. This study is

supported by the research and technology transfer

office, Bina Nusantara University.

Funding Information

This study is supported and funded by Bina

Nusantara University Research and Technology

Transfer Office under the terms of the university's

International Research Grant (PIB 2023) under contract

number 029/VRRTT/III/2023.

Author’s Contributions

Elmer Matthew Japara and Samsul Arifin: Coding

the program, written, and finalizing the manuscript.

Edy Irwansyah: Simulating the data, tidying up the

theoretical basis and the methods we use.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that there

is no conflict of interest in this study and no ethical

issues involved.

References

Al Maki, W. F., Tajrial, R., & Arifin, S. (2023).

Automated Classification of Multi-Class Human

Protozoan Parasites using Xception as Transfer

Learning. International Journal of Intelligent

Systems and Applications in Engineering, 11(2),

817-825.

https://www.ijisae.org/index.php/IJISAE/article/vie

w/2895

Arb, G. I., & Al-Majdi, K. (2020, May). A freights

status management system based on Dart and

Flutter programming language. In Journal of

Physics: Conference Series (Vol. 1530, No. 1, p.

012020). IOP Publishing.

https://doi.org/10.1088/1742-6596/1530/1/012020

Arifin, S., & Garminia, H. (2019). Uniserial dimension of

module zm × zn over Z using python. Int. J. Sci.

Technol. Res, 8, 194-9.

https://www.researchgate.net/publication/33476979

7_Uniserial_Dimension_Of_Module_ZmxZn_Over

_Z_Using_Python

Arifin, S., & Muktyas, I. B. (2018). Membangkitkan suatu

matriks unimodular dengan python. Jurnal Derivat:

Jurnal Matematika dan Pendidikan Matematika,

5(2), 1-9.

https://doi.org/10.31316/j.derivat.v5i2.361

Arifin, S., Muktyas, I. B., & Sukmawati, K. I. (2021,

February). Product of two groups integers modulo m,

n and their factor groups using python. In Journal of

Physics: Conference Series (Vol. 1778, No. 1, p.

012026). IOP Publishing.

https://doi.org/10.1088/1742-6596/1778/1/012026

Arifin, S., Muktyas, I. B., Al Maki, W. F., & Aziz, M. M.

(2022). Graph coloring program of exam scheduling

modeling based on Bitwise coloring algorithm using

Python. Journal of Computer Science, 18(1), 26-32.

https://doi.org/10.3844/jcssp.2022.26.32.

Azdy, R. A., & Darnis, F. (2020, April). Use of Haversine

formula in finding distance between temporary

shelter and waste end processing sites. In Journal of

Physics: Conference Series (Vol. 1500, No. 1, p.

012104). IOP Publishing.

https://doi.org/10.1088/1742-6596/1500/1/012104

Elmer Matthew Japara et al. / Journal of Computer Science 2023, 19 (8): 1050.1064

DOI: 10.3844/jcssp.2023.1050.1064

1064

Cagol, M., & Colombi, A. E. (2016). Pythagoras on the

rocks. A proof with bricks. Form@ re-Open Journal

Per La Formazione in Rete, 16(1), 268-274.

https://doi.org/10.13128/formare-17903

Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank,

A. G. (2018). The expected contribution of Industry

4.0 technologies for industrial performance.

International Journal of Production Economics, 204,

383-394. https://doi.org/10.1016/j.ijpe.2018.08.019

Gade, K. (2010). A non-singular horizontal position

representation. The Journal of Navigation, 63(3),

395-417.

https://doi.org/10.1017/S0373463309990415

Hartanto, A. D., Susanto, M. R., Ilham, H. D.,

Retnaningsih, R., & Nurdiyanto, H. (2018, July).

Mobile Technologies of Formulation Haversine

Application and Location Based Service. In ICASI

2018: Joint Workshop KO2PI and The 1st

International Conference on Advance & Scientific

Innovation (p. 92). European Alliance for Innovation.

ISBN: 1631901621.

Hernández-Lamas, P., Cabau-Anchuelo, B., de Castro-

Cuartero, Ó., & Bernabéu-Larena, J. (2021). Mobile

Applications, Geolocation and Information

Technologies for the Study and Communication of

the Heritage Value of Public Works.

Sustainability, 13(4), 2083.

https://doi.org/10.3390/su13042083

Setyorini, I., & Ramayanti, D. (2019). Finding nearest

mosque using Haversine formula on Android

platform. Jurnal Online Informatika, 4(1), 57-62.

https://doi.org/10.15575/join.v4i1.267

Jackson, W., & Jackson, W. (2017). An Introduction to

Android 7.0 Nougat. Android Apps for Absolute

Beginners: Covering Android 7, 1-15.

https://doi.org/10.1007/978-1-4842-2268-3_1

Kumar, A., Sato, Y., Oishi, T., Ono, S., & Ikeuchi, K.

(2014). Improving gps position accuracy by

identification of reflected gps signals using range

data for modeling of urban structures. Seisan Kenkyu,

66(2), 101-107.

https://doi.org/10.11188/seisankenkyu.66.101

Kusuma, W. A., Jantan, A. H., bin Abdullah, R., &

Admodisastro, N. (2023). Mapping User Experience

Information Overload Problems Across

Disciplines. JOIV: International Journal on

Informatics Visualization, 7(1), 22-29.

https://doi.org/10.30630/joiv.7.1.1588

Mahmoud, H., & Akkari, N. (2016, March). Shortest path

calculation: A comparative study for location-

based recommender system. In 2016 world

symposium on computer applications & research

(WSCAR) (pp. 1-5). IEEE.

https://doi.org/10.1109/WSCAR.2016.16

Maor, E. (2019). The Pythagorean theorem: A 4,000-year

history. Princeton University Press. ISBN: 0691196885.

Nabie, M. J., Akayuure, P., Ibrahim-Bariham, U. A., &

Sofo, S. (2018). Trigonometric Concepts: PRE-

Service Teachers' Perceptions and Knowledge.

Journal on Mathematics Education, 9(1), 169-182.

Nystedt, P. (2017). A proof of the law of sines using the law

of cosines. Mathematics Magazine, 90(3), 180-181.

https://doi.org/10.4169/math.mag.90.3.180

Pamunuwa, V. P. Waidyaratne, P. R. Weerakoon, DS. S.

Wisidagama, N. S. Rmdkn, R., Pamunuwa, P.

Waidyaratne, P. Weerakoon, S. Wisidagama, N .

Rathnayake, D. (2022). “Study on Waterfall Model over

PcD. UcT Model,” Softw. Model. Cl. Work., no. May,

https://doi.org/10.13140/RG.2.2.33241.60007

Pressman, R. S. (2005). Software engineering: A

practitioner's approach. Palgrave macmillan.

ISBN: 007301933X.

Restrepo-Calle, F., Ramírez-Echeverry, J. J., & González, F.

A. (2020). Using an interactive software tool for the

formative and summative evaluation in a computer

programming course: An experience report. Global

Journal of Engineering Education, 22(3), 174-185.

Shavitt, Y., & Zilberman, N. (2011). A geolocation

databases study. IEEE Journal on Selected Areas in

Communications, 29(10), 2044-2056.

https://doi.org/10.1109/JSAC.2011.111214

Tyagi, P. (2021). Introduction to Flutter, in Pragmatic Flutter,

1st Ed. CRC Press of Taylor & Francis Group, pp: 8.

Utami, A. N., & Mampouw, H. L. (2020). Pengembangan

Media Smart Trigo untuk Pembelajaran

Trigonometri. Jurnal Cendekia: Jurnal Pendidikan

Matematika, 4(2), 939-949.

https://doi.org/10.31004/cendekia.v4i2.227

Vincenty, T. (1975). Direct and inverse solutions of

geodesics on the ellipsoid with application of nested

equations. Survey Review, 23(176), 88-93.

https://doi.org/10.1179/sre.1975.23.176.88

Winoto, D. A., & Christanto, F. W. (2020). Implementasi

Google Maps Api Dalam Pengembangan Sistem

Informasi Geografis Taman Kota Dan Kampung

Tematik Berbasis Android Di Kota Semarang (Studi

Kasus: Pejabat Pengelola Informasi Dan

Dokumentasi Kota Semarang). Jurnal Teknologi

Informasi dan Ilmu Komputer, 7(1), 9-16.

Wu, Z. Y. (2019). An radio-frequency identification

security authentication mechanism for Internet of

things applications. International Journal of

Distributed Sensor Networks, 15(7),

https://doi.org/10.1177/1550147719862223

Zammetti, F. W. (2019). Practical Flutter: Improve Your

Mobile Development with Google’s Latest Open-

Source SDK, 1st Editio. New York: Apress.

