

 © 2023 Ahsan Habib, Mohammed Jahirul Islam and Mohammad Shahidur Rahman. This open-access article is distributed under

a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Quaternary Tree Structure as a Novel Method for Huffman

Coding Tree

1Ahsan Habib, 2Mohammed Jahirul Islam and 2Mohammad Shahidur Rahman

1Institute of Information and Communication Technology,

Shahjalal University of Science and Technology, Sylhet, Bangladesh
2Department of Computer Science and Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh

Article history

Received: 09-03-2023

Revised: 25-05-2023

Accepted: 29-05-2023

Corresponding Author:

Ahsan Habib

Institute of Information and

Communication Technology,

Shahjalal University of Science

and Technology, Sylhet,

Bangladesh

Email: ahabib-iict@sust.edu

Abstract: The binary code used by the current Huffman-based techniques

slows down decoding speed. The quaternary Huffman coding method is a

fresh take on the traditional Huffman coding that is suggested in this study.

Each symbol is encoded into a quaternary code rather than a binary code

using the quaternary Huffman coding technique. For Huffman coding, a

quaternary code stream necessitates a shallower Huffman tree. Less traverse

time could be a benefit of a shorter Huffman tree, with the enhancement of

both encoding and decoding speed. The main objectives of this research are

to verify the feasibility of using quaternary code in terms of both decoding

speed and memory usage mathematically, to develop a new code generation

technique called quaternary Huffman coding, and to analyze the performance

of the proposed system in terms of both storage and decoding time. In this

study, we first quantitatively investigate the quaternary tree structure's

features for building Huffman codes. We thoroughly investigate the new tree

structure's nomenclature and substantiate the findings. It is found in the

research that the quaternary code performs better than binary code in terms

of decoding speed in data compression and decompression techniques.

Keywords: Binary Tree, Quaternary Tree, Tree Structure, Huffman Coding,

Data Compression, Lossless Compression

Introduction

When it comes to statistical and bit-level text

compression techniques, the Huffman coding technique

is used in various sectors of lossless compression area.

After the Huffman algorithm (Huffman, 1952) was

proposed, it was demonstrated that, besides text data

compression, the approach was also effective in

compressing images and videos (Kuo-Liang, 1997). The

authors assert that both Shanon-Fano and Huffman's

codeword lengths have a comparable interpretation after

examining the sibling property and level of trees

(Schack, 1994). Another study looks into the

relationship between a symbol's self-information and the

length of its codeword in a Huffman code (Katona and

Nemetz, 1976). The study's shortcoming is that it can be

challenging to give an individual symbol's self-

information a similar level of significance.

Fenwick has shown in his study that the traditional

Huffman code generation technique cannot always

improve code efficiency and that performance always

plummets when one moves from the lower extension to

the higher (Fenwick, 1995). Huffman method was

implemented using variable-to-variable code in addition to

the more popular fixed-to-variable code (Kavousianos et al.,

2008). Lin et al. (2012) proposed a highly intriguing

method for decoding several symbols at once by

converting a simple Huffman tree to a recursive one. The

suggested method only worked for test data compression

issues and consumed a lot of memory. His main goal was

to increase a Huffman tree's effectiveness.

It has been found that The Huffman code's size has an

impact on both the speed of decoding and the compression

ratio. In this study, the recently used quaternary technique

to create more effective and ideal codes that guarantee the

fastest possible decoding is verified. The quaternary tree

has four ary levels or at most four children. This study

suggests using quaternary Huffman coding, a variant of

traditional Huffman coding for improving the decoding

speed in the tree structure. With the quaternary Huffman

coding technique, each symbol is encoded into a new

coding technique that is called quaternary code. The

quaternary Huffman tree's properties were evaluated in a

Ahsan Habib et al. / Journal of Computer Science 2023, 19 (9): 1132.1142

DOI: 10.3844/jcssp.2023.1132.1142

1133

different study by the same authors as this one and we

came to the conclusion that its height is normally one-

third that of a binary tree (Habib and Rahman, 2017).

Literature Survey

The property of a prefix code is that it is a prefix of the

code for another symbol. The Huffman coding algorithm

creates the best prefix codes, which are a family of codes

with variable codeword lengths, from a collection of

probabilities (Huffman, 2005). Huffman codes' prefix

property guarantees that, despite their variable length,

they can still be accurately decoded. David Huffman

created the Huffman coding algorithm in 1950 as a student

at MIT in an information theory class and is the

algorithm's creator (Huffman, 1952).

A semi-adaptive (or semi-static) Huffman coding is

necessary since it has to know the frequencies of each

alphabetic symbol. Moreover, the compressed output

must be saved together with the Huffman tree that

contains the Huffman codes for symbols (or simply

frequencies of symbols, which can be used to generate the

Huffman tree). This data is typically included in the

header of a compressed file since the decoder requires it.

When the probability of the input symbols changes,

the semi-adaptive Huffman coding is ineffective. Using

the Huffman algorithm to construct the tree and produce

prefix codes after encoding each symbol from the input is

incredibly inefficient. Faller introduced a modified

version of the Huffman algorithm in 1973 (Faller, 1973),

which deals with this issue. Modern terminology refers to

this algorithm as an adaptive Huffman coding.

A new method of creating a Huffman tree is presented

by the adaptive Huffman algorithm, which also provides

the sibling attribute. This algorithm begins with either a

standard distribution or an empty tree. It incorporates new

symbols that are currently absent from the tree as special

control symbols to the tree. After encoding each symbol

from the input, the adaptive Huffman method allows

modification of the Huffman tree. This enables dynamic

changes in Huffman codes in response to variations in

symbol probabilities. Naturally, the Huffman tree for the

encoder and decoder must remain the same.

In most cases, the adaptive Huffman algorithm

generates more efficient code than the semi-adaptive

Huffman method. Moreover, the compressed output

eliminates the requirement to keep the Huffman tree

along with the Huffman codes for symbols.

Nevertheless, the adaptive Huffman technique is slower

than the semi-adaptive variant since it needs to update

the Huffman tree after encoding each symbol. Moreover,

the effectiveness of compression is poor early in the

coding process or for little files.

Because different symbols have different probabilities

of occurring, the semi-adaptive and adaptive Huffman

coding reduces redundancy in a dataset. Shorter codes are

used for symbols with higher likelihoods of occurrence,

whereas longer codes are used for symbols with lower

likelihoods. However, in actual applications, arithmetic

coding, which is covered in the next paragraph, frequently

takes the place of adaptive Huffman coding because it is

simpler and more efficient.

May sometimes be the Huffman coding employed

alone as a compression technique. It is typically applied

as the final coding technique in lossless data compression.

In conjunction with, for instance, the LZSS method (used

in gzip, PKZip, ARJ, and LHArc), BWT-based

algorithms, JPEG (Wallace, 1991), and MPEG

compression, Run-Length Encoding and Move-To-Front

coding (Skibinski, 2006), Huffman compression is

utilized. According to trial analysis and results of another

research based on manual mathematical and statistical

calculations, 4-ary/MQ delivers high compression results

with a very quick procedure, therefore using it to reduce

data on local storage media, hosting/cloud, and bandwidth

has numerous advantages (Hidayat et al., 2022). In

another research, a compression method combines the

information-rearranging Lempel-Ziv-Welch (LZW)

algorithm and the Huffman encoding method, both of

which are lossless compression techniques. Hoffman and

LZW approaches are combined in this way that a binary

information arrangement is employed, resulting in an

information mapping that is fully unique for each piece of

information while yet simplifying the mapping, making

this article stand out (Mohammadi et al., 2022).

The discussion above has shown the variety of

algorithms and coding schemes used in compression

techniques. Because we used these models as the

foundation for many architectures, we have covered the

Huffman architecture in great detail. It has been noted that

the Huffman code's length affects both the speed of

decoding and the compression ratio. The quaternary tree

technique produces a code word from a less tall tree,

making it more optimum. As a result, the code could be

written differently.

Materials and Methods

When storing and retrieving data from memory, the

tree data structure is very important. There are numerous

methods to structure a tree. The binary tree structure is

currently mostly used during strong and retrieving data.

The tree's structure determines how much memory is

needed to store data and how long it takes to decode them

before accessing them. Some mathematical metrics for

measuring performance include the weighted path length,

the height of the tree, and the number of internal nodes

that are studied in this research. In this research, we also

go through how quaternary trees can be used in place of

binary trees to speed up Huffman code decoding.

Variable-length binary Huffman coding typically

makes it challenging to strike a compromise between speed

Ahsan Habib et al. / Journal of Computer Science 2023, 19 (9): 1132.1142

DOI: 10.3844/jcssp.2023.1132.1142

1134

and memory use. Here, a quaternary tree is employed to

generate an ideal code word that accelerates the search

process. The specifics of a few additional tree architectures

that could provide the code word for data compression are

also covered in this section. This section describes the

structure and algorithm of binary and quaternary trees.

If each internal vertex of a rooted tree has exactly m

children, the rooted tree is said to be an m-ary tree. If every

internal vertex of the tree has exactly m offspring, the tree

is said to be a full m-ary tree. A binary tree is an m-ary tree

when m = 2. When the children of each internal vertex are

ordered, the rooted tree is said to be ordered. The offspring

of each internal vertex are displayed in order from left to

right on ordered rooted trees. If an internal vertex of an

ordered binary tree (often referred to as merely a binary

tree) has two children, the first child is referred to as the left

child and the second child as the right child. The left subtree

(or right subtree, resp.) of a vertex is the tree that is rooted

at the left child (or right child, resp.) of this vertex.

The variation of using a quaternary tree instead of a

binary tree to produce the code for using different

compression algorithms is the main purpose of this

research. Although both ternary and quaternary trees will

have the same level of storage complexity, ternary trees

will have more internal nodes and be taller. Due to this,

ternary trees take longer to traverse than quaternary trees.

In the current work, modified Huffman coding is used

to produce dictionary code-word for data compression

purposes. The traditional Huffman tree has at best two

subtrees and produces a single bit for a single level

traversing whereas the quaternary tree has at best four

subtrees and it requires at least two bit for a single level

of traversing. Figures 3-4 show how binary and

quaternary codes are generated respectively.

A tree T is a connected undirected acyclic graph. It has

vertices  0 1 1, ,......, nV v v v −= and a set of edges

 0 2 1, ,......, nE e e e −= . If u is v 's parent, v is referred to as u

's child. Siblings are children having the same parent. A

vertex of a tree is referred to as a leaf if it has no offspring.

There are always one or more children of an internal

vertex. The distinctive node R, often known as the root of

T, is found in the tree T. A tree T is referred to as a binary

tree if each vertex has two offspring or fewer. If a tree T

has at best four children with the names LEFT, LEFT-

MID, RIGHT-MID, and RIGHT, it is referred to as a

quaternary tree. A tree T is referred to as a full quaternary

tree when each of its internal vertex's four offspring is

present. The binary and quaternary tree structures are

depicted in (Figs. 1-2) respectively.

A well-rooted tree in order at every internal vertex, T

has an ordered child. In ordered rooted trees, the children

of each internal vertex are exposed in the order of

appearance from left to right. The optimal path between a

root and a leaf has always been measured as the height of

the tree's root, or T. (OCAML, 2014). The distance between

the two leaf nodes that makes up a tree's diameter.

The time it takes for an algorithm to run depends on

how long the pathways are in the tree. Assume that T is a

tree with n exterior nodes and that each of them has a

nonnegative weight. According to Lipschutz (2011), the

weighted path lengths of the sum of each node make up

the external weighted path length P of the tree T:

1 1 2 2 n...... nP f l f l f l= + + +

where,

fi and Li stand for the external node's frequency and

path length Ni.

Fig. 1: Binary tree with 16 nodes

Fig. 2: Quaternary tree with 16 nodes

Fig. 3: Sequence of operation

Ahsan Habib et al. / Journal of Computer Science 2023, 19 (9): 1132.1142

DOI: 10.3844/jcssp.2023.1132.1142

1135

Fig. 4: Binary Huffman tree for Luke 5 data

Table 1: Comparison of different tree structures for Luke 5 data

Parameter Binary Quaternary

Number of levels 10 5

Number of internal nodes 25 9

Total number of nodes 51 35

Weighted path length 784023 497301

The sequence of operation is shown in Fig. 3. In this

research first of all a text file is taken as input, then a

frequency counter algorithm is used to count the

frequency of each symbol of that input file. By using

this frequency, the quaternary Huffman algorithm is

used to generate the quaternary code for each symbol

(Habib and Rahman, 2017). By using quaternary code,

the file has been compressed using a compression

algorithm (Habib et al., 2020).

When a dibit is searched instead of a single bit from

the entire bit stream in the file, the dibit search technique

performs better than a single bit.

Code Generation Technique

Verifying the applicability of binary and quaternary

Huffman-based algorithms is the goal of this research. By

giving up a negligible amount of space, the quaternary

approach allows for faster encoding and decoding speed,

proving that searching two bits simultaneously is faster

than searching a single bit. The binary and quaternary

Huffman-based tree structures are shown in (Figs. 4-5)

respectively in this section for Luke 5 data. The fifth

chapter in the New Testament of the Christian Bible is

titled Luke 5. The chapter continues to discuss Jesus'

teaching and healing ministry while also relating the

selection of his first followers (Luke 5, 2019).

Why Choose Quaternary Tree to Generate

Compression Code

The code generation techniques for both cases have

been explained in detail by Habib et al. (2018). A binary

heap is used to implement the quaternary tree. Priority

queues are used with a heap data structure.

For each distinct character in the process, a leaf

node is first created and then a minimum heap of all

leaf nodes is built. Two nodes in the minimum heap are

compared using the frequency field value. At first, the

root is the least prevalent character. Second, we take

the two nodes from the minimum heap with the lowest

frequency. Finally, we add a new internal node whose

frequency is the same as the sum of the frequencies of

the previous two nodes. Create the second extracted

node as the right child of the first extracted node and

the other extracted node as the left child. To the

minimum heap, add this node. Lastly, we repeat steps

two and three until there is only one node left in the

heap. The tree is finished when just the root node

remains. The comparison between binary and

quaternary technique for different parameters are

shown in Table 1.

Ahsan Habib et al. / Journal of Computer Science 2023, 19 (9): 1132.1142

DOI: 10.3844/jcssp.2023.1132.1142

1136

Fig. 5: Quaternary Huffman tree for Luke 5 data

Table 2: t-test result

Test p-value Statistical significance Confidence interval

Paired t-test 0.0002 Extremely statistically significant The mean of Binary height minus quaternary

 Height equals 2.0070; 95% confidence interval of

 this difference: From 1.2386 to 2.7754

Welch t-test 0.0126 Statistically significant The mean of Binary height minus quaternary

 Height equals 2.0070; 95% confidence interval of

 this difference: From 0.5147 to 3.4993

Table 3: Analysis of binary and quaternary height data

 Tree height

 --

 Standard Variation of

Technique Mean deviation coefficient

Binary 4.712 1.949 41.372

Quaternary 2.705 0.939 34.719

Table 4: Analysis of binary and quaternary code length data

 Code length

 --

 Standard Variation of

Technique Mean deviation coefficient

Binary 4.712 1.949 41.372

Quaternary 5.409 1.877 34.697

Comparison Among Trees

Code Generation Algorithm

It takes specific symbols and their frequency to build a

Huffman tree. The conventional Binary tree construction

algorithm is described in (Cormen Thomas et al., 1989).

The recently built Quaternary tree construction algorithm

designed by the same authors of this research is shown in

Algorithm 1 (Habib and Rahman, 2017). Quaternary

Encoding and Decoding Methods have been extensively

covered in the same research. The Quaternary Huffman

Tree decoding algorithm has a search time of 0(nlog4n),

whereas the classic Huffman-based approaches decoding

algorithm has a search time of (nlog2n). In Tables 2-4,

it has been shown that the variation of the coefficient

of binary and quaternary tree height is 41.372 and

34.719 respectively. The variation of the coefficient of

binary and quaternary code length is 41.372 and 34.697

respectively, which indicates that the range of the height

and code length of the quaternary tree technique is lesser

than the binary tree.

Algorithm 1: Encoding of Quaternary Huffman Tree

 Q- HUFFMAN (C)

1. Q  C

2. n  |Q|

3. i  n

WHILE i > 1

4. allocate a new node z

5. left[z]  v  EXTRACT-MIN(Q)

6. left-mid[z]  w  EXTRACT-MIN(Q)

7. IF i = 2

8. f [z]  f[v] + f[w]

Ahsan Habib et al. / Journal of Computer Science 2023, 19 (9): 1132.1142

DOI: 10.3844/jcssp.2023.1132.1142

1137

9. ELSE IF i =3

10. right-mid [z]  x 

EXTRACT-MIN(Q)

11. f [z]  f[v] + f[w] + f[x]

12. ELSE

13. right-mid [z]  x 

14. EXTRACT-MIN(Q)

15. right [z]  y  EXTRACT-

16. MIN(Q)

17. f [z]  f[v] + f[w] + f[x] + f[y]

18. END IF

19. INSERT(Q, z)

20. i  |Q|

21. END WHILE

22. RETURN EXTRACT-MIN(Q)

Result

In this research, binary and quaternary Huffman-based

algorithms are compared with many parameters. The

Huffman principle calls for a shallower (i.e., shorter)

Huffman tree to produce quaternary code streams. Less

travel time from a shorter Huffman tree has the potential

to increase throughput for both compression and

decompression. Using the p test, which is displayed in

Table 2, we tested the statistical significance between

binary tree height and quaternary tree height.

Figures (6-11), it is explained how the height is

statistically significant in between binary and quaternary

techniques. We know that the code-word length is

directly proportional to the height of the tree. In this

analysis, Luke 5 data is used for generating the code

word for both cases of binary and quaternary techniques.

For both cases of every test, it is shown that the height

of the quaternary tree is shorter than the binary tree for the

same input data. This is also proved by the same authors

as this in another research (Habib and Rahman, 2017).

The algorithm for decoding the compressed data is

also explained in another research by the same author

and also compared with so many existing techniques

like bizip2, LZMA, LZHAM, and Zopfli by using some

popular data sets (Habib et al., 2020). In the experiment,

it was shown that the proposed decompression algorithm

performs better than many other popular techniques. The

performance matrix and time-space complexity are also

explained in that research. The main purpose of this

research is to verify the applicability of the code

generation technique using a quaternary tree.

Analysis of quaternary and binary tree height with the

increasing number of symbols with different probability

distribution e.g., uniform frequency distribution, skewing

frequency distribution is given in (Figs. 6-9). A

comparison between tree heights and code lengths

between the binary tree and quaternary tree is also shown

in (Figs. 10 and 11) respectively.

Fig. 6: Anderson-Darling normality test for binary height

Ahsan Habib et al. / Journal of Computer Science 2023, 19 (9): 1132.1142

DOI: 10.3844/jcssp.2023.1132.1142

1138

Fig. 7: Anderson-Darling normality test for quaternary height

Fig. 8: Tolerance interval plot (logistic) binary height

Ahsan Habib et al. / Journal of Computer Science 2023, 19 (9): 1132.1142

DOI: 10.3844/jcssp.2023.1132.1142

1139

Fig. 9: Tolerance interval plot (logistic) quaternary height

Fig. 10: Pareto chart for binary height

Ahsan Habib et al. / Journal of Computer Science 2023, 19 (9): 1132.1142

DOI: 10.3844/jcssp.2023.1132.1142

1140

Fig. 11: Pareto chart for quaternary height

In this research, we used quaternary code instead of

traditional binary code for data compression techniques.

Before developing the code generation algorithm, the

code-word length is verified statistically in this research.

The Anderson-darling normality test is in (Figs. 6 and 7),

the Tolerance interval plot is in (Figs. 8 and 9) and the

Pareto chart in (Figs. 10 and 11) shows the comparison of

tree height for both binary and quaternary techniques. In

all cases, it is shown that the standard deviation and

variation of the coefficient of the quaternary code

generation technique are lower than the binary code

generation technique. This means data is more clustered

in the quaternary technique than in the binary technique.

It indicates that the average code-word length of

quaternary code will be lower than the binary code word.

We know that the code-word length is inversely

proportional to the frequency that occurred in the input

data. When the average code-word length will be

minimum then the decoding speed will also be faster.

To build the Huffman code, the structure of the

quaternary tree is examined in this section along with

binary Huffman trees. The tree's height, diameter, and

weighted path length are among the many criteria that are

examined. It has also been demonstrated that

quaternary trees are superior to binary trees for the

construction of Huffman codes. In both the worst and

best cases, it is discovered that the quaternary tree's

traversing time is exactly half that of the binary tree

shown by the same authors in their other research

(Habib et al., 2020). In this study, quaternary Huffman

coding is a variant of the traditional.

Huffman coding is used to suggest generating

Huffman-based code for use in different compression

algorithms. Here, the mathematical investigation begins

with the characteristics of the quaternary tree structure for

the creation of Huffman codes.

Discussion

The purpose of the experimental effort is to confirm

that the suggested architecture is practical and applicable.

Binary and quaternary Huffman-based algorithms' time-

space trade-off has been extensively discussed. For

increasing the compression ratio, the binary Huffman

method performs better. When there needs to be a balance

between time and space, the quaternary Huffman

algorithm is helpful. The quaternary technique, which is

illustrated in this research using a variety of graphs, is

superior to other algorithms for achieving a balance

between time and space.

In conclusion, the experiment shows that it is

challenging to strike a compromise between speed and

memory utilization when utilizing binary Huffman

coding. In this study, we emphasize the usage of quaternary

trees rather than binary trees since they can decode data

more quickly while taking up less space. The suggested

decoding algorithm has superior speed performance when

compared to Huffman-based algorithms, but the

Ahsan Habib et al. / Journal of Computer Science 2023, 19 (9): 1132.1142

DOI: 10.3844/jcssp.2023.1132.1142

1141

compression performance is nearly unchanged. The

suggested method provides a mechanism to balance

memory usage and decoding time in this fashion.

The experiment shows that the optimum method for

achieving a balance between time and space is the

quaternary method. We further demonstrate in the

experiment that the suggested quaternary code-based

compression strategies exhibit good decoding speed

performance with negligible storage space increase.

Conclusion

The advantages of using a quaternary tree structure

compared to a binary tree structure for producing

Huffman codes are explained in this research. We have

demonstrated that, with a negligible increase in

necessary space, the Huffman code can be represented

more quickly using a quaternary tree than it can with a

binary tree. The quaternary strategy outperforms the

binary technique when speed is the primary

consideration. Consequently, the suggested method

offers a means of striking a compromise between

decoding time and memory consumption. This

procedure saves time and is easy to program. In this

research a new method of code generation technique for

data compression is verified and its performance is

compared statistically with different parameters. It is

shown that the new quaternary based code generation

technique outperforms in terms of decoding speed.

Funding Information

We are grateful to the research center of Shahjalal

University of science and technology, Sylhet, Bangladesh for

providing funds to carry out this research.

Author’s Contributions

Ahsan Habib: Contributed to the original conception

and algorithm design of the research work, drafted the

article, and produce the figures used in the manuscript.

Mohammed Jahirul Islam: Contributed to the

conception and design of the research work, reviewed the

manuscript, and gave final approval of the final version of

the manuscript.

Mohammad Shahidur Rahman: Contributed to the

conception and design of the research work, reviewed the

manuscript critically, and gave final approval of the final

version of the manuscript.

Ethics

This research manuscript is original and has not been

published elsewhere. The corresponding author confirms

that all of the other authors have read and approved the

manuscript and there are no ethical issues involved.

References

Cormen Thomas, H., Leiserson Charles, E., & Rivest

Ronald, L. (1989). Introduction to Algorithms. The

MIT Press and McGraw-Hill Book Company,

ISBN: 10-262-03141-8.

Faller, N. (1973). An adaptive system for data compression.

In Record of the 7th Asilomar Conference on Circuits,

Systems and Computers (pp. 593-597).

https://cir.nii.ac.jp/crid/1572543026347275392

Fenwick, P. M. (1995). Huffman code efficiencies for

extensions of sources. IEEE Transactions on

Communications, 43(2/3/4), 163-165.

https://doi.org/10.1109/26.380027

Habib, A., & Rahman, M. S. (2017, December).

Balancing decoding speed and memory usage for

Huffman codes using quaternary tree. In Applied

Informatics (Vol. 4, No. 1, pp. 1-15). Springer Open.

https://doi.org/10.1186/s40535-016-0032-z

Habib, A., Islam, M. J., & Rahman, M. S. (2018).

Huffman based code generation algorithms: Data

compression perspectives. J Comput Sci, 14(12),

1599-1610.

https://doi.org/10.3844/jcssp.2018.1599.1610

Habib, A., Islam, M. J., & Rahman, M. S. (2020). A

dictionary-based text compression technique using

quaternary code. Iran Journal of Computer Science, 3,

127-136. https://doi.org/10.1007/s42044-019-00047-w

Hidayat, T., Zakaria, M. H., & Pee, A. N. C. (2022).

Increasing the Huffman generation code algorithm

to equalize compression ratio and time in lossless

16-bit data archiving. Multimedia Tools and

Applications, 1-38.

https://doi.org/10.1007/s11042-022-14130-1

Kuo-Liang, C. (1997). Efficient Huffman decoding.

Information Processing Letters, 61(2), 97-99.

https://doi.org/10.1016/S0020-0190(96)00204-9

Mohammadi, H., Ghaderzadeh, A., & Sheikh Ahmadi, A.

(2022). A novel hybrid medical data compression

using huffman coding and LZW in IoT. IETE Journal

of Research, 1-15.

https://doi.org/10.1080/03772063.2022.2052985

Huffman. (2005). Code Retrieved from Wikipedia, web

link. https://en.wikipedia.org/wiki/Huffman_coding

Huffman, D. A. (1952). A method for the construction of

minimum-redundancy codes. Proceedings of the IRE,

40(9), 1098-1101.

https://doi.org/10.1109/JRPROC.1952.273898

Katona, G., & Nemetz, O. (1976). Huffman codes and

self-information. IEEE Transactions on Information

Theory, 22(3), 337-340.

https://doi.org/10.1109/TIT.1976.1055554

https://doi.org/10.1007/s11042-022-14130-1

Ahsan Habib et al. / Journal of Computer Science 2023, 19 (9): 1132.1142

DOI: 10.3844/jcssp.2023.1132.1142

1142

Kavousianos, X., Kalligeros, E., & Nikolos, D. (2008).

Test data compression based on variable-to-variable

Huffman encoding with codeword reusability. IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 27(7), 1333-1338.

https://doi.org/10.1109/TCAD.2008.923100

Lin, Y. K., Huang, S. C., & Yang, C. H. (2012). A fast

algorithm for Huffman decoding based on a recursion

Huffman tree. Journal of Systems and Software,

85(4), 974-980.

https://doi.org/10.1016/j.jss.2011.11.1019

Lipschutz, S. (2011). Data Structures with C (Sie)

(Sos). McGraw-Hill Education (India) Pvt

Limited. ISBN: 10-0070701989.

Luke 5. (2019). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Luke_5

OCAML. (2014). Height, Depth and Level of a Tree.

Retrieve d 07 09, 2019, from.

http://typeocaml.com/2014/11/26/height-depth-and-

level-of-a-tree

Schack, R. (1994). The length of a typical Huffman

codeword. IEEE Transactions on Information

Theory, 40(4), 1246-1247.

https://doi.org/10.1109/18.335944

Skibinski, P. (2006). Reversible data transforms that

improve effectiveness of universal lossless data

compression. Doctor of Philosophy Dissertation,

University of Wroclaw.

http://pskibinski.pl/papers/PhD_thesis.pdf

Wallace, G. K. (1991). The JPEG still picture

compression standard. Communications of the ACM,

34(4), 30-44. https://doi.org/10.1145/103085.103089

https://en.wikipedia.org/wiki/Luke_5
http://typeocaml.com/2014/11/26/height-depth-and-level-of-a-tree/
http://typeocaml.com/2014/11/26/height-depth-and-level-of-a-tree/

