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Abstract: Agriculture plays a crucial role in the economic development of many 

countries and sustains the global population despite facing various challenges like 

climate change, pollinator decline, and plant diseases. These threats to food security 

highlight the need for innovative solutions to prevent crop loss. Leveraging 

smartphone technology for automated image recognition-based disease diagnosis has 

emerged as a promising approach, thanks to their computing power and high-

resolution cameras. To address this issue, we have focused on deep learning-based 

image detection techniques to identify plant diseases using the "PlantVillage" dataset. 

Several deep learning architectures, including AlexNet, GoogleNet, ResNet50, and 

InceptionV3, were employed and trained using two approaches: 'Training from 

scratch' and 'transfer learning’. The results of the analysis reveal GoogLeNet 

architecture achieved the highest accuracy of 0.999 for color images and 0.996 for 

segmented images, whereas InceptionV3 trained from scratch gave the highest 

accuracy of 0.994 for grayscale images with a train-test ratio of 90:10. All the models 

trained from scratch achieved the maximum F1-score of 1.0 for color and segmented 

images whereas for grayscale images, GoogleNet and InceptionV3 achieved the 

highest F1-score of 0.999 with train-test ratio 90:10. These findings indicate the 

potential of deep learning methods in detecting and diagnosing plant diseases, which 

can significantly enhance the efficiency and accuracy of disease diagnosis processes 

in agriculture. Further research and improvements in image recognition techniques 

can lead to more robust and effective solutions for securing global food production. 

 

Keywords: Machine Learning, Deep Learning, Crop Disease, Agriculture, Image 

Detection 

Introduction 

Agriculture is crucial in developing countries where 

food security is becoming a major problem. Panchal et al. 

(2023), stated that as a result of transportation issues, plant 

diseases, and a lack of storage facilities, the crops were 

lost. Crop disease is a big problem that needs to be 

handled because it causes more than 15% of the world's 

crops to be lost. And timely detection is challenging in 

different parts of the infrastructure, crop diseases are also 

a significant component of food security. The farmers 

relied on a variety of age-old methods, but not all of them 

were equally successful in identifying plant illnesses with 

their unaided eyes. Plant or leaf disease costs money and 

jeopardizes the development of numerous agricultural 

goods globally as detailed by Saleem et al. (2020). The 

inappropriate use of pesticides and fungicides is due to 

the failure to recognize illnesses, bacteria, and viruses in 

plants. Since the biological characteristics of diseases 

are of particular interest to scientists, they have become 

quite interested in plant diseases. The use of modern 

technology in precision farming results in improved 

decisions. Expert visual inspections and biological 

investigations are frequently used in plant diagnosis. 

This tactic often costs money and time. Identification of 

plant diseases using complex and robust methods is 

essential to resolving these problems. To improve the 

effectiveness of disease identification, conventional 

Machine Learning (ML) approaches have been 

implemented in agricultural operations. Recent 

examples of Deep Learning (DL), a type of machine 

learning, have shown its outstanding capacity to find, 
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identify, and categorize things in the real world. 

Conversely, this shift in agricultural research has 

resulted in DL-based fixes, suggested by Andújar et al. 

(2016). State-of-the-art outcomes employing DL 

techniques have been reached for agricultural tasks like 

harvesting fruit, identifying plants, and differentiating 

between crops and weeds. The present research 

emphasis has been on identifying crop diseases, which is 

a major agricultural concern.  

The objectives of this research are to: 

 

1) Analyze the Image-based detection techniques for 

plant diseases 

2) Describe the feature extraction for disease 

identification using deep learning 

3) Analyze the types of crop diseases and relevant areas 

of sensors used during crop disease detection 

4) Identify the challenges that occur during crop disease 

detection 

5) Recommend advanced image detection techniques 

for improving crop disease detection 

 

The study by LeCun et al. (2015); Schmidhuber 

(2015). Aim to elucidate the utilization of deep learning 

models for the detection of crop diseases through image 

analysis. The motivation stems from the remarkable 

progress in applying deep learning techniques to image-

based plant disease detection. To train the deep learning 

models, the publicly available PlantVillage dataset was 

employed and performance evaluation metrics were 

utilized. Leveraging deep learning for plant disease 

detection holds the potential to enable early treatment 

interventions, mitigating the adverse effects of plant 

diseases on agricultural productivity. 

Literature Review 

Image-Based Plant Disease Detection  

The image-based plant disease detection technology 

is recently represented in various areas. Crop waste is 

representing enhanced disease, which becomes a 

critical identification method of disease stated by 

Panchal et al. (2023). Currently in developing 

countries, most of the population is based on 

agriculture in the form of direct and indirect energy. It 

represents the significant usage of application-based 

plant disease detection that helps the farmers to 

understand the reason behind the disease based on the 

plant's size, the color of the leaf, the size of the leaf, 

and the growth pattern. In the present era, the 

widespread adoption of smartphones enables 

individuals worldwide to effortlessly capture images of 

plants. As a result, over 300 million people currently 

possess internet access, utilizing a multitude of 

applications for their convenience and diverse needs. 

Similarly (Jain et al., 2022) have described the role of 

AI-based models for weed and pest detection. Although 

the government has access to a variety of tools, 

including a 24 h helpline number for farmers to place 

orders and obtain answers to their queries, it can be 

difficult to effectively assist those who live in rural 

areas when they are having issues finding solutions to 

their problems. Self-paced image-based disease 

identification is a simple answer to this issue.  

The study described that the modified version of 

algorithms helps to enhance the performance of 

classification in diseases of various plant species. 

Additionally, Saleem et al. (2020), the utilization of 

Convolutional Neural Networks (CNNs) and Deep 

Learning (DL) optimizers leads to superior outcomes in 

the classification of plant diseases. The CNN model is 

utilized to categorize the results of the enhanced plant 

disease categorization. For categorizing various plant 

diseases, MobileNet models are used. Similar to this, 

other research has mostly concentrated on advanced 

training strategies that analyze ways that aid in assessing 

the effectiveness of AlexNet and GoogleNet. The value of 

the fine-tuning method can be seen by contrasting the 

most complex DL structures for plant disease 

categorization. As a result, it is discovered that deep 

learning is the most precise and accurate paradigm for the 

identification of plant diseases.  

Relevant Areas of Image Sensors Used in Plant 

Disease Detection  

A huge size of current development in path systems 

using various kinds of sensitive sensors and multiple data 

analysis pipelines helps to provide the various kinds of 

sensor systems. It is classified as an optical sensor along 

with RGB, multi and hyperspectral reflectance, thermal, 

and fluorescence imaging sensors by Javaid et al. 

(2016). In the realm of plant pathology, digital 

photographic images play a pivotal role as they enable 

the assessment of plant health. With the ability to capture 

RGB Red, Green, and Blue) images effortlessly, digital 

cameras facilitate the identification, quantification, and 

detection of diseases in a straightforward manner. The 

technological requirements of simple-handled devices 

include a photo sensor with light sensitivity, spatial 

resolution, and digital and optical focus, all of which 

contribute to the improvement that is seen every year. The 

latest and most powerful digital camera-based sensors 

that are available in mobile phones and tablets are being 

used by farmers and psychopathologists in the current 

age. Using this technique, the fruits and crops are also 

screened to avoid storage disease. The thermal sensors 

show the infrared thermography excess plant 

temperature, which is connected to the plant water status 

mentioned by Dargan et al. (2020).  
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Issues/Challenges in the Image-Based Plant 

Disease Detection  

Various techniques are used to identify the diagnosis 

of the disease that has been developed and are proven in 

the molecular biology delivery that aids in the accurate 

identification of the pathogenic factors. These techniques 

are used to analyze plant disease and significant damage 

and the development of new techniques for the accurate 

identification of pathogenic factors (Jain et al., 2016). 

However, many farmers are not able to use the numerous 

methodologies used during analysis because they are 

expensive and require a lot of resources to be 

implemented. Additionally, the classification of issues 

involved the use of several technologies, such as decision 

trees, random forests, linear regression, K-nearest 

neighbors, logistic regression, Support Vector Machines 

(SVM), Naive Bayesian, and clustering as detailed by 

Panigrahi et al. (2020). Because of the Deep Learning 

(DL) approaches' ground-breaking results, artificial 

intelligence and computer vision have advanced. These 

techniques, as opposed to the conventional approach, 

result in more accurate predictions, promoting better 

decision-making. The issue with data visualization in 

tables and other exhibits originates from the fact that the 

bulk of datasets will have variable and inconsistent 

material. The use of image-based plant disease detection 

may result in low-quality images of plant leaves, which 

are considered by all the different research publications. 

The inception of the PlantVillage project was motivated 

by the objective of developing precise image classifiers 

capable of accurately identifying plant diseases 

Katafuchi and Tokunaga (2021). 

Feature Extraction for Disease Identification 

The automatic plant disease detection system receives 

the images of the diseased leaves as input and diagnoses 

the illness correctly. According to Panchal et al. (2023), 

this system's effectiveness will depend on the feature 

extraction techniques used. Images of infected leaves that 

are input into the system are processed using image 

processing algorithms to extract features from the 

pictures. According to Sapkal and Kulkarni (2018), there 

are two primary types of feature extraction methods 

employed. The first method involves utilizing image 

processing techniques to extract features from the input of 

infected leaf images. Various properties, such as color, 

shape, texture, Histogram of Oriented Gradients (HOG), 

Speeded-Up Robust Features (SURF), and more, can be 

extracted using image processing methodologies. The 

second method makes use of Alexnet's pre-trained deep 

learning model, which will automatically detect features 

from the input image. Both methods apply the 

Backpropagation Neural Network (BPNN) algorithm to 

the gathered features. Further, the BPNN is especially 

used for the deep neural network that is working on error-

prone projects that include images and other speech 

recognition tasks. Xie et al. (2020) described that CNN 

has developed into a complete deep-learning approach in 

recent years. They fully exploit image big data and find 

the discriminative features from the original photographs 

themselves to do away with memory-intensive and time-

consuming image processing. Due to CNNs' ability in 

pattern recognition, early plant leaf disease detection has 

become a new area of focus for smart agriculture. 

Materials  

Data and Processing 

To develop a computer vision algorithm for crop 

disease detection, we used the PlantVillage Dataset as a 

starting point for learning from scratch as described by 

Hughes and Salathé (2015). The PlantVillage dataset is a 

large and comprehensive dataset of plant images that was 

created to aid in the development of computer vision 

algorithms for crop disease diagnosis. The development 

of the dataset was undertaken by the PlantVillage team at 

Penn State University, led by Dr. David Hughes and 

received funding from both the National Science 

Foundation and the Bill and Melinda gates foundation. 

PlantVillage project provides the dataset available openly 

and freely. The dataset contains over 54,000 high-quality 

images of 26 different crop diseases and 14 plant species 

along with images of healthy plants, which have a diverse 

range of 38 class labels.
 

 
 

Fig. 1: Example of leaf images from the plant village dataset representing crop-disease pair used 
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Fig. 2: Displays sample images extracted from the three distinct versions of the PlantVillage dataset 

 

The images were collected from multiple sources, 

including professional photographers, citizen scientists, 

and farmers. Figure 1 exhibits a sample of leaf images 

derived from the PlantVillage dataset, which represents 

the crop-disease pairs employed in the dataset. The 

dataset includes images of both leaves and fruits from 

the various plant species. The dataset comprises the 

following plant species: Apple, orange, blueberry, corn, 

grape, peach, cherry, pepper, potato, soybean, squash, 

strawberry, raspberry and tomato. The diseases included 

in the dataset are Apple scab, cedar apple rust, bacterial 

spot, common rust, late blight, early blight, leaf curl, 

mosaic virus, powdery mildew, septoria leaf spot, target 

spot, tomato yellow leaf curl virus, spider mites, and 

two-spotted spider mites. The complete PlantVillage 

dataset encompasses three distinct versions, each 

offering unique variations and additions. (1) Color-

54,305 images, (2) Gray scale-54,305 images, (3) Leaf 

Segmented-54,306 images. Figure 2 illustrates a 

selection of sample images derived from the three 

versions of the PlantVillage dataset. 

The ImageNet dataset has several advantages in this 

research, used in pre-trained DL architecture as detailed 

by Deng et al. (2009). It is one of the largest datasets 

currently available, which makes it a perfect source of 

data for certain machine-learning models. By classifying 

the photos using the WorldNet hierarchy, the models 

created for identifying objects are accurate and efficient. 

This research's ideal data source contains more than 

50,000 color photos of crop leaves, including both healthy 

and damaged plants. According to the WorldNet 

hierarchy, the ImageNet dataset comprises a staggering 

collection of 14,197,122 annotated images. It has 1000 

different object categories, with an average of 1000 

images per category. 

Data analysis is a crucial step in cleaning and 

modelling the data once it has been acquired. Extraction 

of pertinent data from data sources is a step in the data 

analysis process. To ensure that the information is correct 

and dependable, this procedure also aids in cleaning and 

deleting extraneous data from the obtained data 

Mukherjee (2019). To deliver precise findings for the 

completion of the work, Tensor Flow a system for 

managing information and analysis was used.  

Several libraries built on the Python programming 

language were used to examine the data in the PlantVillage 

datasets. Tensor Flow, Numpy and Keras for building 

Neural Network Architecture, as well as MatplotLib for 

plotting libraries were utilized for the analysis. These 

libraries all serve various purposes and are essential to the 

study. A crucial library for developing and deploying 

machine learning models is TensorFlow (Ragab and 

Arisha, 2018). It offers a thorough and adaptable 

environment for creating and developing neural networks. 

It also makes computing effective and scalable, which 

makes it a perfect library for the study of massive datasets. 

Methods 

In crop disease detection for image classification 

problems, we focus on some popular deep learning 

architectures namely AlexNet, GooLeNet, ResNet50, and 

InceptionV3. These architectures are used to determine 

healthy and diseased crops with their names. 

GoogLeNet  

In 2014, Google introduced GoogleNet, also referred 

to as Inception-v1, as a convolutional neural network 

architecture developed by developed by Szegedy et al. 

(2014). It was developed by researchers at Google with 

the aim of advancing deep learning methodologies. It was 

designed to be a deeper and more efficient neural network 

for image classification tasks, with fewer parameters and 

lower computational complexity compared to AlexNet 

architectures. GoogleNet consists of 22 layers, including 

several inception modules that perform parallel 

convolutions at multiple scales. These inception modules 
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are designed to capture a wide range of features at 

different levels of abstraction, allowing the network to 

effectively learn complex patterns in the input images. A 

notable innovation in GoogleNet is the integration of 11 

convolutional layer, which serve to decrease the 

dimensionality of feature maps before executing 

computationally intensive convolutions. By employing 

factorized convolutional layers, the network's parameter 

count is reduced, leading to enhanced computational 

efficiency. To teach the network the features that are 

important for image classification, a sizable dataset of 

images is used for training. The picture data is fed into the 

network in the instance of crop disease detection and the 

characteristics are retrieved from the images. The next 

step is to train a classifier with these attributes so that it 

can recognize the presence of a particular crop disease in 

fresh photos. The complete model of GoogleNet is shown 

in Fig. 3. In our implementation, we used the Keras API 

to build the GoogleNet model. We trained the GoogLeNet 

model from scratch using the Keras library. 

AlexNet  

AlexNet, devised by Alake (2020), is a deep 

convolutional neural network architecture. Comprised of 

a total of eight layers, including five convolutional layers 

and three fully connected layers, AlexNet boasts an 

impressive parameter count of 60 million. Its 

groundbreaking performance in the ImageNet Large Scale 

Visual Recognition Challenge of 2012 positioned 

AlexNet as the winner, establishing new benchmarks in 

object recognition and image classification. It was one of 

the first deep learning models to demonstrate the power of 

convolutional neural networks for computer vision tasks 

and has since inspired many other architectures in the 

field. Figure 4 shows the AlexNet model architecture. 

ResNet50 

ResNet50, introduced by Lenyk (2021) researchers at 

Microsoft research Asia is a convolutional neural 

network-based architecture widely recognized in the field 

of deep learning. The name "ResNet" comes from 

"residual network," which refers to the use of residual 

connections to overcome the degradation problem that 

can occur in deep neural networks. ResNet50 has found 

utility across diverse computer vision tasks, including 

object detection, image classification, and image 

segmentation. Its architecture includes residual blocks, 

which allow for more efficient training and deeper 

network architectures. We trained ResNet50 in two-way, 

first Learning from scratch and second Transfer learning. 

We used two functions in ResNet50, ‘residual_block’ and 

‘ResNet50’. Figure 5 shows the ResNet50 model 

architecture. In the context of ResNet50 transfer learning, 

ResNet50 is a deep neural network consisting of 50 layers. 

Prior to the transfer learning process, ResNet50 has 

undergone pre-training on the ImageNet dataset. This pre-

training enables ResNet50 to recognize a wide range of 

objects and features in images. 

InceptionV3 

InceptionV3 is a popular deep-learning model 

frequently employed for image classification tasks. It 

incorporates inception modules that leverage convolutional 

layers with diverse kernel sizes to capture information 

across various scales and resolutions. With a total of 48 

layers, InceptionV3 employs factorized convolutional 

layers to decrease the number of parameters, leading to 

enhanced computational efficiency. Figure 6 shows an 

implementation of the InceptionV3 model using 

TensorFlow and Keras. The model consists of a stem, 

several inception blocks, and a classifier. 

 

 
 

Fig. 3: GoogLeNet model 
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Fig. 4: AlexNet model 

 

 
 

Fig. 5: ResNet50 model 

 

 
 

Fig. 6: InceptionV3 model 
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To reduce the spatial dimensions of the input image, 

the stem of the InceptionV3 architecture comprises 

several convolutional layers and a max pooling layer. 

In addition, the inception blocks utilize convolutional 

layers with varying kernel sizes to effectively capture 

information at multiple scales and resolutions. Each 

block includes four parallel convolutional branches 

that are concatenated along the channel dimension. The 

classifier includes a global average pooling layer, a 

dropout layer for regularization, and a fully connected 

layer with softmax activation for classification. The 

‘inception-block’ function is used to define the 

structure of each inception block. We trained the 

InceptionV3 model from scratch. In the case of 

InceptionV3 Transfer Learning, the InceptionV3 

architecture has undergone pre-training on the 

ImageNet dataset. 

Results  

The study’s aim is to predict crop-disease pairs 

using deep learning. Two learning approaches were 

used to train the models, training from scratch and 

using transfer learning. The results suggest that 

AlexNet, GoogLeNet, ResNet50, and InceptionV3 did 

well in the task. The evaluation of deep learning models 

was conducted using two metrics: Accuracy and F1-

score. Table 1 displays the number of samples in the 

training, validation, and test datasets for different train-

test ratios. Table 2 compares the performance of four 

different Convolutional Neural Network (CNN) 

models, namely AlexNet, GoogLeNet, ResNet50, and 

InceptionV3, on various train-test splits and different 

types of image color, grayscale, and segmented. 

From Table 2 it can be observed that GoogLeNet 

architecture achieved the highest accuracy of 0.999 for 

color images and 0.996 for segmented images, whereas 

InceptionV3 trained from scratch gave the highest 

accuracy of 0.994 for grayscale images with a train-test 

ratio 90:10. All the models trained from scratch achieved 

the maximum F1-score of 1.0 for color and segmented 

images whereas, for grayscale images, GoogleNet and 

InceptionV3 achieved the highest F1-score of 0.999 

with train-test ratio 90:10. 

Table 3 compares the performance of two different 

Convolutional Neural Network (CNN) models, namely 

AlexNet and GoogLeNet on various train-test splits and 

different types of image color, grayscale, and 

segmented in the paper by Mohanty et al. (2016). 

Mohanty et al. (2016) achieved the highest accuracy of 

0.9934 for color images and 0.9925 for segmented 

images in GoogleNet. In comparison to the results 

obtained by Mohanty et al. (2016), our findings 

demonstrate a significant improvement. Specifically, 

we achieved the F1-score of 1.0 with both AlexNet and 

GoogleNet for color images by training from scratch 

with an 80:20 train-test ratio, whereas for grayscale and 

segmented images, both models performed better than 

that given in Mohanty et al. (2016). 

Figures 7-9 show the bar graphs for the F1 score of all 

the models trained from scratch on the three datasets of 

color, grayscale, and segmented leaf respectively, for all 

the training-testing ratios. 

 
Table 1: Comparison of DL Train-test ratios and total instances in training, validation, and testing sets 

   Total instances in the 

Train-test ratio Total instances in the training set Total instances in test set validation set 

90-10 48,880 2,740 2,700 

80-20 43,440 5,420 5,460 

70-30 38,020 8,160 8,140 

60-40 32,600 10,860 10,880 

 
Table 2: Performance comparison of different CNN models on various train-test splits 

   AlexNet  GoogLeNet  ResNet50    InceptionV3 

  --------------------------- ---------------------------- ---------------------------------------------------- ------------------------------------------------------- 

  Learning from scratch Learning from scratch Learning from scratch Transfer learning Learning from scratch Transfer learning 

Train-test  --------------------------- --------------------------- -------------------------- ------------------------ --------------------------- ------------------------ 

split %  F1-score Accuracy F1-score  Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy 

90-10 Color 1.000 0.998 1.000 0.999 1.000 0.980 0.999 0.994 1.000 0.997 0.977 0.955 

 Grayscale 0.988 0.983 0.999 0.989 0.977 0.958 0.988 0.988 0.999 0.994 0.966 0.958 

 segmented 1.000 0.986 1.000 0.996 1.000 0.993 0.988 0.985 1.000 0.996 1.000 0.987 

80-20 Color 1.000 0.991 1.000 0.997 1.000 0.994 0.988 0.992 1.000 0.995 0.966 0.957 

 Grayscale 0.988 0.983 0.977 0.977 0.966 0.941 0.977 0.982 0.988 0.980 0.944 0.924 

 segmented 0.988 0.985 1.000 0.994 1.000 0.985 0.988 0.983 1.000 0.994 0.966 0.943 



Kinjal Vijaybhai Deputy et al. / Journal of Computer Science 2023, 19 (12):1438.1449 

DOI: 10.3844/jcssp.2023.1438.1449 

 

1445 

Table 2: Continue 

70-30 Color 0.988 0.989 1.000 0.996 0.966 0.981 0.977 0.990 1.000 0.989 0.955 0.937 

 Grayscale 0.988 0.980 0.977 0.977 0.933 0.912 0.977 0.988 0.955 0.978 0.911 0.912 

 segmented 0.977 0.975 0.999 0.990 0.977 0.988 0.988 0.979 0.977 0.993 0.944 0.921 

60-40 Color 0.969 0.982 0.966 0.975 0.966 0.988 0.977 0.989 1.000 0.985 0.933 0.901 

 Grayscale 0.955 0.926 0.966 0.975 0.900 0.894 0.977 0.975 0.944 0.961 0.922 0.905 

 segmented 0.966 0.970 0.988 0.988 0.966 0.960 0.988 0.978 0.966 0.981 0.877 0.893 

 

Table 3: Performance comparison of AlexNet learning from scratch and GoogLeNet learning from scratch models on various 

train-test splits 

  AlexNet  GoogLeNet 

  ------------------------------------------------ ----------------------------------------------------- 

Learning from scratch  Based on [16] Based on our Based on [16] Based on our 

---------------------------------------- research paper implementation research paper implementation 

Train-test split %  F1-score F1-score F1-score F1-score 

80-20 Color 0.9782 1.0000 0.9836 1.0000 

 Grayscale 0.9449 0.9888 0.9621 0.9777 

 segmented 0.9722 0.9888 0.9824 1.0000 

60-40 Color 0.9724 0.9699 0.9824 0.9666 

 Grayscale 0.9388 0.9555 0.9547 0.9666 

 segmented 0.9595 0.9666 0.9740 0.9888 

50-50 Color 0.9644 0.9666 0.9772 1.0000 

 Grayscale 0.9312 0.9111 0.9507 0.9444 

 segmented 0.9551 0.9666 0.9720 0.9777 

40-60 Color 0.9555 0.9000 0.9729 0.9888 

 Grayscale 0.9088 0.9444 0.9361 0.9555 

 segmented 0.9404 0.9666 0.9643 0.9666 

20-80 Color 0.9118 0.8888 0.9430 0.9555 

 Grayscale 0.8524 0.8666 0.8828 0.8666 

 segmented 0.8945 0.8666 0.9377 0.9777 

 

 
 

Fig. 7: F1-score of all the models trained from scratch for color images 
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Fig. 8: F1-score of all the models trained from scratch for grayscale images 

 

 
 

Fig. 9: F1-score of all the models trained from scratch for segmented images 

 

Discussion 

Three datasets of color, grayscale and segmented 

leaves were trained on four different deep learning 

models AlexNet, GoogleNet, ResNet50 and 

InceptionV3. ResNet50 and InceptionV3 models were 

available on pretrained dataset of ImageNet by 

applying transfer learning to the PlantVillage dataset. 

Transfer learning was not available for AlexNet and 

GoogleNet models. All the models were executed from 
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scratch, whereas ResNet50 and InceptionV3 were also 

implemented using transfer learning. The models were 

evaluated for accuracy and F1-score. The models were 

trained using Holdout method by splitting the dataset 

into training and test sets in different ratios, namely, 

90:10, 80:20, 70:30 and 60:40. The test scores were 

validated for accuracy to ensure overfitting does not 

occur. The best results were obtained using the 90:10 

training-test ratio. The highest F1-score of 1.0 was 

achieved by all the models by implementing from 

scratch for color and segmented images of leaves, 

whereas the highest F1-score of 0.999 was achieved by 

GoogleNet and InceptionV3 for grayscale images. All 

models achieved high accuracy for the three categories 

of images, however, GoogleNet and InceptionV3 gave 

the highest accuracy. In the case of ResNet50 transfer 

learning improved the F1-score and accuracy for 

grayscale images. However, training the models from 

scratch gave the best performance as compared to 

transfer learning. This could can be attributed to the 

very focused images available in PlantVillage dataset 

for leaves as compared to ImageNet which is a very 

large image dataset. 

Conclusion 

Agriculture holds a pivotal role in economic 

development and addressing food scarcity. Implementing 

advanced technologies and artificial intelligence is 

essential for improving agricultural practices and 

combating crop diseases, which significantly impact 

agricultural productivity. The research aims to explore 

Image-based crop disease detection, analyzing various 

crop diseases, and detection areas and identifying 

challenges while recommending advanced image 

detection techniques. In comparison to other research 

studies, our work offers several notable contributions. 

Firstly, we trained and evaluated four distinct Deep 

Learning (DL) models using both learning from scratch 

and transfer learning approaches. By fine-tuning our 

trained models on different datasets, we can leverage the 

knowledge gained from our initial training and adapt it to 

new domains or specific tasks. This capability opens up 

possibilities for improving accuracy, robustness, and 

generalizability across various applications. Deep 

convolutional neural network architectures AlexNet, 

GoogLeNet, ResNet50, and InceptionV3 were trained on 

plant leaf images for crop-disease prediction. The 

PlantVillage dataset, comprising 54,306 images of 38 

classes representing 14 crop species and 26 diseases, 

demonstrated an impressive top F1-score of 1.0 by 

integrating location and time information into image 

classification tasks. The deep learning models achieved 

remarkable performance in learning from scratch, with 

GoogleNet emerging as the best performer among the 

architectures. In transfer learning, ResNet50 

outperformed InceptionV3. The study showcases the 

potential of these deep learning techniques for accurately 

detecting crop diseases through crop images, offering 

high accuracy and F1 scores. These findings pave the way 

for implementing effective crop disease detection systems 

to enhance agricultural sustainability. 

Limitations 

The research encountered certain limitations 

stemming from constraints in hardware resources and data 

availability, as well as the need for more advanced Deep 

Learning (DL) models. Firstly, the limited hardware 

resources posed a challenge in terms of computational 

power and processing capabilities. The absence of high-

performance computing infrastructure restricted the 

complexity and scale of the DL models that could be 

implemented. Consequently, the potential for exploring 

larger and more intricate models was constrained. 

Secondly, the availability and quality of the dataset 

proved to be a limiting factor. The research relied on a 

specific dataset, which might have had limitations in 

terms of size, diversity, or representativeness. The 

restricted dataset might have constrained the overall 

performance and generalizability of the DL models 

employed. Additionally, the rapid advancements in DL 

techniques and architectures necessitated further 

exploration of more advanced models. Understanding 

these limitations helps in interpreting the findings 

appropriately and provides valuable insights for future 

research endeavors. 

Future Work 

For future research, it is recommended to use larger 

datasets with more images to further evaluate the 

performance of CNN models. Additionally, more 

computationally powerful deep learning architectures 

could be explored to potentially improve classification 

accuracy. These improvements can contribute to the 

development of more accurate and efficient crop disease 

detection. With ongoing technological advancements, it 

is conceivable that future image classification tasks 

could incorporate location and time data alongside the 

image data obtained from smartphones. By 

incorporating this additional information, it may be 

possible to further enhance the accuracy and reliability of 

crop disease detection. Based on the findings of such 

research, a smartphone-assisted crop disease diagnosis 

system could be developed. Such a system has the 

potential to significantly benefit the agricultural industry 

by providing a cost-effective and easily accessible 

solution for crop disease detection and prevention. It is 
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suggested that the information, which is taken for the 

experimental setup, can be improved and large data sets can 

be analyzed for the improvement of the result accuracy. 
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