

 © 2023 Achraf Berrajaa, Ayyoub El Outmani and Abdelhamid Benaini. This open-access article is distributed under a

Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

A GPU-Based Genetic Algorithm for the Multiple Allocation
P-Hub Median Problem

1Achraf Berrajaa, 2Ayyoub El Outmani and 3Abdelhamid Benaini

1Department of Computer Science, Euromed Research Center, Euromed University of Fes, Morocco
2Department of Computer Science, LARI, Faculty of Sciences Oujda, Mohammed Premier University, Oujda, Morocco
3Department of Mathematics, LMAH, Faculty of Sciences and Techniques, Normandie University, le Havre, France

Article history
Received: 20-08-2022
Revised: 07-02-2023
Accepted: 13-02-2023

Corresponding Author:
Achraf Berrajaa
Department of Computer
Science, Euromed Research
Center, Euromed University of
Fes, Morocco
Email: berrajaa.achraf@gmail.com

Abstract: As the sizes of realistic hub location problems increase as time goes
on (reaching thousands of nodes currently) this makes such problems difficult to
solve in a reasonable time using conventional computers. This study aims to show
that such problems may be solved in a short computing time and with high-quality
solutions using the computational power of the GPU (actually available in most
personal computers). So, we present a GPU-based approach for the uncapacitated
multiple allocations p-hub median problems. Our method identifies the nodes that
are likely to be hubs in the optimal solution and improves them via a parallel
genetic algorithm. The obtained GPU implementation reached within seconds the
optimal or the best solutions for all the known benchmarks we had access to and
solved larger instances up to 6000 nodes so far unsolved. Compared to this study,
no other article dealing with hub location problems has presented results for
instances as large.

Keywords: Genetic Algorithm, P-Hub Median Problem, Multiple Allocations,
GPU

Introduction

Hub location models appear in various fields such as
transportation, telecommunications, etc., and have a wide
range of applications in air or ground transportation
networks, postal delivery systems, and so on. In these
models, traffic from origin to destination is not sent
directly but must be routed through a specific set of nodes
called hubs. Every other non-hub node is assigned to a
single hub (single allocation) or to multiple hubs (multiple
allocations). Assuming (i) Open hubs are fully connected
to more efficient paths, allowing a discount factor α to be
applied to transport costs between hubs. (ii) The triangle
inequality applies to the distance between nodes (iii).
There is no direct connection between the two non-hub
nodes. Thus, the traffic flow will flow through one or two
nodes, and economies of scale are achieved by
consolidating traffic at the hubs. More precisely, the
transmission cost of flow wij from i to j via hubs k and l is
given by Cijkl = (χdik +αdkl +γdlj)wij where dik, dkl, and dlj
are respectively the distances from i to k, from k to l and
from l to j, χ is the collection cost per unit, γ is the
distribution cost per unit, where α < χ and α < γ.

In the multiple allocation hub location problems, a
non-hub node is allowed to be assigned to more than one
hub, depending on the destination of the flows originating
from that node. The goal is to locate p hubs and map non-

hubs (spook) to hubs so that the overall shipping cost is
minimized. Given the number p of hubs a priori, the
problem is called the p-hub median problem. Also, if the
hubs have no capacity constraints, the problem is known
as the Uncapacitated Multiple Allocation p-Hub Median
Problem (UMApHMP). Multiple allocations increase the
flexibility of the model and it is expected to have lower-
cost solutions compared to the single allocation case.

Since the UMApHMP belongs to the class of NP-hard
problems, it is difficult for exact optimization methods to
solve large benchmarks (for instance, the hub and spook
network of the China Deppon logistics includes 50 hubs
and 5400 nodes and these numbers increase as time goes
by Wang and Huang (2016). Therefore, heuristic and
parallel computing methods are promising approaches for
solving real problems with large sizes (Benaini et al., 2022).
So, we propose a genetic algorithm parallelized for the
GPU for solving the UMApHMP. To our knowledge, this
is the first GPU-based approach dedicated to this problem.
Our Genetic Algorithm (GA) starts from different initial
solutions and improves them via classical genetic
operators. The initial solutions locate the hubs which are
likely to be hubs in the optimal solution. Consequently,
they greatly enhance the convergence of the GA. We
present this approach and we show the efficiency of our
GA under experimental results on well-known

Achraf Berrajaa et al. / Journal of Computer Science 2023, 19 (5): 629.640
DOI: 10.3844/jcssp.2023.629.640

630

benchmarks and on large random instances of up to 6000
nodes generated by us.

Several efficient heuristics have been implemented for
both single and multiple allocations p-hub median
problems. Among the most promising algorithms are
Tabu Search (TS), Genetic Algorithm (GA), scatter
search, simulated annealing, greedy randomized adaptive
search, and electromagnetism like methods. A brief
presentation of the corresponding references is below.

Sangsawang (2011) proposed a multiple tabu search
for solving the UMApHMP based on the convex hull
technique to identify the nodes that send/receive flows to
multiple hubs. He uses an n × 2n array to identify the
intermediate hubs between origin-destination pairs. Rabbani
and Kazemi (2015) presented a GA optimization approach
for the uncapacitated multiple allocation p-hub center
problem. He compared the nearest hub and all pair
shortest path strategies for multiple allocations on the
CAB and the AP data set. Zhang et al. (2023), the authors
used Variable Neighborhood Search (VNS) heuristics to
solve this problem. Shobeiri (2015) presented greedy
deterministic and randomized algorithms for constructing
an initial feasible solution and improving it by using local
improvement techniques. He studies the impact of the
quality of the initial feasible solution on the local
improvement phase of AP data instances. Sender and
Clausen (2013) developed different versions of a local
search approach for solving the capacitated version of the
problem derived from a practical application in the
network design of German wagonload traffic. Boland et al.
(2004) observe characteristics of optimal solutions for
three versions of the multiple allocation problems. Then,
they used these characteristics to develop preprocessing
techniques and tightening constraints and apply them to
the appropriate problems. Chen (2006) gives an approach
to derive an upper bound for the optimal number of hubs for
the Uncapacitated Multiple Allocation Hub Location
Problem (UMAHLP). He uses this upper bound with the
simulated annealing method to solve this problem. Zetina et al.
(2017) study cases where the demand and the transportation
cost are subject to interval uncertainty. They present mixed
integer programming formulations for these problems and
computational results with a general-purpose solver. For
a robust optimization, Benaini and Berrajaa (2020)
propose a genetic algorithm to solve the robust
uncapacitated single allocation and also Rouzpeykar et al.
(2022) developed a genetic algorithm to solve p-hub
location and revenue management problem.

Yaman (2011), introduces the R-allocation p-hub
median problem, where each node must be allocated to at
most r hubs. This problem generalizes two versions of the
p-hub median problem, single and multiple allocations
(r = 1 and r = p). His computational study shows that
single-allocation solutions can be significantly more
expensive than multiple-allocation solutions. However,

assigning one node to another hub or two can save
significant routing costs, and the resulting network may
be easier to manage. Kratica (2013) introduced the
original electromagnetism like metaheuristic with a
scaling technique. Results on several benchmarks and on
large instances up to 1000 nodes showed high
performance of the proposed method.

Several Genetic Algorithms (GA) are proposed to
solve different variants of the hub location problems.
Most of them use binary/integer arrays as encoding. A
simple and powerful GA for the multiple allocation
problem was proposed by Kratica et al. (2005). This
GA uses binary N-string encoding and original genetic
operators. The author proposed caching to reduce the
computational time in the evaluation function and
shows the effectiveness of the GA through tests on
CAB and AP instances up to 200 nodes. We adopt the
binary N-string encoding for our GA. However, the
particularity of the UMApHMP is that once the set of hubs
is defined, an optimal allocation of non-hubs to hubs is
obtained by the shortest paths rule. So, given the N-string
encoding, it is necessary to compute all pair shortest paths
to fully determine the solution and to evaluate its fitness
which is expensive computationally. To avoid re-
computing all the paths at each iteration of the GA, we
update those of the current solution after each
modification of the latter. So, we must indicate how to
represent all the shortest paths of a solution and how to
update them after a change in the solution.

Our GA starts from an initial solution that locates hubs
at the nodes that are likely to be hubs in an optimal
solution, in order to accelerate the convergence to the
optimal or best solution. It is therefore necessary to
identify potential optimal hubs. For this purpose, we are
inspired by the work of Peker et al. (2016) on the analysis
of optimal hub locations for single allocation problems
and by other researchers on this subject due to Demir et al.,
(2022); Alvarez Fernandez et al. (2022); Contreras and
O’Kelly (2019); Shobeiri (2015).

Finally, it should be mentioned that very few GPU
solutions for the hub location problems are proposed in the
literature. Benaini et al. (2019) proposed a GPU
implementation for solving the single allocation phub
median problem. Lim and Ma (2013) presented a GPU-based
parallel vertex substitution algorithm for the p-hub
median problem and Santos et al. (2010) proposed a GPU
implementation of the GRASP metaheuristic for the p-hub
median problem. More recently, AlBdaiwi and
AboElFotoh (2017) presented a new genetic algorithm
based on a pseudo-Boolean formulation of the p-median
problem that he implemented on GPU. Interesting
experimental tests on hard instances of sizes up to 900 are
reported. We would like to highlight that, compared to our
work, no article dealing with the hub location problems,
proposed results for instances as large as 6000 nodes. In

Achraf Berrajaa et al. / Journal of Computer Science 2023, 19 (5): 629.640
DOI: 10.3844/jcssp.2023.629.640

631

view of these related works, we can affirm that the
contributions of this study are in the method of locating
optimal hubs and in the GPU-based approach for solving
the UMApHMP.

Problem Statement and Formulation
The UMApHMP can be informally stated as follow.

Given a set N of n nodes, find a sub-set of p hubs H ⊂ N
that minimizes:

where the decision variable xijkl = l if the flow wij from i
to j goes via hubs k and l (k may be equal to l) and 0
otherwise. Given that there are no capacity constraints
on the hubs or links of the network, there always exists
an optimal solution in which each flow wij fully routed
on a single path (Contreras and O’Kelly, 2019) which
justifies the fact that the xijkl are binary variables. The
general constraints imposed by the UMApHMP are the
following p is the number of hubs. It is assumed that
transportation costs and traffic flow are known and
determined. The traffic between a pair of nodes i and j
must be routed through either one or two established
hubs k and l. All hubs are interconnected and none of the
non-hubs are directly connected. Each non-hub can be
allocated to multiple hubs. We call the hubs of optimal or
best solution optimal hubs. A more precise formulation of the
UMApHMP can be found in (Boland et al., 2004;
Kratica et al., 2005).

Figure 1(a) shows an example of a hub network with
n = 5 nodes. The number of located hubs is p = 2. Figure 1(b)
presents a solution for the single allocation case with hubs
located at nodes 2 and 4. The non-hubs 1 and 5 are
allocated to hub 4 and non-hub 3 to hub 2. For instance,
the flow from 1-3 takes path 1-4-2-3. A multiple
allocation solution is presented in Fig. 1(c) with hubs
located at nodes 2 and 4. The non-hub 3 is allocated to
hubs 2 and 4, non-hub 1 is allocated to hubs 2 and 4, and
non-hub 5 is allocated to hub 4. The flow from 1 to 3 takes
the path having the minimum cost among the three paths
1-4-2-3 or 1-2-3 or 1-4-3.

Fig. 1: An example of p-HMP with solutions for single and

multiple allocations

Materials
This study is implemented on GPU Nvidia Quadro

with 2 GB and 2 SM and 384 cores running under CUDA
11.0 environment.

Methods
Location of Initial Hubs

The authors are inspired by the work of Peker et al.
(2016), that have an interesting analysis of the optimal hub
locations in the case of a single allocation. Using the optimal
solutions for small CAB and AP instances, they observe that
the spatial distribution of nodes (betweenness and centrality)
and the size of node requirements are the most influential
parameters for locating optimal hubs. They proposed a CBS
algorithm that partitions the nodes into clusters each centered
at a node that is likely to be an optimal hub. We adopted the
same methodology to conceive another simple and efficient
algorithm to partition the set of nodes into p disjoint clusters
each likely to contain an optimal hub for the UMApHMP.
We showed the effectiveness of our approach by tests on
several known benchmarks (including large random
instances). The result is that the percentage of the number of
clusters each containing at least one optimal hub is about
82%. Our clustering algorithm is based on the following two
observations: (i) In an optimal solution of the UMApHMP, a
non-hub node is necessarily allocated to the hub closest to it
(ii) A node k with the greatest index I(k) = Ok +Dk is a
potential optimal hub and the closest nodes to it are unlikely
to be also optimal hubs, they are rather the nodes allocated to
hub k. The following simple algorithm partitions the set of
nodes into p disjoint clusters Ci each likely to contain a hub
of an optimal or best solution.

Clustering algorithm:
L = the list of nodes sorted in decreasing order according
to their indexes I();
r = ⌈N/p⌉; i = 1;
while (i < p) do
 hi = is the first node of L not assigned to C1 È···ÈCi−1;
 if (i < p) then Ci = the set of the r nodes closest to hi
(including hi);
 else Ci = the remaining nodes in L;
 Remove Ci from L (L = L\Ci); i = i+1;
end while

Two remarks on this algorithm. First, as this algorithm
is dedicated to the UMApHMP, the Ci may be non-disjoint
and consequently may contain different numbers of nodes
instead of r nodes. Secondly, the algorithm can be
improved to take into account the isolated nodes as in
Peker et al. (2016) where the generated clusters (circles)
have the same radius and are centered at nodes selected
among the 2p most important nodes. These centers are

,
,
mink l H ijkl ijkl

i j N
C xÎ

Î
å

Achraf Berrajaa et al. / Journal of Computer Science 2023, 19 (5): 629.640
DOI: 10.3844/jcssp.2023.629.640

632

located in hubs. Here, the clusters Ci, have a different
radius and are centered at hi, and each contains the same
number of nodes (except for Cp). Identifying the potential
optimal hub in each Ci is a more delicate task. Indeed, the
potential hub in Ci is not necessarily hi but may be a node
close to hi (according to some criteria). We tested different
criteria to select the optimal hub in each cluster. We
observed that the node k ∈ Ci with
small is the best candidate

optimal hub in Ci for several benchmarks but not for all.
We confess that we failed to define an efficient criterion,
common to all tested benchmarks.

Figure 2 illustrates this on the AP20.5 instance with
n = 20 and p = 5. The ordered list is L = (14, 15, 2, 19,
6, 13, 20, 16, 3, 5, 9, 4, 12, 18, 10, 7, 8, 17, 1, 11). The
five clusters are C1 = (14, 19, 15, 18), C2 = (2, 3, 1, 6),
C3 = (13, 9, 10, 5), C4 = (20, 16, 11, 12), C5 = (4, 7, 8,
17) and are represented in Fig. 2 by different symbols
(C1 with stars, C2 with circles, etc.,). The optimal hubs
are {14, 2, 13, 12, 6} and are represented by filled
symbols in this figure. Only C5 does not contain an
optimal hub. If we select hi as a hub in Ci then we obtain
the set of initial hubs {14, 2, 13, 20, 4}. Three of them
are actually optimal hubs but not the other two.

The Genetic Algorithm
Most of the GAs for the hub location problems proposed

in the literature use binary or integer arrays to encode the
solutions. The operators mostly used in genetic algorithms
for the UMApHLP consist in randomly exchanging some
hubs with non-hub nodes regardless of the encoding used.
Indeed, once the set of hubs is defined, an optimal allocation
is obtained by the shortest path algorithm and therefore,
operators that change the node allocations are useless.

Solution Representation and Encoding
We adopt a simple encoding by a binary string s of length

n where s(k) = 1 denotes that k is an established hub and s(k)
= 0 denotes that k is a non-hub node. We represent all
shortest cost path i-k-l-j of a solution encoded by s by a
two-dimensional array Ts of size n × 2n; where a row
represents the origin node, a column identifies the
destination node, and the l-column and k-column
represent the intermediate hubs. Sangsawang (2011) used
this representation in a tabu search approach.

For instance, the representation T of the solution of
Fig.1(c) is given in Table 1.

In this example, T(3, 5) = (2, 4) means that the
shortest cost path from node 1 to node 3 is 3-2-4-5, and
T(1, 5) = (4, 4) means that the shortest cost path from
node 1 to node 5 is 1-4-5, etc. Note that if the l-column
of T(i, j) = j or the k-column of T(j, i) = j for all i then
j is hub. This allows the identification of hubs from T.
The representation Ts is associated with the encoding s
and defined by Ts(i, j) = argmink,1: s(k) = s(l) = lCi,jkl.

Fig. 2: Clustering and optimal hubs for the AP20.5 instance

The genetic operators operate on the N-string s and the
representation Ts, which must be updated after the change
of hubs of s, gives the fitness ∑i,jCijT(i,j) of s.

Genetic Operators
The following classical operators have been

implemented in our GA.

• Given an individual s and its representation Ts,

generate new individual s′ from s by k exchange()
consists in randomly choosing k hubs of s and
exchanging them with k non-hubs then update Ts to
get Ts′

• A population of R individuals is obtained from an
initial individual s by applying R times k-
exchange() to s

• The crossover with single random point crossover
exchanges the two parts of parents p1 and p2 to
generate two springs ch1 and ch2. If the number of
ones in the code of chi, (i = 1, 2); is different from p
then chi is corrected to feasible as follows. If the
number of hubs of chi is > p then keep the p hubs with
greatest I() else the missing hubs are randomly
chosen from the non-hub nodes. This produces two
feasible individuals c1 and c2. The representation
Tci (i = 1, 2) is computed as follows. If the number of
hubs common to ci and p1 is greater than the number
of hubs common to ci and p2 then update Tp1 else
update Tp2 to get Tci

• The aim of the mutation is to enlarge the search space
and to avoid the local optima. We use a mutation
operator that changes the hubs for 2% of individuals
randomly chosen and updates the representations T of
the obtained individuals

Exchanging hubs with non-hubs and consequently,

updating the representation T is the most expensive
operation, in computing time, of this GA. Therefore, we
designed the updating process to be as efficient as possible
without re-computing all pair shortest paths.

(), i
ok kd odo d C
d d wc g

Î
+å

Achraf Berrajaa et al. / Journal of Computer Science 2023, 19 (5): 629.640
DOI: 10.3844/jcssp.2023.629.640

633

Table 1: Example of T representation
 1 2 3 4 5
j ------------------ ----------------- ------------------ ------------------- ----------------
i k l k l k l k l k l
1 4 4 2 2 2 2 4 4 4 4
2 2 2 2 2 2 2 2 4 2 4
3 2 2 2 2 2 2 2 4 2 4
4 4 4 2 2 4 2 4 2 4 4
5 4 4 4 2 4 2 4 4 4 4

Fig. 3: The proposed algorithm steps

Updating the Representation T after the Change of
Hubs

Let H be the set of hubs of a solution s represented by
Ts. Then:

Let, s′ the solution obtained by exchanging t hubs

h1,···,ht of s with t non-hubs h1',…,h't of s and Ts′ its
represented. Let H1 = {h1,…,ht}, H'1 = {h'1,…,h't} and
H' = (H\H1) È H'1. Then H' becomes the set of bubs of
s′ and Ts′(i, j) = argmink,l∈H′ Cijkl. We show how to
compute Ts′(i, j) for all i, j. Assume that jÎH'1 then
any path (of s′) from i to j passes through at most
another hub.

Hence:

is done in O(p) steps. Likewise, if then:

is done in O(p) steps. Now, suppose that neither i nor
j is a hub of s′ and let Ts(i, j) = (k0, l0). Then:

If neither k0 nor l0 is in H1 then:

Hence:

and computing or
requires O(tp) steps.

Finally, if k0 ∈ H1 or l0 ∈ H1 then the computation of
Ts′(i, j) needs O(p2) steps. So, the computation of most of
the Ts′(i, j) requires O(p) steps in the case where a single
hub is exchanged (1-exchange() used in our
implementation). Finally, it should be noted that some
properties presented in Boland et al. (2004) may be used
to improve these computations with little impact if all the
Ts′(i, j) are computed in parallel.

The overall structure of our system is shown in Fig. 3.

,(,) ,

()
k l H ijkl

ijkl ik kl lj ij

Ts i j argmin C with

C d d d Wc a g
Î=

= + +

())' ' ,(,) (,S K H ik k jT i j argmin d d jc aÎ= +

'K HÎ

()()'(,) ,S K H il l jT i j i argmin d da g¢ Î= +

'
1

, '

, \ 1 1', ' ',

min min

min , min , min

ijklk l H

ijkl ijkl ijklk l H H k H l H k H l H

C

C C C

Î

Î Î Î Î Î

=

æ ö
ç ÷
è ø

1 ,, \
min minijkl ijklk l Hk l H H

C C
ÎÎ

=

1, \
(,)ijkl sk l H H

argmin C T i j
Î

=

'
1 , '

min , ijklk H l H
C

Î Î '
1',

min ijklk H l H
C

Î Î

Achraf Berrajaa et al. / Journal of Computer Science 2023, 19 (5): 629.640
DOI: 10.3844/jcssp.2023.629.640

634

GPU Implementation of the GA
Before presenting the GA, we briefly recall the main

features of the GPU and CUDA.

CUDA and GPU
Graphics Processing Units (GPUs) are actually

available in most personal computers. They are used to
accelerate the execution of a variety of problems.
CUDA is a scalable parallel programming model that
runs on Nvidias GPU architecture making it possible to
use the GPU as a massively parallel machine. Since
GPU and CUDA are actually available in most personal
computers, massively parallel computing has become a
commodity technology. The smallest unit in the GPU
that can execute a kernel is called a thread. All threads
execute the same code (kernel) but on multiple data.
Threads are grouped into blocks and blocks are
grouped in the grid. CUDA enables defining grids and
blocks according to the parameters of the problem.

Threads can access data in parallel from different
memory locations. GPU memory is divided into three
levels: (i) Global memory, which can be accessed by
all threads. (ii) Shared memory, accessible to all

threads of the same block, and (iii) Local memory
(register), accessible by a thread and only by it. Shared
memory has low latency (2 cycles) and is limited in
size. Global memory has high latency (400 cycles) and
is large. Each block is divided into Warps of 32 threads
that run in parallel on a single Stream Multiprocessor.
Programmers must control block size, number of
warps, and various memory accesses. Typical CUDA
programs are C programs whose functions are
classified according to whether they are designed to run
on the CPU or on the GPU.

Outline of the GA
GAs is preferred to be executed on parallel

architectures such as the GPU since they exploit the
availability of many threads performing the same code on
multiple data. In the classical thread per chromosome
model, one thread performs fitness evaluation as well as
genetic operations (Benaini et al., 2019). Here, we use
several threads to perform these operations on a single
chromosome, resulting in better utilization of GPU
resources. Our GA uses R blocks, each of n × 2n threads,
to process a population of 2 × R chromosomes as follows.

Fig. 4: The parallel GA for the UMApHMP

Achraf Berrajaa et al. / Journal of Computer Science 2023, 19 (5): 629.640
DOI: 10.3844/jcssp.2023.629.640

635

Each pair of individuals (parents) is processed by a
single block. The representations T and T′ of the two
parents, the W costs matrix, and the D distances matrix
are stored in the shared memory of the block (to allow
all threads of the block to access these data without
going through the global memory). The sub-block
composed of threads (i, j) (resp. threads (i, j + n)), 0 ≤ i,
j < n, updates and evaluates the fitness of one new
(resp. the other new) produced individual at each
iteration. The fitness of an individual represented by T
is simply computed as the ∑i,jCijT(i, j).

Now, the authors explain the GPU implementation of
the GA. Starting from an initial solution s constructed as
described. In each blocki, 0 ≤ i < R, sets a first parent pi to
s and generates a second parent p′i = 1-exchange(s). This
constitutes a population of R × 2 chromosomes distributed
per pair of two per block. Next, each blocki applies the
crossover operator to pi, p'i producing two feasible
children ci and c′i, then evaluates their fitness. The
individual si with the best fitness among pi, pi', ci, ci' is re-
injected in the blocki as the first parent for the next
iteration if any. After N1 iterations (the same for all
blocks) the si, 0 ≤ i < R, are copied in the global memory.
A mutation operator is eventually applied to them and the
individual s with the best fitness among them is selected
and re-injected in each block as an initial solution for the
next iteration if any. The process terminates after a certain
number of N2 of iterations. This process is illustrated in
Fig. 4 where pi, fi, and Ti denote respectively the first
parent, its fitness, and its representation.

Finally, note that:

• This implementation has two levels of

parallelism. First, in the processing of each pair
of parents (pi, pi') and secondly in the treatment of
the population (pi, pi'), 0 ≤ i < R

• The initial solution s is simply generated in parallel by
computing the list L and sorting it on a block of n × n
threads. Then determine the p clusters from which the
initial hubs are located in O(n) parallel steps

• Other powerful genetic operators proposed
especially in Kratica et al. (2005); Naeem and
Ombuki-Berman (2010) can be implemented in
this GA without causing data exchange between
the blocks and therefore without additional access
to the global memory

• If the shared memory is not enough to store the
representations then either one stores them in the
global memory or one re-computes all the shortest
paths at each iteration or one uses the cache memory
technique as in Kratica et al. (2005) all these
possibilities induce an additional execution time

Results and Discussion
The objective of this section is to give new best

results or results for instances that have not been solved
before (to our knowledge). Moreover, through these
tests, we highlight the relevance of our clustering
algorithm et GPU implementation. So, we tested our
implementation on the following benchmarks:

• The Australian Post (AP) data set represents mail

flows in Australia where the flows are not
symmetric, there are flows between each node and
itself, and χ = 3, γ = 2, and α = 0.75

• The Urand dataset is random instances of up to 400
nodes generated by Meyer et al. (2009), and instances
of up to 1000 nodes proposed by Ilić et al. (2010) where
the node coordinates and the flow matrix were randomly
generated. We completed random instances of large
sizes up to 6000 that we generated according to the same
rules that those of URAND instances

• The planet lab instances are node-to-node delay data
for performing measurements of the legacy internet
(Ilić et al. (2010). In these instances, χ = γ = α = 1, the
distance matrix does not respect the triangle
inequality, and the flows wij = 0 if i = j and 1 otherwise

We used a modest Nvidia quadro to realize our tests.

We report our results for the single and for multiple
allocation cases for each tested instance. Thus, the costs
of the solutions can be compared in the two cases. We
compare our single allocation results to those of (Ilić et al.,
2010) and the multiple allocation results to those of
Kratica et al., 2005).

The following notations are used in all tables. n is the
number of nodes in the instance, and p is the number of
hubs. M stands for multiple allocations, and S stands for
single allocation. Best sol is the best solution if known,
otherwise, the dash is written. GPUsol is our solution with
OPT when the solution is known optimal or best the best
solution found in the literature. Clust opt is the number of
clusters each containing at least one hub of the optimal or
the best solution for the UMApHMP. The average of these
numbers is given in bold at the end of this column. Some
results for the single allocation case (USApHMP)
reported here are presented in Benaini et al. (2019). For
all benchmarks considered our implementation reaches
the optimal or the best solutions in execution times ≤ 7s
for n ≤ 419 and between 10 and 15s for n = 1000 and
between 25s and 600s for n ∈ [1500,6000].

Table 2 provides the results of the AP instances with 300
and 400 nodes. We do not know other UMApHMP solutions
for these instances to compare them with our results. The
average of the CLUST OPT column is 87%. This means that,
on average, the percentage of clusters each containing at least
one optimal hub is 87% (or the optimal hubs of each instance
problem are distributed on 87% of clusters). This shows the
efficiency of our clustering algorithm.

Achraf Berrajaa et al. / Journal of Computer Science 2023, 19 (5): 629.640
DOI: 10.3844/jcssp.2023.629.640

636

In Table 3, we reported new best costs for Planet Lab
instances for the single and multiple allocation cases. The
old best solutions for USApHMP reported in this table are
due to Ilić et al. (2010). Given that there are no other known
UMApHMP results for these instances, our results become
henceforth the best. The average of the CLUST OPT
column is 69%. This percentage is quite low compared to
the others benchmarks. We think that this is due to the non-
respect of the triangle inequality in the planet lab instances.
We complete this table with the results for other values of
p in Table 4. Only the results for instances 06, 07, 08, and
09 are reported (to avoid overloading the paper with tables).
Note that there are no other known UMApHMP solutions
for these instances with these values of p. Here, the
percentage of clusters each containing at least one hub of
the best solution is quite high.

Ilić et al. (2010); Kratica (2013) reported the best-
known results for URAND instances for n = 100, 200,

300, 400, and (χ = 3 and 1, α = 0.75, γ = 2 and 1). Our
GPU implementation achieves the same results. So, in
Table 5 we report only the CLUST to OPT column for
these instances with (χ = 1; α = 0.75, γ = 1). We observe
that the numbers in this column are not very sensitive to
the variation of n. Here too, the average of the CLUST
OPT column is quite high. In Table 6 we report new
results (for single and multiple allocation cases) on the
Urand instances with 1000 nodes with (χ = 1, α = 0.75, γ = 1)
since Ilić et al. (2010); Kratica (2013) reported only the
results for (χ = 3, α = 0.75, γ = 2).

Table 7 reports our results with the parameters (χ = 3,
α = 0.75, γ = 1) for the large Urand instances up to 6000
nodes. To our knowledge, no results for instances of sizes
larger than 1000 have been published. The efficiency of our
clustering algorithm and GPU implementation is clearly
established in solving these large random instances.
Compared to this study, no article dealing with hub location
problems has presented results for instances as large.

Table 2: Results on large AP instances
 n p Type alloc Best sol GPU sol Hub OPT
 300 5 M - 170679.01 5
 10 M - 131788.68 9
 15 M - 112806.91 13
 20 M - 101884.17 17
 400 5 M - 172818.43 5
 10 M - 133487.54 8
 15 M - 114314.49 13
 20 M - 103404.57 17
 87%

Table 3: Results on planet lab instances *-2005
Inst. n p Type alloc Best sol GPU sol Hub OPT
 1 127 12 M - 2566990 9
 S 2927946 2904434
 2 321 19 M - 16518458 13
 S 18579238 18329984
 3 324 18 M - 18238014 12
 S 20569390 20284132
 4 70 9 M - 682596 6
 S 739954 730810
 5 374 20 M - 20653586 14
 S 25696352 25583240
 6 365 20 M - 19365696 14
 S 22214156 22151862
 7 380 20 M - 27417830 15
 S 30984986 30782956
 8 402 21 M - 28540846 14
 S 30878576 30636170
 9 419 21 M - 26593496 13
 S 32959078 32649752
10 414 21 M - 26355946 14
 S 32836162 28211380
11 407 21 M - 24664598 15
 S 27787880 27644374
12 414 21 M - 22317134 14
 S 28462348 28213748
 69%

Achraf Berrajaa et al. / Journal of Computer Science 2023, 19 (5): 629.640
DOI: 10.3844/jcssp.2023.629.640

637

Table 4: Results on Planet Lab instances *-2005 for other values of p
Inst. n p Type alloc GPU sol Hub OPT Inst. n p Type alloc GPU sol Hub OPT
6 365 2 M 25569616 2 7 380 2 M 37733504 2
 S 26192564 S 38605660
 3 M 23799100 3 3 M 34195694 3
 S 25416392 S 26882642
 4 M 22574576 3 4 M 32060818 4
 S 24528130 S 33874708
 5 M 21787425 4 5 M 30676098 4
 S 23977334 S 33416162
 10 M 20630906 8 10 M 28554634 7
 S 22708070 S 31556270
 15 M 19610164 12 15 M 27813764 11
 S 22398924 S 30958920
 20 M 19365696 17 20 M 27417830 15
 S 22190348 S 33272248
8 402 2 M 36642406 2 9 419 2 M 40178280 2
 S 37259814 S 40995336
 3 M 33907736 3 3 M 36736314 3
 S 35895074 S 39179832
 4 M 32545826 3 4 M 35088016 4
 S 34535748 S 38151236
 5 M 31788464 4 5 M 34019204 5
 S 33569834 S 37019968
 10 M 29699488 8 10 M 31467516 7
 S 32108626 S 34335578
 15 M 28980246 11 15 M 27208466 13
 S 31008768 S 33178544
 20 M 28614800 16 20 M 26663202 17
 S 31558084 S 32601346
 81.7%

Table 5: Results on large Urand instances (χ = 1, α = 0.75, γ = 1)
n p Clust OPT n p Clust OPT n p Clust OPT n p Clust OPT
100 2 2 200 2 2 300 2 2 400 2 2
 3 3 3 2 3 3 3 3
 4 4 4 3 4 4 5 4
 5 5 5 5 5 4 5 4
 10 9 10 9 10 9 10 8
 15 13 15 12 15 14 15 12
 20 17 20 16 20 17 20 16
 85.6%

Table 6: Results on large URAND instances
n p Type alloc GPU sol Clust
1000 2 M 3380404.48 2
 S 3644705.83
 3 M 3086100.81 3
 S 3397386.83
 4 M 2907515.00 4
 S 3206255.10
 5 M 2825585.52 4
 S 3119060.41
 10 M 2572595.51 9
 S 2823592.72
 15 M 2460725.82 14
 S 2679974.67
 20 M 2393602.47 16
 S 2577234.14
 88.1%

Achraf Berrajaa et al. / Journal of Computer Science 2023, 19 (5): 629.640
DOI: 10.3844/jcssp.2023.629.640

638

Table 7: Results on large urand instances generated by us
 Type GPU Clust Type GPU Clust
n p alloc sol OPT n p alloc sol OPT
1500 20 M 448739772 17 4000 20 M 3163446506 17
 S 454787506 S 3234999192
 30 M 406017592 26 30 M 2935022500 23
 S 407155164 S 2983891783
 40 M 377761261 36 40 M 2727794413 33
 S 380114045 S 2769550514
 50 M 358245622 44 50 M 2604040619 41
 S 363586538 S 2644606684
2000 20 M 800331930 17 5000 20 M 5001798606 16
 S 805749722 S 5085803132
 30 M 724383243 27 30 M 4610179267 25
 S 733375448 S 4656787498
 40 M 679709297 37 40 M 4277839570 32
 S 686515363 S 4353561395
 50 M 647033467 44 50 M 4060895916 39
 S 655938000 S 4143849388
3000 20 M 1777794117 17 6000 20 M 7217166936 15
 S 1804950952 S 7398401957
 30 M 1616819166 24 30 M 6586643628 24
 S 1642145354 S 6675723961
 40 M 1522572071 33 40 M 6197499299 34
 S 1538548764 S 6293053841
 50 M 1445702469 42 50 M 5902887457 43
 S 1468780124 S 5999780197
 84%

Conclusion

The authors proposed a GPU-based approach for
solving the multiple allocations p-hub median problems
with a parallel genetic algorithm. The initial solutions of the
GA are generated using a simple and efficient clustering
algorithm that partitions the set of nodes in p clusters, each
likely to contain an optimal hub. This clustering algorithm
seems very efficient at least for the tested benchmarks.
However, we failed to define an efficient criterion,
common to all these benchmarks, to identify the potential
hub in each cluster. The initial solutions thus generated are
improved by the genetic algorithm. A binary encoding and
two-dimensional array that specifies all pair shortest paths
between origin-destination nodes are used by the GA. The
most expensive operation of the GA is the updating of the
shortest cost paths (representation T) after each change of
the hubs. This was efficiently done by a block of threads
and without re-computing all pair shortest paths.

Exploiting the enormous computational power of the
GPU, our CUDA program obtains solutions that match
with optimal ones known and outperforms the previously
published results for the UMApHMP. Moreover, it solved
instances of problems so far unsolved (URAND instances
of size up to 6000 nodes). Obviously, this program
executed on a more powerful GPU such as the Nvidia-
Kepler will give better results in time and quality and
especially, it will allow to solve large hard instances

which require the exhaustion of the entire search space
AlBdaiwi and AboElFotoh (2017). Future studies might
consider studying other versions of the hub location problem
including robust and dynamic problems. Improving the
clustering process and defining an efficient criterion for
selecting the optimal hub in each cluster is another future work.

Acknowledgment
The authors would like to thank the Editor-in-chief and

anonymous reviewers for their comments and suggestions to
improve the quality of the paper.

Funding Information
The authors have not received any financial support or

funding to report.

Author’s Contributions
Achraf Berrajaa: Collect data and benchmarks,

implement the proposed algorithm. Written of the article
with emphasis on the concepts, the proposed algorithm,
the limits of the proposed approaches. Drafted of the
manuscript and designed of the figures. Explore research
issues and challenges.

Ayyoub El Outmani: Reviewed the final version of the
manuscript. Provided valuable feedback to enhance the
quality of the study.

Abdelhamid Benaini: Conceptualize the work,

Achraf Berrajaa et al. / Journal of Computer Science 2023, 19 (5): 629.640
DOI: 10.3844/jcssp.2023.629.640

639

supervised the construction and wrote part of the paper.

Ethics
This article is original and contains unpublished material.

The corresponding author confirms that all of the other
authors have read and approved the manuscript and no
ethical issues involved.

References
AlBdaiwi, B. F., & AboElFotoh, H. M. (2017). A GPU-

based genetic algorithm for the p-median problem. The
Journal of Supercomputing, 73, 4221-4244.
https://doi.org/10.1007/s11227-017-2006-x

Alvarez Fernandez, S., Ferone, D., Juan, A., & Tarchi, D.
(2022). A simheuristic algorithm for video streaming
flows optimisation with QoS threshold modelled as a
stochastic single-allocation p-hub median problem.
Journal of Simulation, 16(5), 480-493.
https://doi.org/10.1080/17477778.2020.1863754

Benaini, A., & Berrajaa, A. (2020, October). Parallel
genetic algorithm on gpu for the robust uncapacitated
single allocation p-hub median problem with
discrete scenarios. In 2020 5th International
Conference on Logistics Operations Management
(GOL) (pp. 1-8). IEEE.

 https://doi.org/10.1109/GOL49479.2020.9314716
Benaini, A., Berrajaa, A., & Boukachour, J. (2022, June).

GPU computing for the capacitated single allocation
hub location problem. In 2022 IEEE 6th International
Conference on Logistics Operations Management
(GOL) (pp. 1-8). IEEE.
https://doi.org/10.1109/GOL53975.2022.9820511

Benaini, A., Berrajaa, A., Boukachour, J., & Oudani, M.
(2019). Solving the uncapacitated single allocation p-
hub median problem on gpu. Bioinspired Heuristics
for Optimization, 27-42.
https://doi.org/10.1007/978-3-319-95104-1_2

Boland, N., Krishnamoorthy, M., Ernst, A. T., & Ebery,
J. (2004). Preprocessing and cutting for multiple
allocation hub location problems. European Journal
of Operational Research, 155(3), 638-653.
https://doi.org/10.1016/S0377-2217(03)00072-9

Chen, J. F. (2006). A heuristic for the uncapacitated multiple
allocation hub location problem. Journal of the Chinese
Institute of Industrial Engineers, 23(5), 371-381.
https://doi.org/10.1080/10170660609509333

Contreras, I., & O’Kelly, M. (2019). Hub location
problems. Location Science, 327-363.
https://doi.org/10.1007/978-3-030-32177-2_12

Demir, İ., Kiraz, B., & Ergin, F. C. (2022). Experimental
evaluation of meta-heuristics for multi-objective
capacitated multiple allocation hub location
problem. Engineering Science and Technology, an
International Journal, 29, 101032.
https://doi.org/10.1016/j.jestch.2021.06.012

Ilić, A., Urošević, D., Brimberg, J., & Mladenović, N.
(2010). A general variable neighborhood search for
solving the uncapacitated single allocation p-hub
median problem. European Journal of Operational
Research, 206(2), 289-300.
https://doi.org/10.1016/j.ejor.2010.02.022

Kratica, J., Stanimirović, Z., Tošić, D., & Filipović, V.
(2005). Genetic algorithm for solving uncapacitated
multiple allocation hub location problem. Computing
and Informatics, 24(4), 415-426.

Kratica, J. (2013). An electromagnetism-like
metaheuristic for the uncapacitated multiple
allocation p-hub median problem. Computers &
Industrial Engineering, 66(4), 1015-1024.
https://doi.org/10.1016/j.cie.2013.08.014

Lim, G. J., & Ma, L. (2013). GPU-based parallel vertex
substitution algorithm for the p-median problem.
Computers & Industrial Engineering, 64(1), 381-388.

 https://doi.org/10.1016/j.cie.2012.10.008
Rabbani, M., & Kazemi, S. (2015). Solving uncapacitated

multiple allocation p-hub center problem by
Dijkstra’s algorithm-based genetic algorithm and
simulated annealing. International Journal of
Industrial Engineering Computations, 6(3), 405-418.
https://doi.org/10.5267/j.ijiec.2015.2.002

Meyer, T., Ernst, A. T., & Krishnamoorthy, M. (2009). A
2-phase algorithm for solving the single allocation
p-hub center problem. Computers & Operations
Research, 36(12), 3143-3151.
https://doi.org/10.1016/j.cor.2008.07.011

Naeem, M., & Ombuki-Berman, B. (2010, July). An
efficient genetic algorithm for the uncapacitated single
allocation hub location problem. In IEEE Congress on
Evolutionary Computation (pp. 1-8). IEEE.
https://doi.org/10.1109/CEC.2010.5586382

Peker, M., Kara, B. Y., Campbell, J. F., & Alumur, S.
A. (2016). Spatial analysis of single allocation hub
location problems. Networks and Spatial
Economics, 16, 1075-1101.
https://doi.org/10.1007/s11067-015-9311-9

Rouzpeykar, Y., Soltani, R., & Afashr Kazemi, M. A.
(2022). EFP-GA: An Extended Fuzzy Programming
Model and a Genetic Algorithm for Management of
the Integrated Hub Location and Revenue Model
under Uncertainty. Complexity, 2022.

 https://doi.org/10.1155/2022/7801188
Sangsawang, O. (2011). Metaheuristics for hub

location models.
https://tigerprints.clemson.edu/all_dissertations/804

Santos, L., Madeira, D., Clua, E., Martins, S., &
Plastino, A. (2010). A parallel GRASP resolution
for a GPU architecture. In International
Conference on Metaheuristics and Nature Inspired
Computing, META10.
https://www.researchgate.net/publication/2792633

Achraf Berrajaa et al. / Journal of Computer Science 2023, 19 (5): 629.640
DOI: 10.3844/jcssp.2023.629.640

640

Sender, J., & Clausen, U. (2013). Heuristics for solving a
capacitated multiple allocation hub location problem
with application in German wagonload traffic.
Electronic Notes in Discrete Mathematics, 41, 13-20.
https://doi.org/10.1016/j.endm.2013.05.070

Shobeiri, A. (2015). Grasp metaheuristic for multiple
allocation p-hub location problem (Doctoral
dissertation, Concordia University).
https://spectrum.library.concordia.ca/id/eprint/981261/

Wang, Y., & Huang, Y. (2016). Incremental optimization
of hub and spok network under changes of spokes
number and flow. Int. J. Hybrid information
Technology, 9(1), 339352.

 https://doi.org/10.14257/ijhit.2016.9.1.29

Yaman, H. (2011). Allocation strategies in hub
networks. European Journal of Operational
Research, 211(3), 442-451.
https://doi.org/10.1016/j.ejor.2011.01.014

Zetina, C. A., Contreras, I., Cordeau, J. F., & Nikbakhsh,
E. (2017). Robust uncapacitated hub location.
Transportation Research Part B: Methodological,
106, 393-410.
https://doi.org/10.1016/j.trb.2017.06.008

Zhang, C., Sun, X., Dai, W., & Wandelt, S. (2023).
Solving Hub Location Problems with Profits Using
Variable Neighborhood Search. Transportation
Research Record, 2677(1), 1675-1695.

 https://doi.org/10.1177/03611981221105501

