

 © 2024 Thomas Nagunwa. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Review

Detection of Phishing Websites Hosted in Name Server Flux

Networks Using Machine Learning

Thomas Nagunwa

School of Computing and Digital Technology, Birmingham City University, Birmingham, United Kingdom

Article history

Received: 28-02-2023

Revised: 13-08-2023

Accepted: 04-09-2023

Email: tom.nag@gmail.com

Abstract: Attackers are increasingly using Name Server IP Flux Networks

(NSIFNs) to run the domain name services of their phishing websites in order

to extend the duration of their phishing operations. These networks host a

name server that manages the Domain Name System (DNS) records of the

websites on a network of compromised machines with frequently changing

IP addresses. As a result, blacklisting the machines has less impact on

stopping the services, lengthening their lifespan and that of the websites they

support. High detection delays and the use of fewer, lesser varied detection

features limit the proposed solutions for identifying the websites hosted in

these networks, making them more susceptible to detection evasions. This

study suggests a novel set of highly diverse features based on DNS, network,

and host behaviors for fast and highly accurate detection of phishing websites

hosted in NSIFNs using a Machine Learning (ML) approach. Using a variety

of traditional and deep learning ML algorithms, the prediction performance

of our features was assessed in the context of binary and multi-class

classification tasks. Our approach achieved optimal accuracy rates of 98.59%

and 90.41% for the binary and multi-class classification tasks, respectively.

Our approach is a crucial step toward monitoring NSIFN components to

mitigate phishing attacks efficiently.

Keywords: Phishing Hostname, Name Server Flux Network, Machine

Learning, Deep Learning, Flat and Hierarchical Classification

Introduction

Attackers commonly use legitimate or their own

authoritative Name Servers (NSs) to keep DNS records of

their malicious websites. These frequently consist of a

single machine or a small network of machines with

consistent IP addresses. This makes it simple to identify

servers by their IP addresses and remove or blacklist

malicious NS records to effectively shut down the services.

Attackers are increasingly hosting the records on NSIFNs

to avoid being blacklisted. In NSIFNs, the attacker-

controlled authoritative NS (also referred to as mothership)

maintains DNS records for malicious websites. The

attacker compromises and manages vulnerable machines

(also known as flux agents) from different networks

through the NS, which also serves as the network's

command and control centre and utilizes them as proxies

for user DNS requests. Blacklisting the machines does not

effectively stop the domain name services because they are

often replaced as new machines are compromised. As a

result, the usage of NSIFNs makes it impossible to shut

down the services, which makes it possible for the

malicious websites' operations to continue and become

more impactful. In order to effectively combat persistent

malicious websites, an approach for detecting the websites

hosted in these networks must be effective and efficient.
This study aims to detect phishing-specific

websites/hostnames hosted in NSIFNs (referred to in this
study as phishing NS flux hostnames). This is due to the
fact that phishing attacks are the leading cause of
cybersecurity attacks worldwide. They are responsible
for up to 91% of all data breaches worldwide (Sophos,
2017). The number of global data breach incidents will
be significantly reduced if users are prevented from
visiting phishing websites. Furthermore, according to
Caglayan et al. (2010), flux networks hosting various
malicious web services, such as spam, malware, and
phishing, differ significantly from one another in terms
of DNS, host, and network-related characteristics, which
are often used as a source of features for the detection.
As a result, a solution that aims to detect all types of
malicious web services hosted in an NSIFN is likely
going to be less efficient than one that targets a particular
web service in a dedicated NSIFN.

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

11

Building a blacklist of phishing NS flux hostnames to

make it easier to monitor networks over the long term for

their effective takedown is one of the potential uses of our

approach. The blacklist can specifically be used by

cybersecurity stakeholders such as Internet Service Providers

(ISPs) and government organizations to continuously query

NSs forming flux networks hosting phishing hostnames in

order to investigate and monitor them. This will result in the

identification of the legitimate networks that are hosting the

NS flux agents that have been compromised, information

that can be used to alert the network owners to find the

compromised machines in their networks, clean them up, and

take security measures to prevent the machines from

becoming compromised again. Additionally, solutions such

as Gu et al. (2007); Khattak et al. (2015) can be used at

network gateways to track the motherships in order to

blacklist them, thereby shutting down the entire

infrastructure of the phishing campaigns. These solutions do

this by monitoring data traffic between flux agents in the

local networks and their external motherships.

A few studies have proposed approaches for detecting

malicious NS flux hostnames. For example, Kadir et al.

(2012); Pa et al. (2015) tracked DNS-related traits of

legitimate and malicious websites and their hosting

networks for up to several months to find detection

patterns. However, they are constrained by the following:

 They rely solely on detection features that are based

on DNS-related traits. Attackers may be able to evade

detection by eluding the features using simple

evasion techniques

 Their monitoring (detection) period, which ranges

from 3-6 months, is notably long for real-time

detection. The time gives the malicious NSs the

opportunity to keep giving malicious websites DNS

services and do more harm before being detected

 Their approaches detect all types of malicious

hostnames hosted in NSIFNs. These are less likely to

be able to detect hostnames that are phishing-

specific, as was already mentioned

 Their detection abilities were not thoroughly validated

by using a variety of performance metrics, such as

precision, recall, and false negative rates. This limits

our ability to assess the techniques' overall efficacy

We propose a fast, highly accurate, and more

detection evasion-resistant ML-based approach to

detect phishing-specific NS flux hostnames to address

the aforementioned shortcomings. The following are

our contributions to this study:

1. Our approach is designed to effectively detect

phishing NS flux hostnames using a novel set of

highly diverse features. The set consists of 11

features across five distinct feature categories, all of

which were derived from hosting networks' DNS,

host, and network characteristics. This study is the

first to propose all of the features

2. The problem is formulated as both binary and multi-

class classification tasks to distinguish between

legitimate and legitimate NS non-flux hostnames and

phishing NS flux hostnames. The phishing NS flux

hostnames are distinguished from the other

hostnames combined into a single hostname class in

the binary classification. In the multi-class

classification, each of the three hostnames is

identified separately, allowing the precise hostname

type to be determined and providing more

information to users for decision-making

3. Using flat and hierarchical classification techniques,

three implementation architectures of our prediction

model are proposed with the goal of determining the

architecture that offers the best prediction performance

4. Compared to the related works, we use a larger

number of different ML algorithms to evaluate the

performance of the features. Conclusions about the

overall efficacy of a feature set can be made by

comparing the performance results from such a vast

array of algorithms. Additionally, the performance

was measured and reported using a larger variety of

metrics to inform us of the all-around efficacy of the

prediction model

To our knowledge, this is the first study to analyze the

problem as a three-class classification task, compare flat

and hierarchical classification techniques, apply Deep

Learning (DL) algorithms, and evaluate the features using

both traditional ML and DL algorithms.

Background of Name Server Flux and Non-Flux

Networks

According to studies by Salusky and Danford (2008);

Konte et al. (2009); Kadir et al. (2012); Metcalf and Spring

(2013); Pa et al. (2015), some of the authoritative NSs

registering RRs of malicious web services display a fluxing

behaviour in which their IP addresses change quickly. This

phenomenon is known as NS IP Flux (NSIF). In NSIF

Networks (NSIFNs), the NS infrastructure is made up of a

mothership NS and several NSs that act as the network's

flux agents. The latter serves as proxies to the mothership

by sending NS queries to the mothership and returning the

results to the DNS clients, while the former, which is owned

and managed by an attacker, is the actual authoritative NS

for one or more zones of malicious web services. The

compromised machines, normally from widely dispersed

networks on the internet, that are enlisted by Malwa are

controlled by the attacker in the mothership are known as

NS flux agents. The attacker registers the A records in the

legitimate authoritative NS of a parent zone that maps

hostnames to IP addresses of NS flux agents. When a DNS

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

12

client queries a series of NS records, the flux agents are

quickly rotated (as illustrated in Fig. 1). Attackers

frequently give the NS records a shorter Time to Live

(TTL) in order to make this strategy possible. The

motherships are rendered invisible to users and the

attackers' tracks are obscured from forensic analysis by

the use of flux agents as proxies. Therefore, tracking

and blacklisting the flux agents does not stop the

NSIFN because the mothership continuously

compromises and employs new flux agents, prolonging

the existence of malicious campaigns. The agents and

the mothership are frequently utilized to host multiple

malicious NSs and websites, similar to NSs in

malicious NS non-flux networks.

Flux agents typically come from a wide variety of distinct

networks because the malware infection process for

recruiting them is random. The majority of flux agents are

compromised home and small office networks' Internet of

Things (IoT) devices, which are often less secure and have

numerous security flaws. Since a large portion of the flux

agents are owned by private individuals and small

businesses, their availability may change as equipment is

turned off when not in use. Furthermore, when computers are

cleaned of malware, agents might be lost from the NSIFN.

Table 1 summarizes the expected operational and

structural variations between the three categories of

networks hosting authoritative NSs (i.e., malicious NS flux

networks, malicious NS non-flux networks, and legitimate

NS non-flux networks) based on the descriptions above. As

described in the following sections, features for

differentiating hostnames hosted in each of these networks

will be derived from these variations.

One of the two popular types of IP flux network services

that are often used by attackers to enhance the productivity

of their phishing services is NSIFNs. The other one, Fast

Flux Network Services (FFSNs), is the most widely used.

In FFSNs, attackers use compromised machines to act as

proxies for the real web servers hosting phishing websites.

These machines are frequently rotated, so blacklisting them

only prevents the front end of the networks supported by

the blacklisted machines from accessing the websites

hosted on the real servers but not the new machines. This

in turn prolongs the lifespan of the websites, which harms

users more. In our recent work, Nagunwa et al. (2022)

proposed an ML model to detect the hostnames of the

websites hosted in these networks using predictors based on

DNS and network characteristics.

Fig. 1: The NSIFN architecture

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

13

Table 1: Main operational and structural differences between the three types of networks hosting authoritative NSs

Key differences Legitimate NS non-flux networks Malicious NS flux networks Malicious NS non-flux networks

Number of A records Small Large Small

returned per NS

record request

TTL of NS records Long Short Long

Network distribution Small/medium number of distinct Large number of distinct Small number of distinct

of NSs networks or one network networks networks or one network

Geographical Small distances between Large distances between Small distances between

distribution of NSs NS locations NS locations NS locations

Co-hosted web services Small/medium to large number of Large number of malicious Small to large number of

 malicious web services that web services that are co-hosted malicious web services

 are co-hosted that are co-hosted

NS hosts High performance servers with Standard machines with variety Machines with low to medium

 longer uptimes and the same OS Operating Systems (OSs) performance, the same OS,

 and shorter uptimes and longer uptime

IP matching with hosts There should be no matching Large IP matching count Small to large IP

known to host blacklisted matching counts

malicious websites

Related Work

One of the two popular types of IP flux network services
that are often used by attackers to enhance the productivity
of their phishing services is NSIFNs. The other one, Fast
Flux Network Services (FFSNs), is the most widely used.
In FFSNs, attackers use compromised machines to act as
proxies for the real web servers hosting phishing websites.
These machines are frequently rotated, so blacklisting them
only prevents the front end of the networks supported by
the blacklisted machines from accessing the websites
hosted on the real servers but not the new machines. This
in turn prolongs the lifespan of the websites, which harms
users more. Our recent work, Nagunwa et al. (2022),
proposed an ML model to detect the hostnames of the
websites hosted in these networks using predictors based on
DNS and network characteristics.

However, the focus of this study is on the detection of
phishing hostnames hosted in NSIFNs. It is worth noting
that we found a small number of studies in this domain.
The reason could be that this type of flux is not as popular
as FFSNs to attackers and therefore to the cybersecurity
community. However, research has indicated that NSIFN
deployment is likely to rise in the future. Studies on this
type of flux can be divided into two categories: (1) Those
that investigate the existence and behaviors of NS flux
hostnames and their networks and (2) Those that propose
approaches for detecting malicious NS flux hostnames.
We will discuss them in that order.

The concept of NS IP flux was first defined by

Salusky and Danford (2008), who also looked into how

they operated and behaved. For at least a month, they

kept track of the A and NS records of known malicious

hostnames as well as the A records of their NSs. They

consequently discovered distinctive characteristics of

NSIFNs hosting the hostnames. High IP fluxing rates, IP

addresses drawn from larger numbers of unique

Autonomous Systems (ASs), and specific malicious

activities carried out on the websites being hosted are a

few of these. By infecting a honeypot with malware from

a flux network, they were able to research how infected

machines are recruited and then commanded by their

mothership to carry out malicious activities. The study

also suggested six various strategies for mitigating flux

networks Konte et al. (2009) investigated fluxing

behaviours of A records of malicious websites and the

names and A records of the authoritative NSs for the

zones these websites belong to. For a month, they took

3,360 hostnames out of spam emails and checked their

DNS records every 5 min. They extracted 500 of the

most popular websites from the Alexa ranking and kept

track of similar DNS records to compare with the

legitimate hostnames. While the NS records of the

legitimate websites did not change over time, the study

noticed that all three types of DNS records of the

malicious websites did. They created 21 clusters of

malicious campaigns by comparing how similar the

contents of malicious websites were. After that, the

study compared a number of dynamic aspects of the

infrastructures housing the specific malicious and

legitimate hostnames as well as the campaigns. The

aspects that were compared included the rate of change

of DNS records, the expansion rate of networks, the

location of DNS hierarchy changes, and the topological

and geographic distribution of hosts. To illustrate the NS

IP flux behaviour, Metcalf and Spring (2013) tracked NS

records of hostnames from a zone file of common

gTLDs and those from passive data from the Security

Information Exchange. Once per day, the NS records

were queried and their subsequent 28 days records were

gathered for examination. The number of changes of A

records of the NSs, the number of changes of

Asynchronous System Number (ASN) of NSs, and the

distribution patterns of TTLs of NS records were all

statistically analyzed in the study.

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

14

In the second category of the studies, Kadir et al. (2012)

proposed a k-NN classifier to detect hostnames with single

flux (the behaviour in which the A records of a website's

hostname change frequently) and double flux (the

behaviour in which the A records of a website's hostname

and its NS change frequently) using seven features. The

features were based on the number of A records for the

hostnames and NSs for the zones they are associated with,

as well as the rate at which those two records are changing.

They gathered their data over the course of 3 months by

monitoring DNS records of 500 legitimate and malicious

hostnames with known single flux behaviors every 12 h.

The results demonstrated that the classifier produced no

FPR or FNR. 182 of the 250 malicious hostnames were

classified as single flux while 68 were classified as double

flux. The study also identified various types of IP addresses

to NS mappings. By monitoring A and NS records of

50,030 malicious and legitimate hostnames for 6 months,
Pa et al. (2015) proposed an IP address and hostname

mapping technique to detect double flux hostnames. Three

criteria were used to map the records as detection features.

Single NS to many IP addresses, single IP address to many

NSs, and single IP address to both hostname and NS. Using

a threshold of 3 for each of the features to classify the NSs,

above 3 being the malicious one and below 3 being the

legitimate one, the technique was able to achieve a low FPR

of 0.8% in detecting NS flux hostnames. The studies

discussed above are tabulated in Table 2.

Detection of Phishing Name Server Flux Hostnames

Design Overview

The proposed approach uses supervised machine

learning to train and build a classifier that can distinguish

between legitimate and phishing NS non-flux hostnames

using features extracted at a single point in time

(instantaneous features). We observed the NS fluxing

behavior of the set of hostnames used to train the classifier

for an extended period of time in order to determine their

class labels. The main steps of the approach are shown in

Fig. 2 as follows:

Steps 1-2: Label the hostname classes of sets of known

phishing and legitimate websites based on

their NS fluxing behavior by monitoring the

A records of authoritative NSs

Steps 3-4: Extraction of instantaneous feature data. A

number of services are queried for each

website's hostname and the features are taken

out of the data that is returned to create the

training dataset

Steps 5-6: A suitable ML algorithm is trained on the

training dataset to create a classifier

Steps 7-8: The classifier predicts the class of a new

website based on the hostname's

instantaneous features

Table 2: A summary of studies related to the detection of malicious hostnames hosted in NSIFNs

Study Strengths Weaknesses

Salusky and Danford (2008) Provided empirical proof of the changing behaviour of An experimental approach to detect NSIFN

 the authoritative NSs' IP addresses for the monitored hosted websites was not presented

 malicious websites

 Investigated flux agents and identified their

 key characteristics

 Demonstrated how vulnerable machines are taken

 advantage of and enlisted to create NSIFNs.

 Suggested a number of methods for mitigating flux networks

Konte et al. (2009) Provided empirical data on the changes to malicious An experimental approach to detect NSIFN

 websites' A records, as well as the names and A records hosted websites was not presented

 of the websites' DNSs

 Examined and outlined different network behaviours,

 both of NSIFNs and non-NSIFNs, in relation to the types

 of malicious content they host

Metcalf and Spring (2013) Provided empirical proof of the changing behaviour of An experimental methodology to detect

 the authoritative NSs' IP addresses for the monitored websites that are hosted in NSIFNs

 malicious websites was not proposed

Kadir et al. (2012) To predict malicious websites hosted in single and The amount of data used was small

 double-flux NSIFNs, an ML model was proposed (consisting of only 500 websites)

 Zero errors were produced by the model High detection time (3 months)

Pa et al. (2015) Proposed a method for detecting malicious websites High detection time (6 months)

 hosted in double-flux NSIFNs by mapping IP addresses

 to hostnames

 Used a sizable dataset

 Low error rates were achieved by the model

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

15

Fig. 2: The architecture of our proposed approach: Building of a classifier (components 2-6), prediction of a new hostname

(components 7-8)

Monitoring of Records of NSs for Class Labelling

In order to label hostname classes for the model's

training, we monitored of changes in the IP addresses

of the authoritative NSs of 6,638 legitimate and 6,630

phishing websites. First, the legitimate and phishing

URLs were collected from Tranco's list of the 1 million

most popular websites and PhishTank's blacklist,

respectively. By requesting NS records from the public

NS (we used Google's DNS server), we were able to

find authoritative NSs (both primary and secondary)

for each URL's hostname. For a period of 3 months

(23rd of July to 27th of October 2020), A records for

each NS were queried and collected from the public NS

every 2 h. Our trial dataset, which showed that the

majority of NSs were changing their A records between

2 and 4 h intervals, guided our choice of a 2 h window.

The IP addresses returned in the consecutive queries of

the same NS were compared and the number of times a

change was observed throughout the period was

recorded. Figure 3 illustrates this process. Figure 4

depicts the distribution of IP address changes that were

noticed during the monitoring period, broken down by

NS type. 82.3% of legitimate hostname NSs

(hereinafter referred to as legitimate NSs) did not

change their IP addresses at all, 17.7% did so only once

to five times and none did so more than five times.

However, 31.6% of NSs for phishing hostnames (also

known as phishing NSs) were found to have their IP

addresses changed, with 5.4% changing their IP

addresses more than five times. In contrast to legitimate

NSs, some phishing NSs displayed numerous changes,

with the highest number seen being 826. This study

demonstrates that a significant number of phishing

websites are hosted in networks deploying NS IP fluxing.

We first had to decide on a threshold number of IP

address changes to distinguish between NS flux and

non-flux hostnames before we could label the hostname

classes for the classification tasks. Metcalf and Spring

(2013) assert that legitimate NSs are not intended to

display IP fluxing behavior, suggesting that changes in

their IP addresses are caused by other factors such as

routine server maintenance and network scaling. Due

to this, we chose 5 as the threshold, which represents

the maximum number of changes in legitimate NS we

could find in the data we collected from the NS

monitoring task described above. As a result, any

phishing hostname that had more than 5 IP changes in

NS was classified as a phishing NS flux hostname

otherwise it was a phishing NS non-flux hostname. All

legitimate hostnames were labeled as legitimate NS

non-flux hostnames.

Prediction Features

Based on the differences between the hostname’s

networks described, we propose 26 predictive features

divided into 6 categories that are likely to be helpful in

differentiating phishing NS flux hostnames from legitimate

and phishing NS non-flux hostnames. The features are

summarised in Table 3. The rest of the features are utilized

to address this problem for the first time, with the exception

of one feature (feature 11), which was used by Kadir et al.

(2012). Some of the important features of each category are

described in the subsections that follow.

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

16

Fig. 3: Monitoring of A records of NSs for hostname class labelling

Fig. 4: Distribution of counts observed IP address changes for authoritative NSs by NS type

Temporal Features

Round Trip Time (RTT): This is the average time it takes

for each NS to respond with an acknowledgement that

corresponds for the DNS query of the hostname of a particular

website. A traceroute command is used to calculate the time.

DNS response time: This is the amount of time it takes

for the DNS server to respond to a request for NS records.

Authoritative TTL for NS records: This is the

maximum amount of time allowed for caching NS records

for a hostname in the authoritative NS.

Spatial Features

Geographical and network distances: Using the

traceroute command, we find the IP addresses of

intermediate hops on the path to each NS of a given

hostname. Features 5 and 6 are then generated using the

hop IP addresses. An average geographic distance is

calculated to obtain feature 10 using the geographic

coordinates of a user's IP address and the NS hosts of a

hostname. We get the coordinates from the Geolite2

database maintained by MaxMind.

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

17

Table 3: A list of proposed features for predicting phishing NS IP flux hostnames

Feature # Category Feature name

 1 Temporal Average Round Trip Time (RTT)
 2 DNS response time for NS records
 3 Average uptime of NSs
 4 TTL of NS records
 5 Spatial Average number of hops between user and NSs
 6 Average number of unique hops’ countries between user and NSs
 7 Average number of unique hops’ continents between user and NSs
 8 Number of unique countries hosting the NSs
 9 Number of unique continents of NSs
10 Average geo-distance between user and NSs
11 DNS Average number of unique A records per NS per single lookup
12 Average number of co-hosted websites per NS
13 At least one NS with a dynamic IP address
14 Network Number of unique subnets of NSs
15 Number of unique networks of NSs
16 Number of unique ASNs of NSs
17 Number of unique AS organizations of NSs
18 Host Ratio of available (up) NSs
19 Number of unique OSs of NSs
20 The most common OS
21 Installed with a web server
22 At least one NS uses a proxy IP address
23 Reputation Total number of times IP addresses of all NSs of a hostname
 appear in a list of IP addresses of blacklisted phishing websites
24 Average number of times IP addresses of all NSs of a hostname
 appear in a list of IP addresses of blacklisted phishing websites
25 Ratio of NSs of a hostname whose IP addresses match with those
 of phishing websites that have been blacklisted
26 Registrar of NS records

DNS Features

Characteristics of Co-hosted Websites. We search for
websites that are co-hosted on a computer that is identified
by each NS of a hostname's IP address. Bing search
engine was used to conduct the search with the search
command "IP: W.X.Y.Z". We count the number of co-
hosted websites from the search results and extract their
URLs to generate feature 12.

Network Features

Network characteristics: In order to generate
features 14-17, we extract network identity data from
an IP geolocation database (IP2 location) for each IP
address of NSs of a given hostname. The data includes
the subnet, network, and Autonomous System Number
(ASN). For instance, for feature 14, the number of
distinct NS subnets per hostname is counted after
identifying the subnet of each NS.

Host Features

Upstate of hosts: Using a host scanning tool (Nmap),
we scan each NS of a given hostname to determine its
state of availability The ratio of NSs in the "up" state is
then calculated as feature 18.

Host’s operating system: We scan each NS of a given
hostname with Nmap to determine its Operating System
(OS). Then, as features 19 and 20, we count the number
of distinct OSs and also identify the most common OS
among NSs for each hostname.

Host’s webserver software: We check the response to
an HTTP header request to see if a web server software is
installed on each NS of a given hostname. Thus, feature
21 is generated.

Hosts with proxy IP addresses: We investigate into
whether at least one NS for a specific hostname is located
in a database of known public proxy IP addresses (we use
the IP2Proxy database). This generates feature 22.

Reputation Features

IP Addresses shared with other malicious hostnames:
To generate features 23-25, we identify IP addresses of
NSs of a given hostname that correspond to IP addresses
of blacklisted phishing URLs gathered over the past 3
months. For instance, in feature 23, we tally the total
number of IP addresses of all NSs of each hostname that
have matched in the database.

Domain registrar: To derive feature 26, we identify the
registrars of the NS records for the hostnames of websites.

Results

A number of experiments were run in order to develop
a prediction model that assesses the effectiveness of the
features in predicting phishing NS flux hostnames. First,
using flat and hierarchical classification techniques, we
designed three architectures for the model. We then
identified binary and multi-class classifiers building each
architecture. We ran two sets of experiments to assess the
prediction performance of each classifier for each

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

18

architecture. 8 traditional ML and 3 DL algorithms were
used in the first and second experiments, respectively. For
each classifier, the best set of features for the prediction
task was determined. The overall performance of each
architecture in predicting the flux hostnames was
calculated by combining the classifiers' individual
performances within each architecture. The best-
performing architecture for the model is finally
determined by comparing the performances of the various
architectures. The classifiers and the architectures were
evaluated using 8 common ML performance metrics. All
experiments were run using Python and Jupyter hosted on
Google’s Colab platform. The host machine was a
Windows 10 with 16 GB memory and Intel’s i7 CPU.

Binary and Multi-Class Classification Based

Architectures

Using flat and hierarchical classification techniques

(Kowsari et al., 2017; Silla and Freitas, 2011; Weiss, 2020),

3 architectures for our proposed prediction model were

taken into consideration for differentiating phishing NS

flux hostnames from phishing and legitimate NS non-flux

hostnames (Fig. 5a-c and Table 4). While the second

(Architecture Y) uses a binary classification to separate

phishing NS flux hostnames from the rest of the class as a

whole, the first (Architecture X) performs a single-step

three-class classification in which each hostname class is

distinguished individually. The third (Architecture Z) uses

a hierarchical approach to separate phishing hostnames

from legitimate hostnames first, followed by the separation

of phishing NS flux hostnames from phishing NS non-flux

hostnames. We implement the approach using a Local

Classifier per Parent Node (LCPN) technique (Silla and

Freitas, 2011). In this technique, a binary or multi-class

classifier is built at each parent node of the hierarchy to

categorize the parent's child nodes. The node classifiers are

trained using different datasets and selected features, which

results in different prediction performances. When a new

instance is predicted, it is predicted using a series of

classifiers, from top to bottom, where the outputs of the

parent classifiers are used as the inputs for the child

classifiers. The best-performing ML algorithm is

independently determined at each node using a selective

classifier approach.

Building Training Datasets

To create a training dataset, the features discussed

were taken from the labeled hostnames (discussed).

Classifiers X, Y, Z.1, and Z.1 were trained using the entire

dataset, as shown in Table 5, whereas classifier Z.2 had

all legitimate hostnames removed from the dataset.

 (a) (b)

 (c)

Fig. 5: (a) Architecture X (flat classification architecture); (b) Architecture Y (flat classification architecture); (c) Architecture Z

(hierarchical classification architecture)

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

19

Table 4: Classifiers that are useful for the prediction of phishing NS flux hostnames in each architecture

Classifier Classifier description Classification type

Classifier X Classifies hostnames into three classes: Legitimate NS non-flux Multi-class classification

 hostnames, phishing NS flux hostnames, and phishing NS non-flux hostnames

Classifier Y Classifies hostnames into two classes: Phishing NS flux hostnames Binary classification

 and other hostnames (combination of phishing NS non-flux hostnames

 and legitimate NS non-flux hostnames)

Classifier Z.1 Classifies hostnames into two classes: Phishing and legitimate hostnames Binary classification

Classifier Z.2 Classifies hostnames into two classes: Phishing NS flux and phishing

 NS non-flux hostnames

Table 5: Training dataset created for each classifier

Classifier Hostname class labels Class size Dataset size

Classifier X Phishing NS flux hostnames 326 13,268
 Phishing NS non-flux hostnames 6,304
 Legitimate NS non-flux hostnames 6,638
Classifier Y Phishing NS flux hostnames 326 13,268
 Other hostnames 12,942
Classifier Z.1 Phishing hostnames 6,630 13,268
 Legitimate hostnames 6,638
Classifier Z.2 Phishing NS flux hostnames 326 6,630
 Phishing NS non-flux hostnames 6,304

Prediction Results

The prediction performances of the classifiers are

reported using a variety of evaluation metrics. These include

Accuracy, False Positive Rate (FPR), False Negative Rate

(FNR), Precision, Recall, F1-score, ROC curve and Area

Under Curve (AUC) (Brownlee, 2014; 2018; Müller and

Guido, 2023). They are defined as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 / 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝐹𝑃𝑅 = 𝐹𝑃 / 𝐹𝑃 + 𝑇𝑁

𝐹𝑁𝑅 = 𝐹𝑁 / 𝐹𝑁 + 𝑇𝑃

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / 𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / 𝑇𝑃 + 𝐹𝑁

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 / 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The counts of True Positives (TP), False Positives

(FP), True Negatives (TN) and False Negatives (FN) are

used to calculate the performance metrics mentioned

above. Keep in mind that an instance is defined as TP if it

is positive and classified as such. It is FP if the instance is

negative but is classified as positive. A negative instance

classified as negative is TN and if it is classified as

positive, it is called FN. A positive instance of this

problem is the phishing NS flux hostname. In the

following subsections, we present and compare the results

of the classifiers for both ML and DL experiments.

Prediction Results of Traditional Machine Learning

Algorithms

Eight traditional ML algorithms, namely Logistic

Regression (LR), k-Nearest Neighbour (k-NN),

Decision Tree (DT), Naive Bayes (NB), Support Vector

Machine (SVM), Artificial Neural Network (ANN),

Random Forest (RF) and Gradient Boosting (GB), were

used to evaluate the proposed features (Brownlee, 2016;

Chauhan, 2020; Dickson, 2019; Donges, 2021;

JavaTpoint, 2021; Müller and Guido, 2023; Nicholson,

2019; Ray et al., 2017; VanderPlas, 2023; Yiu, 2019).

Other researchers have successfully applied these

algorithms to a variety of classification problems in

cybersecurity (Al-Garadi et al., 2018; Apruzzese et al.,

2018; Jiang and Li, 2017; Li, 2018; Xin et al., 2018).

First, the best predictive set of features for each

classifier was selected using the backward feature

elimination method (Sillipo and Maarit, 2019).

In order to identify the best-performing algorithm and

its best performance, we applied ML algorithms to the

best feature set for each classifier. The stratified cross-

validation technique (k-fold where k is 10) (Brownlee,

2023) was applied to the algorithms to obtain the average

scores. The best classifier was then tuned using a Random

Search method (Worcester, 2019) to achieve its optimal

performance. Figure 6 displays how well each classifier's

ML algorithms performed for all ROC curve threshold

values. The results of the four top-performing algorithms

for each classifier are presented in Tables 6a-b. The

findings show that in each classifier, RF produces the best

performance across the majority of metrics. Overall,

classifier Y’s RF produced the best performance, with the

tuned hyperparameters and their values listed in Table 6c.

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

20

Fig. 6: (a) Classifier X's ROC curves of the traditional ML algorithms; (b) Classifier Y's ROC curves of the traditional ML algorithms; (c) Classifier

Z.1's ROC curves of the traditional ML algorithms; (d) Classifier Z.2's ROC curves of the traditional ML algorithms

Table 6a: Prediction results of top four best-performing traditional ML algorithms for classifiers X and Y

 Classifier X Classifier Y

 -- --

Algorithm Acc. (%) FPR (%) FNR (%) F1-score Acc. (%) FPR (%) FNR (%) F1-score

KNN 84.29 9.34 16.31 0.85 97.21 2.56 9.50 0.98

DT 89.67 6.34 13.21 0.90 97.53 1.04 7.17 0.99

RF 90.41 5.92 12.41 0.90 98.59 0.76 5.29 0.99

GB 82.74 10.24 18.33 0.83 97.97 2.64 7.01 0.97

Table 6b: Prediction results of top four best performing traditional ML algorithms for classifiers Z.1 and Z.2

 Classifier Z.1 Classifier Z.2

 -- --

Algorithm Acc. (%) FPR (%) FNR (%) F1-score Acc. (%) FPR (%) FNR (%) F1- score

KNN 85.43 15.29 13.85 0.85 94.95 14.72 4.55 0.96

DT 86.52 12.93 14.03 0.87 96.52 23.31 2.46 0.97

RF 90.19 10.29 9.34 0.90 98.42 11.17 0.57 0.98

GB 86.67 13.77 12.88 0.87 96.89 19.94 2.24 0.97

Table 6c: Optimal RF hyperparameters’ values for classifier Y

Parameter Description Value

n_estimators Number of trees 800

max_features Max number of features considered for splitting a node Auto

max_depth Max number of levels in each decision tree 32

min_samples_split Min number of data points placed in a node before the node is split 5

min_samples_leaf Min number of data points allowed in a leaf node 2

bootstrap Method for sampling data points False

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

21

Prediction Results of Deep Learning Algorithms

In these experiments, we use the Fully Connected

feedforward Deep Neural Networks (FC-DNN), the Long

Short-Term Memory (LSTM) and the one-dimension

Convolutional Neural Network (1D CNN) to evaluate the

performance of the features (Al-Garadi et al., 2018;

Apruzzese et al., 2018; Berman et al., 2019; Dertat, 2017;

Kiranyaz et al., 2021; Moolayil, 2019; Nguyen, 2018; Phi,

2018; Verma, 2019). First, the datasets for LSTM and 1D

CNN were converted into time series (with time step = 1),

a standard input data format for the algorithms. The

Random Search method was then used to fine-tune the DL

algorithms. We first identified important tuning

hyperparameters and their wide range of values for

assessment (indicated in Table 7). We also attempted to

tune using multiple hidden layers, but we discovered that

only one hidden layer was necessary to produce the best

results for each algorithm. The performances were not

boosted by more layers. The classifiers were then built

using the determined optimal values of all the

hyperparameters. The results in Tables 8a-b demonstrate

that LSTM outperformed the other algorithms in

classifiers Y and Z.2, while FC-DNN performed best in

classifiers X and Z.1. Overall, LSTM in classifier Y

outperformed the other algorithms in all four classifiers,

achieving the best performance. The three network

architectures of the top-performing classifier (classifier

Y) and their tuned hyperparameters are shown as

examples in Figs. 7a-c.

Overall Prediction Results of the Architectures

We discovered that the tuned RF outperformed the

DL algorithms in all metrics by comparing the results of

the ML and DL algorithms for each classifier. Next, we

consider all the architectures proposed in section 5.1 to

identify the one that offers the best performance for

predicting the phishing NS flux hostnames. The overall

performances of the architectures were first assessed. In

order to achieve the overall accuracy at the leaf class (in

this case, the phishing NS flux hostname), we used the

method proposed by Kowsari et al. (2017), which takes

the accuracy of the child classifier as a fraction of the

accuracy of its parent classifier. We calculate the

misclassification errors at the leaf class by adding the

errors of the parent and child classifiers since the LCPN

hierarchical approach propagates misclassification

errors from top to bottom (Silla and Freitas, 2011). The

accuracy and error rates are calculated using the

following formulas:

Table 7: Hyperparameters values evaluated for tuning each DL algorithm

Hyperparameter Range of evaluated values

Number of neurons in dense layers of FC-DNN/ 10, 30, 50, 80, 100, 150, 200, 300, 400, 600, 800, 1000, 1200,
memory units in a hidden layer of LSTM/ filters in 1400, 1600, 1800, 2000, 2200, 2400, 2800, 3000
convolution layer of CNN
Activation functions optimization algorithms Relu, tanh, linear, soft plus, soft sign, softmax SGD, Adam,
 Adamax, Nadam, RMSprop, Adagrad, Adadelta
Learning rates 0.001, 0.01, 0.1, 0.2, 0.3
Kernel initializers Uniform, glorot_uniform, he_normal, he_uniform,
 lecun_uniform, normal, zero, glorot_normal
Dropout rates 0.1, 0.2, 0.3, 0.4, 0.5
Batches 15, 30, 50, 70, 90, 110, 130, 150
Epochs 10, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300

Table 8a: Prediction results of DL algorithms for classifiers X and Y

 Classifier X Classifier Y
 --- ---
Algorithm Acc. (%) FPR (%) FNR (%) F1-score Acc. (%) FPR (%) FNR (%) F1-score

FC-DNN 85.59 9.01 17.13 0.86 97.84 0.44 21.89 0.98
LSTM 81.94 11.59 26.09 0.82 98.51 0.25 16.60 0.98
CNN 74.39 16.74 28.23 0.74 98.40 0.42 21.49 0.98

Table 8b: Performance results of the evaluated DL algorithms for classifiers Z.1 and Z.2

 Classifier Z.1 Classifier Z.2

 -- ---

Algorithm Acc. (%) FPR (%) FNR (%) F1-score Acc. (%) FPR (%) FNR (%) F1-score

FC-DNN 86.43 12.20 15.55 0.86 95.77 0.89 23.01 0.96

LSTM 85.25 14.39 24.03 0.86 97.54 0.65 18.63 0.98

CNN 78.91 14.92 19.43 0.79 97.40 0.71 21.05 0.98

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

22

 (a)

 (b)

 (c)

Fig. 7: (a) FC-DNN architecture of classifier Y with the optimal hyperparameters’ values; (b) LSTM architecture of classifier Y with the optimal

hyperparameters’ values; (c) 1D CNN architecture of classifier Y with the optimal hyperparameters’ values

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

23

The best performance of each architecture is
summarized in Table 9. The RF performances of
classifiers Z.1 and Z.2 are combined for architecture Z
using the aforementioned formulas. Following
architecture X in terms of performance across all metrics
was architecture Y. As a result, we draw the conclusion
that architecture Y is the most effective one for
implementing the model

Analysis of Prediction Performance and Feature

Importance Ranking

The effectiveness of feature categories and specific

features on the best-performing classifier (classifier Y)
is examined in this section. Based on feature importance
weights, the feature selection method resulted in the
classifier's top 11 features (Fig. 8), all of which are third-
party-based and are being proposed for the first time for
this problem.

The most important feature is feature 21 (Table 3 for

feature numbers), which determines whether web server

software is installed on the NS hosts. According to the

data we gathered, Fig. 9a demonstrates that nearly 70% of

NS hosts of the phishing NS flux hostnames have web

servers installed, 40% of NS hosts of the phishing NS non-

flux hostnames, and less than 5% of NS hosts of the

legitimate NS non-flux hostnames. Even after combining

the two NS non-flux hostnames, their total percentage is

still less than half of the percentage in the NS flux

hostnames (Fig. 9b). Assuming equal numbers of samples

of each hostname type in the dataset, then if only this

feature is known, a hostname with a 'Yes' value is about

1.6 times more likely than not to be a phishing NS flux

hostname in the three-class case and about 3.3 times more

likely to be a phishing NS flux hostname in the two-class

case. In contrast to legitimate NSs, which are typically

hosted on dedicated servers, it is plausible that the

majority of NSs of phishing hostnames are co-hosted with

malicious websites. Attackers may have gained access to

a small percentage of legitimate NSs with web servers to

host their malicious web services. The average number of

websites that are co-hosted in a hostname's NS servers is

the second-ranked feature (feature 12). Its data

distributions in Figs. 10a-b, which show a correlation with

those in the prior feature, support our suspicion. We

believe attackers host multiple malicious websites in

addition to the NS application on their servers for two

reasons: (1) These websites expect to receive a lower

volume of user requests than the established legitimate

websites, which reduces the need for more computing

resources; and (2) Attackers prefer to use a small number

of resources to launch numerous attacks in order to

maximize their return of investment.

Table 9: Prediction performances of the architectures

Architecture Acc. (%) FPR (%) FNR (%) Classification type

X 90.41 5.92 12.41 Multi-class

Y 98.59 0.76 5.29 Binary

Z 88.76 21.46 9.91 Multi-class

Fig. 8: The ranking of best features of classifier Y by importance weights. Numbers in the brackets represent numbers of the features

as indicated in Table 2

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

24

(a)

(b)

Fig. 9: (a) Percentage of hostnames for each class whose NSs

have web servers installed; (b) Percentage of classifier Y

hostnames whose NSs are installed with web servers

(a)

(b)

Fig. 10: (a) Distribution of average counts of distinct websites
shared in the hostname’s NSs for each hostname
class; (b) Distribution of average counts of distinct
websites shared in the hostname’s NSs for the two
classes of hostnames in classifier Y

The average uptime of NS hosts of a hostname

(feature 3), which is ranked in the third position, is the

highest-ranked temporal feature. According to Fig. 11a data

distribution, the median uptime of the hosts of NSs for

phishing NS flux hostnames is higher than that of the other

classes but the distribution is much more concentrated at

low values. Very few phishing NS flux hostnames have

average uptimes above 5 million seconds while a sizeable

minority of other hostnames have uptimes above this value

and some exceed 30 million seconds. It appears that a

subject with a very low average uptime is probably a

legitimate NS non-flux hostname, one with a medium

average uptime is probably a phishing NS non-flux

hostname and one with a high average uptime is probably a

phishing NS flux hostname. The binary classification case

in Fig. 11b shows a similar pattern.

The fifth-ranked feature is the number of network hops

between a user and the NS hosts of the same hostname

(feature 5). Its data distribution in three and two class

classifications are shown in Figs. 12a-b, respectively.

Based on the median numbers and density distributions, NS

hosts for phishing NS flux hostnames are typically farther

away from the user in termas of network hops than those

for the other two classes of hostnames, with legitimate NS

non-flux hostnames having the lowest median number.

Other spatial features ranked at positions 4, 6, and 11 show

comparable patterns. Therefore, our data supports previous

studies that NS flux agents are more geographically

dispersed than NSs of non-flux networks. This is consistent

with the hypothesis that the malware in charge of the flux

networks infects vulnerable computers in a random

manner from a large number of networks.

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

25

(a)

(b)

Fig. 11: (a) Distribution of hostname NSs' average uptime for

each class; (b) Distribution of hostname NSs' average

uptime in classifier Y

(a)

(b)

Fig. 12: (a) The three hostname classes' respective averages for

the number of network hops between users and NS
hosts; (b) The two hostname classes' respective
averages for the number of network hops between users
and NS hosts in classifier Y

The only reputation-based feature in the ranking,

Registrar of NS Records (feature 26), is in eighth place.

Figures 13a-b, some of the registrars including

Namecheap Inc., R01, PDR Ltd, eName Technology Co.

Ltd, Dynadot LLC, and Internet Domain Service BS Corp

register a high proportion of NS records for both phishing

NS flux and non-flux hostnames. This implies that some

registrars take less stringent measures to verify record

owners at the time of registration and to keep an eye on

how the records are used, which makes it easier for

attackers to exploit their platforms.

The TTL of the NS Records feature (feature 4) is

ranked at position 10 in the list. The distributions of its

data are shown in Figs. 14a-b. While the majority of NS

non-flux hostnames have TTLs of 86400 and 3600 sec,

the majority of phishing NS flux hostnames have TTLs

of 600 sec followed by 86400 and 7200 sec. In order to

maintain the fluxing behavior of the NS networks, it is

expected that NS flux hostnames use short TTLs to make

sure that frequently changed NS records are returned to

users when they query from their authoritative NSs

instead of the cached records.

Additionally, the best feature subset of classifier Y's

composition and each feature category's performance

contribution were examined. A categorization is shown

in Table 10. The best feature set has the most temporal

and spatial-based features. While none of the network

features were included in the set, DNS, host, and

reputation-based features each contributed slightly less

than half of their proposed features. This is in line with

how well each category performs when run with the

tuned classifier Y shown in Fig. 15. The best accuracy,

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

26

the lowest FPR, and the second-lowest FNR were

produced by spatial features. While producing slightly

lower accuracies and FPRs than spatial features,

temporal and DNS features produced the highest FNRs.

Conversely, the reputation category yielded the lowest

accuracy and FNR but the highest FPR. None of the

categories produced the best performance across all

three metrics.

Fig. 13: (a) Distribution of NS record registrars among the three hostname classes; (b) Distribution of registrars of NS records of the

two classes of hostnames in classifier Y

Fig. 14: (a) TTL distribution for NS records for each of the three hostname classes; (b) TTL distribution for NS records for each of

the two hostname classes in classifier Y

Table 10: Composition of categories of classifier Y’s best feature set
 Best features #

Feature category Tally of full features Tally of best features (# from Table 5.12)

Temporal 4 3 1, 3, 4

Spatial 6 4 5, 6, 7, 10

DNS 3 1 12

Network 4 0 -

Host 5 2 20, 21

Reputation 4 1 26

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

27

(a)

(b)

Fig. 15: (a) Comparison of the classifier Y's feature category

accuracy rates; (b) Comparison of classifier Y's feature

category error rates

Detection Time

To evaluate the efficiency of our best classifier

(classifier Y) in identifying phishing NS flux hostnames

in real-time, the runtimes of its three phases (feature

extraction, dataset training, and prediction) were

measured (Table 11). The retrieval of feature data from

their sources accounts for the majority of the 5.1 sec

detection time (sum of the first two phases in Table 11).

The breakdown of times of activities for extracting the

best features is shown in Fig. 16. The strongest predictor,

an HTTP header request to check the presence of a web

server, takes the longest. The second longest time was

spent on host scanning using Nmap to extract uptime and

common OS features (at the third and ninth positions in

Fig. 8), while the quickest time was spent on NS records

queries to extract TTL (10th position). There is little room

for reducing the detection time by removing the least

significant features from the set because the strongest

predictors took the longest to extract. We also measured

the detection times for classifiers X and Z in a similar

manner and they were found to be 5.4 and 6.3 sec,

respectively. The reason for the slight variations in the

times between the three classifiers is primarily due to their

distinct sets of best features, which has an impact on the

overall time required to extract the features.

Model Evaluation Using New Data

Using a new dataset compiled over a distinct time

period, the performance consistency of the best classifier

was examined. Between January 10 and March 15, 2021,

a total of 1,413 legitimate and 1,398 phishing websites

were collected for the new testing dataset. When tested on

the new dataset, Classifier Y achieved accuracy rates of

97.18%, FPR rates of 1.85%, and FNR rates of 6.09%,

which are only marginally worse than those recorded with

the training dataset. The differences in accuracy, FPR, and

FNR were 1.41, 1.09 and 0.8%, respectively. In order to

learn more about the performance consistency of the

classifier, including whether it is caused by a change in

the strategies used by phishers over time, we intend to

carry out additional validation tests using additional new

datasets amassed in additional separate periods in the

future. Despite the variations, the testing results are still

acceptable and fall within the range reported in the

majority of works in the field of IP flux network detection.

Fig. 16: Distribution of feature extraction times by activities

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

28

Table 11: Classifier Y’s runtimes for the prediction of phishing

NS flux hostnames

Phase Time (s)

Feature extraction per webpage 5.0571

Prediction per webpage 0.0001

Detection time 5.0572

Training the dataset 11.0100

Discussion

Comparison with Related Works

In this section, we contrast our research with previous
studies that propose approaches for detecting phishing NS
flux hostnames. Only two such works, Kadir et al. (2012);
Pa et al. (2015), were found, as explained Key aspects of
the comparison are summed up in Table 12. The detection
time is the primary distinction between our work and the
other works. While the other two studies collected feature
data over longer periods of time, resulting in detection
times of 3 and 6 months respectively, our work used
feature data collected at a single point in time, yielding the
5.1 sec detection time. The other proposed approaches
give fluxing NSs under investigation sufficient time to
continue serving phishing websites and therefore not
suited for real-time detection.

The diversity of features used is the other difference.

While our work used 5 different feature categories, the other

two works only used DNS-based features for the prediction.

As we have previously noted, compared to using a large

number of categories, the use of a small number of feature

categories increases the risk of detection evasion. For

instance, the total number of NSs' unique IP addresses and

their fluxing rates throughout the observation period were

used as the features by Kadir et al. (2012). Some of the

legitimate NSs also change their IP addresses, as shown in

our data though at a lower rate than phishing NSs do. In order

to increase the error rates thus decreasing the effectiveness of

detection, the attacker may opt to reduce the fluxing rates

and/or the number of unique IP addresses of phishing NSs to

a range similar to those of legitimate NSs.

The time interval between consecutive DNS queries

for A records of NSs during the NS monitoring phase is

another notable difference. Kadir et al. (2012) queried the

A records once every 12 h, whereas Pa et al. (2015) did

not specify their time interval. The records used in our

study were monitored every 2 h for the reason outlined.

Our study is likely to have captured more precise

information about the NS fluxing behaviors due to our

shorter time interval than Kadir et al. (2012) work and

as a result, should be able to make better prediction.

Applications, Limitations and Future Work

Our proposed model has a number of applications.

Protecting users from visiting phishing websites whose

DNS records are hosted in fluxing NSs is one of the

applications. This can be done, for example, by

incorporating the model in a web browser or network

gateway application to filter out any phishing websites

that users are attempting to access. In an effort to

achieve a latency suitable for a potential real-time

application, the current detection time can be decreased

by extracting features concurrently rather than

sequentially (the current implementation). Before

extracting the rest of the features in parallel, the query

of NS records to identify names of NSs and then the

query of their A records to identify IP addresses would

have to be performed first. With this approach, the

detection time will drop to 2.1 sec, the longest time to

extract a feature, as indicated in Fig. 16. As

recommended by MachMetrics (2021), this time is

feasible for real-time protection of users.

Table 12: Comparison of some of the related works with our work

 Feature # and Data size Evaluation Detection
Work categories Classification type (URLs) algorithms time Performance

Kadir et al. 7 DNS Binary classification 500 k-NN 3 months FPR = 0%
(2012) features (NS IP flux hostnames FNR = 0%
 versus benign hostnames)
Pa et al. 3 DNS Binary classification 50,030 Mappings of IP 6 months FPR = 0.8%
(2015) features (NS IP flux hostnames and hostnames
 versus non-NS IP flux of NSs
 hostnames)
Our 3 temporals, Binary classification 13, 268 LR, k-NN, DT, 5.1 sec Acc = 98.59%
work 4 spatial, (phishing NS IP flux NB, SVM, ANN, FPR = 0.76%
 1 DNS, 2 host hostnames versus RF, GB, FC-DNN, FNR = 5.29%
 and 1 reputation phishing non-NS LSTM, 1D CNN Prec. = 0.99
 features IP flux hostnames) Recall = 0.98
 F1 = 0.99
 AUC = 0.99
 Multi-class classification 6.3 sec Acc = 90.41%
 (phishing NS IP flux FPR = 5.92%
 hostnames versus phishing FNR = 12.41%
 NS IP non-flux and legitimate
 NS IP non-flux hostnames)

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

29

Note that the Kadir et al. (2012) model, despite

having a lengthy detection time, produced no prediction

errors. Their model and ours can be used in parallel to

improve the overall prediction task by combining their

accurate detection with our model's fast detection

capability. In this approach, our model will provide

instant detection of most phishing NS flux hostnames

with a few errors while their model will provide a more

accurate detection in the long run. This will lessen the

number of phishing NS flux hostnames that our model

will misclassify and allow the hostnames to continue to

operate before being detected by the second model.

Our model can be used to build a blacklist of phishing

NS flux hostnames, as was mentioned in the introduction.

We are not aware of any blacklists of NS flux hostnames

that are currently in existence. In this manner, the model

would be fed with a continuous stream of hostnames from

different sources, including user emails, network traffic,

and databases of legitimate and phishing websites. The

blacklist would be updated to include hostnames

identified as phishing NS flux websites. The blacklist can

then be applied in a number of ways to offer end users

real-time protection. A web browser plug-in and a cloud

anti-malware suite with its clients installed at the end

users are two examples of such applications. For real-time

applications, a blacklist approach has shown to be

effective in other cybersecurity-related fields (Chen et al.,

2014; Kordestani and Shajari, 2013) fields. For further

research into phishing NSIFNs and the development of

various tools to address networks and the web services

they host, security researchers, vendors, and authorities

may find the blacklist to be a useful resource.

Lastly, classifier Z.2, which has produced a relatively

good performance, can serially be combined with a

model, such as that proposed by Nagunwa et al. (2020),

that distinguishes phishing websites from legitimate ones

with a high prediction performance. In this integration, the

latter would be used to first detect phishing websites and

the ones that were found would then be fed into the former

model to determine whether the inputs were phishing NS

flux hostnames or phishing NS non-flux hostnames. This

can be helpful when security professionals need to

differentiate between the two phishing hostnames in order

to implement the right countermeasures to the attacks at

the network level. For instance, for phishing NS flux

hostnames, this would require an approach described in

the introduction section. For phishing NS non-flux

hostnames, phishing NSs can be directly identified

through querying A records of NSs of the hostnames and

then blacklisting the returned IP addresses.

We argue that in addition to technological approaches,

effective mitigation of phishing attacks can be

accomplished by integrating non-technical strategies.

Having strict anti-phishing or cybercrime laws is one of

them. In response to the shortcomings of general criminal

laws in combating crimes in cyberspace, many nations

around the world have begun to adopt specific national

laws for cybercrimes (Mehta et al., 2022). The cross-

border nature of phishing attacks, however, may limit

individual countries' efforts to combat the attacks because

national laws may differ in their interpretations of

cybercrimes and their scope, resulting in varying degrees

of legal action against attackers. This might encourage

attackers to move their operations to nations with lax

laws. In order to address all types of cross-border

cybercrimes equally, we call for the establishment of

international cybercrime laws.

The main drawback of our model is that all 11 of its

best features came from third-party services. The

performance of the model could be significantly impacted

by the inability to connect to the services or by a lack of

the requested data. Our analysis of the data revealed that

8 of the 11 features had missing value percentages ranging

from 1.6-31%. Only one feature had 31% and one feature

also had the second-highest percentage (17.9%).

However, the data distribution of our dataset suggests that

under typical conditions, it is less likely to have many

features with high percentages of missing values. Even

with the missing values, our model was still able to

achieve a good performance.

Attackers may be able to combine different types of

fluxing behaviors, such as IP flux, domain flux, NS IP

flux, and NS name flux in the same network, as

observed by Salusky and Danford (2008); Kadir et al.

(2012); Yadav et al. (2012). In the future, we aim to

extend our work by investigating the extent to which

attackers use some or all of these behaviors

concurrently. Additionally, we intend to investigate

any potential approaches for detecting hostnames

hosted in domain flux and NS name flux.

A number of ML models have been shown to be

vulnerable to adversarial ML attacks in recent years, such

as those described in the MITRE Adversarial Threat

Landscape for Artificial-Intelligence Systems (ATLAS)

knowledge base (MITRE, 2021). Attackers can employ

these techniques to introduce corrupted data samples

into the training data or slightly tamper with some of

the benign training data samples in order to reduce the

classification rates of the models (Boesch, 2021;

Martins et al., 2020). It is advised that the developer

evaluate the model against these potential attacks through

various experiments in order to assess the confidence

level of a model in resisting the attacks. We aim to

undertake this evaluation for our proposed model.

Conclusion

An ML-based model for predicting phishing

hostnames hosted in NS flux networks has been proposed

in this study. The model is based on 11 features that are

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

30

all new to this problem and are divided into five

categories. Three model implementation architectures

based on binary and multi-class classification approaches

were proposed and evaluated using eight conventional

ML and three DL algorithms. The findings indicated that

the binary classification-based architecture, which

distinguishes phishing NS flux hostnames from legitimate

NS non-flux hostnames and phishing NS non-flux

hostnames combined as a single class, was the model's

most accurate architecture. The two-class classification-

based architecture was found to be more accurate than the

three-class multi-class classification-based architecture,

which is useful in identifying a particular hostname type

among the three hostnames.

Investigation into the importance of the proposed features

for prediction in the best-performing architecture revealed

that the strongest predictors are those in the spatial and

temporal categories, while network-related features have no

bearing on prediction. The proposed model has produced

high detection performance comparable to other similar

works in the literature, indicating that our novel features are

as effective as the existing ones. Our approach, in contrast to

the existing ones, has achieved fast detection for real-time

applications, has employed more diverse features to improve

resistance to detection evasions, and has approached the

problem as a three-class classification problem, providing a

more pragmatic solution to the problem. Additionally, the

results were reported using a broader range of performance

metrics, affirming the solution's reliability.

It is important to note that the nature of the dataset

used to train the model in this study has an impact on the

performance obtained. Attackers are likely to vary

configurations of their flux networks over time, which

could lead to variations in the efficacy of some detection

features and even the model itself. We believe that in

order to maintain a high level of detection performance, it

is crucial to continuously observe the behaviors of the flux

networks and re-evaluate the model using fresh datasets

that are collected on a regular basis.

Acknowledgment

I am appreciative of everyone who I had the

opportunity to collaborate with on this research paper.

Funding Information

This research was partly funded by Birmingham City

University in Birmingham, United Kingdom.

Ethics

I certify that this article has not already been published

somewhere else. No conflicts of interest are disclosed by

the authors.

References

Al-Garadi, M., Amr, M., Al-Ali, A., Du, X., & Guizani,

M. (2018). A survey of machine and deep learning

methods for Internet of Things (IoT) security. arXiv

preprint arXiv: 1807.11023.

https://doi.org/10.1109/COMST.2020.2988293

Apruzzese, G., Colajanni, M., Ferretti, L., Guido, A., &

Marchetti, M. (2018). On the effectiveness of machine

and deep learning for cyber security. 10th International

Conference on Cyber Conflict (CyCon), 29 May-1

June 2018, IEEE, Estonia, pp. 371-390.

 https://doi.org/10.23919/CYCON.2018.8405026

Berman, D., Buczak, A., Chavis, J., & Corbett, C. (2019).

A Survey of Deep Learning Methods for Cyber

Security. Information, 10(4): 122.

https://doi.org/10.3390/info10040122

Boesch, G., (2021). What Is Adversarial Machine Learning?

Attack Methods in (2021). Viso. https://viso.ai/deep-

learning/adversarial-machine-learning/

Brownlee, J. (2014). Classification Accuracy is Not

Enough: More Performance Measures You Can Use.

https://machinelearningmastery.com/classification-

accuracy-is-not-enough-more-performance-

measures-you-can-use

Brownlee, J. (2016). Logistic Regression for Machine

Learning. https://machinelearningmastery.com/logistic-

regression-for-machine-learning/

Brownlee, J. (2023). Machine Learning Mastery with

Python. Discover the fastest growing platform for

professional machine learning with step-by-step

tutorials and end-to-end projects.

https://machinelearningmastery.com/machine-

learning-with-python/

Brownlee, J. (2018). How to Use ROC Curves and

Precision-Recall Curves for Classification in Python.

Caglayan, A., Toothaker, M., Drapaeau, D., Burke, D., &

Eaton, G. (2010). Behavioral Patterns of Fast Flux

Service Networks. 43rd Hawaii International

Conference on System Sciences, pp: 1-9.

https://doi.org/10.1109/HICSS.2010.81

Chauhan, N. (2020). Decision tree algorithm, explained.

https://www.kdnuggets.com/2020/01/decision-tree-

algorithm-explained.html

Chen, Y. S., Yu, Y. H., Liu, H. S., & Wang, P. C. (2014,

August). Detect phishing by checking content

consistency. In Proceedings of the 2014 IEEE 15th

International Conference on Information Reuse and

Integration (IEEE IRI 2014) (pp. 109-119). IEEE.

https://doi.org/10.1109/IRI.2014.7051880

Dertat, A. (2017). Applied deep learning-part 4.

Convolutional Neural Networks. Towards Data

Science, 26.

https://towardsdatascience.com/applied-deep-learning-

part-4-convolutional-neural-networks-584bc134c1e2

https://doi.org/10.23919/CYCON.2018.8405026
https://doi.org/10.3390/info10040122
https://doi.org/10.1109/HICSS.2010.81
https://doi.org/10.1109/IRI.2014.7051880
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

31

Dickson, B. (2019). What are Artificial Neural Networks

(ANN)? https://bdtechtalks.com/2019/08/05/what-is-

artificial-neural-network-ann/

Donges, N. (2021). A complete guide to Random Forest

Algorithm.

https://builtin.com/data-science/random-forest-

algorithm

Gu, G., Porras, P. A., Yegneswaran, V., Fong, M. W., &

Lee, W. (2007, August). Bothunter: Detecting malware

infection through ids-driven dialog correlation.

In USENIX Security Symposium (Vol. 7, pp. 1-16).

https://doi.org/doi/10.5555/1362903.1362915
JavaTpoint. (2021). Decision tree classification

algorithm. https://www.javatpoint.com/machine-
learning-decision-tree-classification-algorithm

Jiang, C. B., & Li, J. S. (2017). Exploring Global IP-

Usage Patterns in Fast-Flux Service Networks. J.

Comput., 12(4), 371-379.
https://doi.org/10.17706/jcp.12.4.371-380

Kadir, A. F. A., Othman, R. A. R., & Aziz, N. A. (2012,
August). Behavioral analysis and visualization of
fast-flux DNS. In 2012 European Intelligence and
Security Informatics Conference (pp. 250-253).
IEEE. https://doi.org/10.1109/EISIC.2012.36

Khattak, S., Ahmed, Z., Syed, A. A., & Khayam, S. A.
(2015). BotFlex: A community-driven tool for
botnet detection. Journal of Network and
Computer Applications, 58: 144-154.

https://doi.org/10.1016/j.jnca.2015.10.002
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T.,

Gabbouj, M., & Inman, D. J. (2021). 1D
convolutional neural networks and applications: A
survey. Mechanical Systems and Signal Processing,
151: 107398.
https://doi.org/10.1016/j.ymssp.2020.107398

Konte, M., Feamster, N., & Jung, J. (2009). Dynamics of
online scam hosting infrastructure. Proc.
International Conference on Passive and Active
Network Measurement, Springer, pp. 219-228.
https://doi.org/10.1007/978-3-642-00975-4_22

Kordestani, H., & Shajari, M. (2013, May). An entice
resistant automatic phishing detection. In The 5th
Conference on Information and Knowledge
Technology (pp. 134-139). IEEE.

https://doi.org/10.1109/IKT.2013.6620052

Kowsari, K., Brown, D. E., Heidarysafa, M., Meimandi,

K. J., Gerber, M. S., & Barnes, L. E. (2017,

December). Hdltex: Hierarchical deep learning for

text classification. In 2017 16th IEEE International

Conference on Machine Learning and Applications

(ICMLA) (pp. 364-371). IEEE.

https://doi.org/10.1109/ICMLA.2017.0-134
Li, J. H. (2018). Cyber security meets artificial

intelligence: A survey. Frontiers of Information
Technology & Electronic Engineering, 19(12):
1462-1474.

https://doi.org/10.1631/FITEE.1800573

MachMetrics. (2021). Average Page Load Time in 2021.

https://machmetrics.com/speed-blog/average-page-

load-time-in-2021/

Martins, N., Cruz, J. M., Cruz, T., & Abreu, P. H. (2020).

Adversarial Machine Learning Applied to Intrusion

and Malware Scenarios: A Systematic Review IEEE

Access, 8: 35403-35419.

https://doi.org/10.1109/ACCESS.2020.2974752

Mehta, N., Sanghavi, P., Paliwal, M., & Shukla, M. (2022,

November). A Comprehensive Study on Cyber

Legislation in G20 Countries. In International

Conference on Advancements in Smart Computing

and Information Security (pp. 3-23). Cham: Springer

Nature Switzerland.

https://doi.org/10.1007/978-3-031-23095-0_1

Metcalf, L. B., & Spring, J. M. (2013). Passive Detection

of Misbehaving Name Servers. Carnegie-Mellon

Univ Pittsburgh Software Engineering Inst.

http://resources.sei.cmu.edu/asset_files/TechnicalRe

port/2013_005_001_65284.pdf

MITRE. (2021). MITRE Adversarial Threat Landscape

for Artificial-Intelligence Systems.

https://atlas.mitre.org/

Moolayil, J. (2019). Learn Keras for Deep Neural

Networks (1st Ed., 10.1007/978-1-4842-4240-7).

Apress, California, U.S.

https://doi.org/10.1007/978-1-4842-4240-7

Müller, A., & Guido, S. (2023). Introduction to Machine

Learning with Python (1st Ed.). O'Reilly Media,

California, U.S. ISBN: 10-9781449369897.

Nagunwa, T., Kearney, P., & Fouad, S. (2022). A machine

learning approach for detecting fast flux phishing

hostnames. Journal of Information Security and

Applications, 65, 103125.

https://doi.org/10.1016/j.jisa.2022.103125

Nagunwa, T., Naqvi, S., Fouad, S., & Shah, H. (2020). A

framework of new hybrid features for intelligent

detection of zero-hour phishing websites.

In International Joint Conference: 12th International

Conference on Computational Intelligence in Security

for Information Systems (CISIS 2019) and 10th

International Conference on European Transnational

Education (ICEUTE 2019) Seville, Spain, May 13th-

15th, 2019 Proceedings 12 (pp. 36-46). Springer

International Publishing.

https://doi.org/10.1007/978-3-030-20005-3_4

Nguyen, M. (2018). Illustrated Guide to LSTM’s and

GRU’s: A step by step explanation. Retrieved

September 10, 2019.

https://towardsdatascience.com/illustrated-guide-to-

lstms-and-gru-s-a-step-by-step-explanation-

44e9eb85bf21

Nicholson, C. (2019). A beginner's guide to neural

networks and deep learning. Retrieved January, 30,

2020. https://wiki.pathmind.com/neural-network

https://doi.org/10.1016/j.jnca.2015.10.002
https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.1007/978-3-642-00975-4_22
https://doi.org/10.1109/ICMLA.2017.0-134
https://doi.org/10.1631/FITEE.1800573
https://machmetrics.com/speed-blog/average-page-load-time-in-2021/
https://machmetrics.com/speed-blog/average-page-load-time-in-2021/
https://doi.org/10.1109/ACCESS.2020.2974752
https://doi.org/10.1007/978-3-031-23095-0_1
https://doi.org/10.1007/978-1-4842-4240-7
https://doi.org/10.1016/j.jisa.2022.103125
https://doi.org/10.1007/978-3-030-20005-3_4

Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32

DOI: 10.3844/jcssp.2024.10.32

32

Pa, Y. M. P., Yoshioka, K., & Matsumoto, T. (2015).

Detecting malicious domains and authoritative name

servers based on their distinct mappings to IP

addresses. Journal of Information Processing, 23(5),

623-632. https://doi.org/10.2197/ipsjjip.23.623

Phi, M. (2018). Illustrated Guide to LSTM’s and GRU’s:

A step by step explanation. Towards Data Science, 9.

https://towardsdatascience.com/illustrated-guide-to-

lstms-and-gru-s-a-step-by-step-explanation-

44e9eb85bf21

Ray, S., Bansal, S., Gupta, A., Gupta, D., & Shaikh, F.

(2017). Understanding Support Vector Machine

algorithm from examples (along with code).

Analytics Vidhya, 13, 19.

https://www.analyticsvidhya.com/blog/2017/09/und

erstaing-support-vector-machine-example-code/

Salusky, W., & Danford, R. (2008). Know your Enemy:

Fast-flux service networks. The Honeynet Project.

Silla, C. N., & Freitas, A. A. (2011). A survey of

hierarchical classification across different application

domains. Data Mining and Knowledge

Discovery, 22, 31-72.

https://doi.org/10.1007/s10618-010-0175-9

Sillipo, R. A., & Maarit, W. (2019). 3 New Techniques

for Data-Dimensionality Reduction in Machine

Learning. https://thenewstack.io/3-new-techniques-

for-data-dimensionality-reduction-in-machine-

learning/

Sophos. (2017). Don't take the bait Sophos.

https://www.cygnussystems.com/wp-

content/uploads/2017/08/dont-take-the-bait.pdf

VanderPlas, J. (2023). Python Data Science Handbook

(1st Ed.). O'Reilly Media.

https://ae.oreilly.com/Python_Data_Science_Handb

ook_ch1

Verma, S. (2019). Understanding 1d and 3d convolution

neural network| KERAS. Medium, Towards Data

Science, 1.

https://towardsdatascience.com/understanding-1d-

and-3d-convolution-neural-network-keras-

9d8f76e29610

Weiss, N. (2020). Hierarchical Classification with Local

Classifiers: Down the Rabbit Hole. Towards Data

Science Jan, 20.

Worcester, P. (2019). A comparison of grid search and

randomized search using scikit learn. Medium.

Noteworthy-the Journal Blog.

Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., ... &

Wang, C. (2018). Machine learning and deep

learning methods for cybersecurity. IEEE Access, 6,

35365-35381.

https://doi.org/10.1109/ACCESS.2018.2836950

Yadav, S., Reddy, A. K. K., Reddy, A. N., & Ranjan, S.

(2012). Detecting algorithmically generated domain-

flux attacks with DNS traffic analysis. IEEE/Acm

Transactions on Networking, 20(5), 1663-1677.

https://doi.org/10.1109/TNET.2012.2184552

 Yiu, T. (2019). Understanding random forest. Towards

Data Science, 1, 1-11.

https://towardsdatascience.com/understanding-

random-forest-58381e0602d2

https://doi.org/10.2197/ipsjjip.23.623
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1109/TNET.2012.2184552

