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Abstract: Attackers are increasingly using Name Server IP Flux Networks 

(NSIFNs) to run the domain name services of their phishing websites in order 

to extend the duration of their phishing operations. These networks host a 

name server that manages the Domain Name System (DNS) records of the 

websites on a network of compromised machines with frequently changing 

IP addresses. As a result, blacklisting the machines has less impact on 

stopping the services, lengthening their lifespan and that of the websites they 

support. High detection delays and the use of fewer, lesser varied detection 

features limit the proposed solutions for identifying the websites hosted in 

these networks, making them more susceptible to detection evasions. This 

study suggests a novel set of highly diverse features based on DNS, network, 

and host behaviors for fast and highly accurate detection of phishing websites 

hosted in NSIFNs using a Machine Learning (ML) approach. Using a variety 

of traditional and deep learning ML algorithms, the prediction performance 

of our features was assessed in the context of binary and multi-class 

classification tasks. Our approach achieved optimal accuracy rates of 98.59% 

and 90.41% for the binary and multi-class classification tasks, respectively. 

Our approach is a crucial step toward monitoring NSIFN components to 

mitigate phishing attacks efficiently. 

 

Keywords: Phishing Hostname, Name Server Flux Network, Machine 

Learning, Deep Learning, Flat and Hierarchical Classification 
 

Introduction  

Attackers commonly use legitimate or their own 

authoritative Name Servers (NSs) to keep DNS records of 

their malicious websites. These frequently consist of a 

single machine or a small network of machines with 

consistent IP addresses. This makes it simple to identify 

servers by their IP addresses and remove or blacklist 

malicious NS records to effectively shut down the services. 

Attackers are increasingly hosting the records on NSIFNs 

to avoid being blacklisted. In NSIFNs, the attacker-

controlled authoritative NS (also referred to as mothership) 

maintains DNS records for malicious websites. The 

attacker compromises and manages vulnerable machines 

(also known as flux agents) from different networks 

through the NS, which also serves as the network's 

command and control centre and utilizes them as proxies 

for user DNS requests. Blacklisting the machines does not 

effectively stop the domain name services because they are 

often replaced as new machines are compromised. As a 

result, the usage of NSIFNs makes it impossible to shut 

down the services, which makes it possible for the 

malicious websites' operations to continue and become 

more impactful. In order to effectively combat persistent 

malicious websites, an approach for detecting the websites 

hosted in these networks must be effective and efficient. 
This study aims to detect phishing-specific 

websites/hostnames hosted in NSIFNs (referred to in this 
study as phishing NS flux hostnames). This is due to the 
fact that phishing attacks are the leading cause of 
cybersecurity attacks worldwide. They are responsible 
for up to 91% of all data breaches worldwide (Sophos, 
2017). The number of global data breach incidents will 
be significantly reduced if users are prevented from 
visiting phishing websites. Furthermore, according to 
Caglayan et al. (2010), flux networks hosting various 
malicious web services, such as spam, malware, and 
phishing, differ significantly from one another in terms 
of DNS, host, and network-related characteristics, which 
are often used as a source of features for the detection. 
As a result, a solution that aims to detect all types of 
malicious web services hosted in an NSIFN is likely 
going to be less efficient than one that targets a particular 
web service in a dedicated NSIFN. 
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Building a blacklist of phishing NS flux hostnames to 

make it easier to monitor networks over the long term for 

their effective takedown is one of the potential uses of our 

approach. The blacklist can specifically be used by 

cybersecurity stakeholders such as Internet Service Providers 

(ISPs) and government organizations to continuously query 

NSs forming flux networks hosting phishing hostnames in 

order to investigate and monitor them. This will result in the 

identification of the legitimate networks that are hosting the 

NS flux agents that have been compromised, information 

that can be used to alert the network owners to find the 

compromised machines in their networks, clean them up, and 

take security measures to prevent the machines from 

becoming compromised again. Additionally, solutions such 

as Gu et al. (2007); Khattak et al. (2015) can be used at 

network gateways to track the motherships in order to 

blacklist them, thereby shutting down the entire 

infrastructure of the phishing campaigns. These solutions do 

this by monitoring data traffic between flux agents in the 

local networks and their external motherships. 

A few studies have proposed approaches for detecting 

malicious NS flux hostnames. For example, Kadir et al. 

(2012); Pa et al. (2015) tracked DNS-related traits of 

legitimate and malicious websites and their hosting 

networks for up to several months to find detection 

patterns. However, they are constrained by the following: 
 
 They rely solely on detection features that are based 

on DNS-related traits. Attackers may be able to evade 

detection by eluding the features using simple 

evasion techniques 

 Their monitoring (detection) period, which ranges 

from 3-6 months, is notably long for real-time 

detection. The time gives the malicious NSs the 

opportunity to keep giving malicious websites DNS 

services and do more harm before being detected 

 Their approaches detect all types of malicious 

hostnames hosted in NSIFNs. These are less likely to 

be able to detect hostnames that are phishing-

specific, as was already mentioned 

 Their detection abilities were not thoroughly validated 

by using a variety of performance metrics, such as 

precision, recall, and false negative rates. This limits 

our ability to assess the techniques' overall efficacy 
 

We propose a fast, highly accurate, and more 

detection evasion-resistant ML-based approach to 

detect phishing-specific NS flux hostnames to address 

the aforementioned shortcomings. The following are 

our contributions to this study: 
 
1. Our approach is designed to effectively detect 

phishing NS flux hostnames using a novel set of 

highly diverse features. The set consists of 11 

features across five distinct feature categories, all of 

which were derived from hosting networks' DNS, 

host, and network characteristics. This study is the 

first to propose all of the features 

2. The problem is formulated as both binary and multi-

class classification tasks to distinguish between 

legitimate and legitimate NS non-flux hostnames and 

phishing NS flux hostnames. The phishing NS flux 

hostnames are distinguished from the other 

hostnames combined into a single hostname class in 

the binary classification. In the multi-class 

classification, each of the three hostnames is 

identified separately, allowing the precise hostname 

type to be determined and providing more 

information to users for decision-making 

3. Using flat and hierarchical classification techniques, 

three implementation architectures of our prediction 

model are proposed with the goal of determining the 

architecture that offers the best prediction performance 

4. Compared to the related works, we use a larger 

number of different ML algorithms to evaluate the 

performance of the features. Conclusions about the 

overall efficacy of a feature set can be made by 

comparing the performance results from such a vast 

array of algorithms. Additionally, the performance 

was measured and reported using a larger variety of 

metrics to inform us of the all-around efficacy of the 

prediction model 

 

To our knowledge, this is the first study to analyze the 

problem as a three-class classification task, compare flat 

and hierarchical classification techniques, apply Deep 

Learning (DL) algorithms, and evaluate the features using 

both traditional ML and DL algorithms. 

Background of Name Server Flux and Non-Flux 

Networks 

According to studies by Salusky and Danford (2008); 

Konte et al. (2009); Kadir et al. (2012); Metcalf and Spring 

(2013); Pa et al. (2015), some of the authoritative NSs 

registering RRs of malicious web services display a fluxing 

behaviour in which their IP addresses change quickly. This 

phenomenon is known as NS IP Flux (NSIF). In NSIF 

Networks (NSIFNs), the NS infrastructure is made up of a 

mothership NS and several NSs that act as the network's 

flux agents. The latter serves as proxies to the mothership 

by sending NS queries to the mothership and returning the 

results to the DNS clients, while the former, which is owned 

and managed by an attacker, is the actual authoritative NS 

for one or more zones of malicious web services. The 

compromised machines, normally from widely dispersed 

networks on the internet, that are enlisted by Malwa are 

controlled by the attacker in the mothership are known as 

NS flux agents. The attacker registers the A records in the 

legitimate authoritative NS of a parent zone that maps 

hostnames to IP addresses of NS flux agents. When a DNS 
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client queries a series of NS records, the flux agents are 

quickly rotated (as illustrated in Fig. 1). Attackers 

frequently give the NS records a shorter Time to Live 

(TTL) in order to make this strategy possible. The 

motherships are rendered invisible to users and the 

attackers' tracks are obscured from forensic analysis by 

the use of flux agents as proxies. Therefore, tracking 

and blacklisting the flux agents does not stop the 

NSIFN because the mothership continuously 

compromises and employs new flux agents, prolonging 

the existence of malicious campaigns. The agents and 

the mothership are frequently utilized to host multiple 

malicious NSs and websites, similar to NSs in 

malicious NS non-flux networks. 

Flux agents typically come from a wide variety of distinct 

networks because the malware infection process for 

recruiting them is random. The majority of flux agents are 

compromised home and small office networks' Internet of 

Things (IoT) devices, which are often less secure and have 

numerous security flaws. Since a large portion of the flux 

agents are owned by private individuals and small 

businesses, their availability may change as equipment is 

turned off when not in use. Furthermore, when computers are 

cleaned of malware, agents might be lost from the NSIFN. 

Table 1 summarizes the expected operational and 

structural variations between the three categories of 

networks hosting authoritative NSs (i.e., malicious NS flux 

networks, malicious NS non-flux networks, and legitimate 

NS non-flux networks) based on the descriptions above. As 

described in the following sections, features for 

differentiating hostnames hosted in each of these networks 

will be derived from these variations. 

One of the two popular types of IP flux network services 

that are often used by attackers to enhance the productivity 

of their phishing services is NSIFNs. The other one, Fast 

Flux Network Services (FFSNs), is the most widely used. 

In FFSNs, attackers use compromised machines to act as 

proxies for the real web servers hosting phishing websites. 

These machines are frequently rotated, so blacklisting them 

only prevents the front end of the networks supported by 

the blacklisted machines from accessing the websites 

hosted on the real servers but not the new machines. This 

in turn prolongs the lifespan of the websites, which harms 

users more. In our recent work, Nagunwa et al. (2022) 

proposed an ML model to detect the hostnames of the 

websites hosted in these networks using predictors based on 

DNS and network characteristics. 
 

 
 

Fig. 1: The NSIFN architecture 
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Table 1: Main operational and structural differences between the three types of networks hosting authoritative NSs 

Key differences Legitimate NS non-flux networks Malicious NS flux networks Malicious NS non-flux networks 

Number of A records Small Large Small 

returned per NS  

record request 

TTL of NS records Long Short Long 

Network distribution Small/medium number of distinct Large number of distinct Small number of distinct 

of NSs networks or one network networks  networks or one network 

Geographical Small distances between Large distances between Small distances between 

distribution of NSs NS locations NS locations NS locations 

Co-hosted web services Small/medium to large number of Large number of malicious  Small to large number of 

 malicious web services that  web services that are co-hosted malicious web services 

 are co-hosted  that are co-hosted 

NS hosts High performance servers with  Standard machines with variety Machines with low to medium 

 longer uptimes and the same OS Operating Systems (OSs)  performance, the same OS, 

  and shorter uptimes and longer uptime 

IP matching with hosts There should be no matching Large IP matching count Small to large IP  

known to host blacklisted   matching counts 

malicious websites 

 

Related Work 

One of the two popular types of IP flux network services 
that are often used by attackers to enhance the productivity 
of their phishing services is NSIFNs. The other one, Fast 
Flux Network Services (FFSNs), is the most widely used. 
In FFSNs, attackers use compromised machines to act as 
proxies for the real web servers hosting phishing websites. 
These machines are frequently rotated, so blacklisting them 
only prevents the front end of the networks supported by 
the blacklisted machines from accessing the websites 
hosted on the real servers but not the new machines. This 
in turn prolongs the lifespan of the websites, which harms 
users more. Our recent work, Nagunwa et al. (2022), 
proposed an ML model to detect the hostnames of the 
websites hosted in these networks using predictors based on 
DNS and network characteristics. 

However, the focus of this study is on the detection of 
phishing hostnames hosted in NSIFNs. It is worth noting 
that we found a small number of studies in this domain. 
The reason could be that this type of flux is not as popular 
as FFSNs to attackers and therefore to the cybersecurity 
community. However, research has indicated that NSIFN 
deployment is likely to rise in the future. Studies on this 
type of flux can be divided into two categories: (1) Those 
that investigate the existence and behaviors of NS flux 
hostnames and their networks and (2) Those that propose 
approaches for detecting malicious NS flux hostnames. 
We will discuss them in that order. 

The concept of NS IP flux was first defined by 

Salusky and Danford (2008), who also looked into how 

they operated and behaved. For at least a month, they 

kept track of the A and NS records of known malicious 

hostnames as well as the A records of their NSs. They 

consequently discovered distinctive characteristics of 

NSIFNs hosting the hostnames. High IP fluxing rates, IP 

addresses drawn from larger numbers of unique 

Autonomous Systems (ASs), and specific malicious 

activities carried out on the websites being hosted are a 

few of these. By infecting a honeypot with malware from 

a flux network, they were able to research how infected 

machines are recruited and then commanded by their 

mothership to carry out malicious activities. The study 

also suggested six various strategies for mitigating flux 

networks Konte et al. (2009) investigated fluxing 

behaviours of A records of malicious websites and the 

names and A records of the authoritative NSs for the 

zones these websites belong to. For a month, they took 

3,360 hostnames out of spam emails and checked their 

DNS records every 5 min. They extracted 500 of the 

most popular websites from the Alexa ranking and kept 

track of similar DNS records to compare with the 

legitimate hostnames. While the NS records of the 

legitimate websites did not change over time, the study 

noticed that all three types of DNS records of the 

malicious websites did. They created 21 clusters of 

malicious campaigns by comparing how similar the 

contents of malicious websites were. After that, the 

study compared a number of dynamic aspects of the 

infrastructures housing the specific malicious and 

legitimate hostnames as well as the campaigns. The 

aspects that were compared included the rate of change 

of DNS records, the expansion rate of networks, the 

location of DNS hierarchy changes, and the topological 

and geographic distribution of hosts. To illustrate the NS 

IP flux behaviour, Metcalf and Spring (2013) tracked NS 

records of hostnames from a zone file of common 

gTLDs and those from passive data from the Security 

Information Exchange. Once per day, the NS records 

were queried and their subsequent 28 days records were 

gathered for examination. The number of changes of A 

records of the NSs, the number of changes of 

Asynchronous System Number (ASN) of NSs, and the 

distribution patterns of TTLs of NS records were all 

statistically analyzed in the study. 
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In the second category of the studies, Kadir et al. (2012) 

proposed a k-NN classifier to detect hostnames with single 

flux (the behaviour in which the A records of a website's 

hostname change frequently) and double flux (the 

behaviour in which the A records of a website's hostname 

and its NS change frequently) using seven features. The 

features were based on the number of A records for the 

hostnames and NSs for the zones they are associated with, 

as well as the rate at which those two records are changing. 

They gathered their data over the course of 3 months by 

monitoring DNS records of 500 legitimate and malicious 

hostnames with known single flux behaviors every 12 h. 

The results demonstrated that the classifier produced no 

FPR or FNR. 182 of the 250 malicious hostnames were 

classified as single flux while 68 were classified as double 

flux. The study also identified various types of IP addresses 

to NS mappings. By monitoring A and NS records of 

50,030 malicious and legitimate hostnames for 6 months, 
Pa et al. (2015) proposed an IP address and hostname 

mapping technique to detect double flux hostnames. Three 

criteria were used to map the records as detection features. 

Single NS to many IP addresses, single IP address to many 

NSs, and single IP address to both hostname and NS. Using 

a threshold of 3 for each of the features to classify the NSs, 

above 3 being the malicious one and below 3 being the 

legitimate one, the technique was able to achieve a low FPR 

of 0.8% in detecting NS flux hostnames. The studies 

discussed above are tabulated in Table 2. 

Detection of Phishing Name Server Flux Hostnames 

Design Overview 

The proposed approach uses supervised machine 

learning to train and build a classifier that can distinguish 

between legitimate and phishing NS non-flux hostnames 

using features extracted at a single point in time 

(instantaneous features). We observed the NS fluxing 

behavior of the set of hostnames used to train the classifier 

for an extended period of time in order to determine their 

class labels. The main steps of the approach are shown in 

Fig. 2 as follows: 

 

Steps 1-2: Label the hostname classes of sets of known 

phishing and legitimate websites based on 

their NS fluxing behavior by monitoring the 

A records of authoritative NSs  

Steps 3-4: Extraction of instantaneous feature data. A 

number of services are queried for each 

website's hostname and the features are taken 

out of the data that is returned to create the 

training dataset  

Steps 5-6: A suitable ML algorithm is trained on the 

training dataset to create a classifier 

Steps 7-8: The classifier predicts the class of a new 

website based on the hostname's 

instantaneous features

 
Table 2: A summary of studies related to the detection of malicious hostnames hosted in NSIFNs

Study Strengths Weaknesses 

Salusky and Danford (2008) Provided empirical proof of the changing behaviour of An experimental approach to detect NSIFN 

 the authoritative NSs' IP addresses for the monitored hosted websites was not presented  

 malicious websites 

 Investigated flux agents and identified their 

 key characteristics 

 Demonstrated how vulnerable machines are taken  

 advantage of and enlisted to create NSIFNs. 

 Suggested a number of methods for mitigating flux networks 

Konte et al. (2009) Provided empirical data on the changes to malicious An experimental approach to detect NSIFN 

 websites' A records, as well as the names and A records hosted websites was not presented 

 of the websites' DNSs 

 Examined and outlined different network behaviours, 

 both of NSIFNs and non-NSIFNs, in relation to the types  

 of malicious content they host  

Metcalf and Spring (2013) Provided empirical proof of the changing behaviour of An experimental methodology to detect  

 the authoritative NSs' IP addresses for the monitored websites that are hosted in NSIFNs  

 malicious websites was not proposed 

Kadir et al. (2012) To predict malicious websites hosted in single and  The amount of data used was small 

 double-flux NSIFNs, an ML model was proposed (consisting of only 500 websites) 

 Zero errors were produced by the model High detection time (3 months) 

Pa et al. (2015) Proposed a method for detecting malicious websites High detection time (6 months) 

 hosted in double-flux NSIFNs by mapping IP addresses  

 to hostnames 

 Used a sizable dataset 

 Low error rates were achieved by the model 
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Fig. 2: The architecture of our proposed approach: Building of a classifier (components 2-6), prediction of a new hostname 

(components 7-8) 

 

Monitoring of Records of NSs for Class Labelling 

In order to label hostname classes for the model's 

training, we monitored of changes in the IP addresses 

of the authoritative NSs of 6,638 legitimate and 6,630 

phishing websites. First, the legitimate and phishing 

URLs were collected from Tranco's list of the 1 million 

most popular websites and PhishTank's blacklist, 

respectively. By requesting NS records from the public 

NS (we used Google's DNS server), we were able to 

find authoritative NSs (both primary and secondary) 

for each URL's hostname. For a period of 3 months 

(23rd of July to 27th of October 2020), A records for 

each NS were queried and collected from the public NS 

every 2 h. Our trial dataset, which showed that the 

majority of NSs were changing their A records between 

2 and 4 h intervals, guided our choice of a 2 h window. 

The IP addresses returned in the consecutive queries of 

the same NS were compared and the number of times a 

change was observed throughout the period was 

recorded. Figure 3 illustrates this process. Figure 4 

depicts the distribution of IP address changes that were 

noticed during the monitoring period, broken down by 

NS type. 82.3% of legitimate hostname NSs 

(hereinafter referred to as legitimate NSs) did not 

change their IP addresses at all, 17.7% did so only once 

to five times and none did so more than five times. 

However, 31.6% of NSs for phishing hostnames (also 

known as phishing NSs) were found to have their IP 

addresses changed, with 5.4% changing their IP 

addresses more than five times. In contrast to legitimate 

NSs, some phishing NSs displayed numerous changes, 

with the highest number seen being 826. This study 

demonstrates that a significant number of phishing 

websites are hosted in networks deploying NS IP fluxing. 

We first had to decide on a threshold number of IP 

address changes to distinguish between NS flux and 

non-flux hostnames before we could label the hostname 

classes for the classification tasks. Metcalf and Spring 

(2013) assert that legitimate NSs are not intended to 

display IP fluxing behavior, suggesting that changes in 

their IP addresses are caused by other factors such as 

routine server maintenance and network scaling. Due 

to this, we chose 5 as the threshold, which represents 

the maximum number of changes in legitimate NS we 

could find in the data we collected from the NS 

monitoring task described above. As a result, any 

phishing hostname that had more than 5 IP changes in 

NS was classified as a phishing NS flux hostname 

otherwise it was a phishing NS non-flux hostname. All 

legitimate hostnames were labeled as legitimate NS 

non-flux hostnames. 

Prediction Features 

Based on the differences between the hostname’s 

networks described, we propose 26 predictive features 

divided into 6 categories that are likely to be helpful in 

differentiating phishing NS flux hostnames from legitimate 

and phishing NS non-flux hostnames. The features are 

summarised in Table 3. The rest of the features are utilized 

to address this problem for the first time, with the exception 

of one feature (feature 11), which was used by Kadir et al. 

(2012). Some of the important features of each category are 

described in the subsections that follow. 
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Fig. 3: Monitoring of A records of NSs for hostname class labelling 
 

 
 

Fig. 4: Distribution of counts observed IP address changes for authoritative NSs by NS type 
 

Temporal Features 

Round Trip Time (RTT): This is the average time it takes 

for each NS to respond with an acknowledgement that 

corresponds for the DNS query of the hostname of a particular 

website. A traceroute command is used to calculate the time. 

DNS response time: This is the amount of time it takes 

for the DNS server to respond to a request for NS records. 

Authoritative TTL for NS records: This is the 

maximum amount of time allowed for caching NS records 

for a hostname in the authoritative NS. 

Spatial Features 

Geographical and network distances: Using the 

traceroute command, we find the IP addresses of 

intermediate hops on the path to each NS of a given 

hostname. Features 5 and 6 are then generated using the 

hop IP addresses. An average geographic distance is 

calculated to obtain feature 10 using the geographic 

coordinates of a user's IP address and the NS hosts of a 

hostname. We get the coordinates from the Geolite2 

database maintained by MaxMind. 
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Table 3: A list of proposed features for predicting phishing NS IP flux hostnames  

Feature # Category Feature name 

  1 Temporal Average Round Trip Time (RTT) 
  2  DNS response time for NS records 
  3  Average uptime of NSs 
  4  TTL of NS records 
  5 Spatial Average number of hops between user and NSs 
  6  Average number of unique hops’ countries between user and NSs 
  7  Average number of unique hops’ continents between user and NSs 
  8  Number of unique countries hosting the NSs 
  9  Number of unique continents of NSs 
10  Average geo-distance between user and NSs 
11 DNS Average number of unique A records per NS per single lookup 
12  Average number of co-hosted websites per NS 
13  At least one NS with a dynamic IP address 
14 Network Number of unique subnets of NSs 
15  Number of unique networks of NSs 
16  Number of unique ASNs of NSs 
17  Number of unique AS organizations of NSs 
18 Host Ratio of available (up) NSs 
19  Number of unique OSs of NSs 
20  The most common OS 
21  Installed with a web server 
22  At least one NS uses a proxy IP address 
23 Reputation Total number of times IP addresses of all NSs of a hostname 
  appear in a list of IP addresses of blacklisted phishing websites  
24  Average number of times IP addresses of all NSs of a hostname  
  appear in a list of IP addresses of blacklisted phishing websites 
25  Ratio of NSs of a hostname whose IP addresses match with those 
  of phishing websites that have been blacklisted  
26  Registrar of NS records 
 

DNS Features 

Characteristics of Co-hosted Websites. We search for 
websites that are co-hosted on a computer that is identified 
by each NS of a hostname's IP address. Bing search 
engine was used to conduct the search with the search 
command "IP: W.X.Y.Z". We count the number of co-
hosted websites from the search results and extract their 
URLs to generate feature 12. 

Network Features 

Network characteristics: In order to generate 
features 14-17, we extract network identity data from 
an IP geolocation database (IP2 location) for each IP 
address of NSs of a given hostname. The data includes 
the subnet, network, and Autonomous System Number 
(ASN). For instance, for feature 14, the number of 
distinct NS subnets per hostname is counted after 
identifying the subnet of each NS.  

Host Features 

Upstate of hosts: Using a host scanning tool (Nmap), 
we scan each NS of a given hostname to determine its 
state of availability The ratio of NSs in the "up" state is 
then calculated as feature 18. 

Host’s operating system: We scan each NS of a given 
hostname with Nmap to determine its Operating System 
(OS). Then, as features 19 and 20, we count the number 
of distinct OSs and also identify the most common OS 
among NSs for each hostname. 

Host’s webserver software: We check the response to 
an HTTP header request to see if a web server software is 
installed on each NS of a given hostname. Thus, feature 
21 is generated. 

Hosts with proxy IP addresses: We investigate into 
whether at least one NS for a specific hostname is located 
in a database of known public proxy IP addresses (we use 
the IP2Proxy database). This generates feature 22. 

Reputation Features 

IP Addresses shared with other malicious hostnames: 
To generate features 23-25, we identify IP addresses of 
NSs of a given hostname that correspond to IP addresses 
of blacklisted phishing URLs gathered over the past 3 
months. For instance, in feature 23, we tally the total 
number of IP addresses of all NSs of each hostname that 
have matched in the database. 

Domain registrar: To derive feature 26, we identify the 
registrars of the NS records for the hostnames of websites. 

Results 

A number of experiments were run in order to develop 
a prediction model that assesses the effectiveness of the 
features in predicting phishing NS flux hostnames. First, 
using flat and hierarchical classification techniques, we 
designed three architectures for the model. We then 
identified binary and multi-class classifiers building each 
architecture. We ran two sets of experiments to assess the 
prediction performance of each classifier for each 
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architecture. 8 traditional ML and 3 DL algorithms were 
used in the first and second experiments, respectively. For 
each classifier, the best set of features for the prediction 
task was determined. The overall performance of each 
architecture in predicting the flux hostnames was 
calculated by combining the classifiers' individual 
performances within each architecture. The best-
performing architecture for the model is finally 
determined by comparing the performances of the various 
architectures. The classifiers and the architectures were 
evaluated using 8 common ML performance metrics. All 
experiments were run using Python and Jupyter hosted on 
Google’s Colab platform. The host machine was a 
Windows 10 with 16 GB memory and Intel’s i7 CPU. 

Binary and Multi-Class Classification Based 

Architectures 

Using flat and hierarchical classification techniques 

(Kowsari et al., 2017; Silla and Freitas, 2011; Weiss, 2020), 

3 architectures for our proposed prediction model were 

taken into consideration for differentiating phishing NS 

flux hostnames from phishing and legitimate NS non-flux 

hostnames (Fig. 5a-c and Table 4). While the second 

(Architecture Y) uses a binary classification to separate 

phishing NS flux hostnames from the rest of the class as a 

whole, the first (Architecture X) performs a single-step 

three-class classification in which each hostname class is 

distinguished individually. The third (Architecture Z) uses 

a hierarchical approach to separate phishing hostnames 

from legitimate hostnames first, followed by the separation 

of phishing NS flux hostnames from phishing NS non-flux 

hostnames. We implement the approach using a Local 

Classifier per Parent Node (LCPN) technique (Silla and 

Freitas, 2011). In this technique, a binary or multi-class 

classifier is built at each parent node of the hierarchy to 

categorize the parent's child nodes. The node classifiers are 

trained using different datasets and selected features, which 

results in different prediction performances. When a new 

instance is predicted, it is predicted using a series of 

classifiers, from top to bottom, where the outputs of the 

parent classifiers are used as the inputs for the child 

classifiers. The best-performing ML algorithm is 

independently determined at each node using a selective 

classifier approach. 

Building Training Datasets 

To create a training dataset, the features discussed 

were taken from the labeled hostnames (discussed). 

Classifiers X, Y, Z.1, and Z.1 were trained using the entire 

dataset, as shown in Table 5, whereas classifier Z.2 had 

all legitimate hostnames removed from the dataset. 
 

 
 (a) (b) 
 

 
 (c) 
 
Fig. 5: (a) Architecture X (flat classification architecture); (b) Architecture Y (flat classification architecture); (c) Architecture Z 

(hierarchical classification architecture) 
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Table 4: Classifiers that are useful for the prediction of phishing NS flux hostnames in each architecture 

Classifier Classifier description Classification type 

Classifier X Classifies hostnames into three classes: Legitimate NS non-flux  Multi-class classification 

 hostnames, phishing NS flux hostnames, and phishing NS non-flux hostnames 

Classifier Y Classifies hostnames into two classes: Phishing NS flux hostnames  Binary classification 

 and other hostnames (combination of phishing NS non-flux hostnames  

 and legitimate NS non-flux hostnames) 

Classifier Z.1 Classifies hostnames into two classes: Phishing and legitimate hostnames Binary classification  

Classifier Z.2 Classifies hostnames into two classes: Phishing NS flux and phishing  

 NS non-flux hostnames 

 

Table 5: Training dataset created for each classifier 

Classifier Hostname class labels Class size Dataset size 

Classifier X Phishing NS flux hostnames 326 13,268 
 Phishing NS non-flux hostnames 6,304  
 Legitimate NS non-flux hostnames 6,638  
Classifier Y Phishing NS flux hostnames 326 13,268 
 Other hostnames 12,942  
Classifier Z.1 Phishing hostnames 6,630 13,268 
 Legitimate hostnames 6,638  
Classifier Z.2 Phishing NS flux hostnames 326 6,630 
 Phishing NS non-flux hostnames 6,304 

 

Prediction Results  

The prediction performances of the classifiers are 

reported using a variety of evaluation metrics. These include 

Accuracy, False Positive Rate (FPR), False Negative Rate 

(FNR), Precision, Recall, F1-score, ROC curve and Area 

Under Curve (AUC) (Brownlee, 2014; 2018; Müller and 

Guido, 2023). They are defined as follows: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁 / 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

 

𝐹𝑃𝑅 =  𝐹𝑃 / 𝐹𝑃 + 𝑇𝑁 

 

𝐹𝑁𝑅 =  𝐹𝑁 / 𝐹𝑁 + 𝑇𝑃 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / 𝑇𝑃 + 𝐹𝑃 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / 𝑇𝑃 + 𝐹𝑁 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 / 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

 

The counts of True Positives (TP), False Positives 

(FP), True Negatives (TN) and False Negatives (FN) are 

used to calculate the performance metrics mentioned 

above. Keep in mind that an instance is defined as TP if it 

is positive and classified as such. It is FP if the instance is 

negative but is classified as positive. A negative instance 

classified as negative is TN and if it is classified as 

positive, it is called FN. A positive instance of this 

problem is the phishing NS flux hostname. In the 

following subsections, we present and compare the results 

of the classifiers for both ML and DL experiments. 

Prediction Results of Traditional Machine Learning 

Algorithms 

Eight traditional ML algorithms, namely Logistic 

Regression (LR), k-Nearest Neighbour (k-NN), 

Decision Tree (DT), Naive Bayes (NB), Support Vector 

Machine (SVM), Artificial Neural Network (ANN), 

Random Forest (RF) and Gradient Boosting (GB), were 

used to evaluate the proposed features (Brownlee, 2016; 

Chauhan, 2020; Dickson, 2019; Donges, 2021; 

JavaTpoint, 2021; Müller and Guido, 2023; Nicholson, 

2019; Ray et al., 2017; VanderPlas, 2023; Yiu, 2019). 

Other researchers have successfully applied these 

algorithms to a variety of classification problems in 

cybersecurity (Al-Garadi et al., 2018; Apruzzese et al., 

2018; Jiang and Li, 2017; Li, 2018; Xin et al., 2018). 

First, the best predictive set of features for each 

classifier was selected using the backward feature 

elimination method (Sillipo and Maarit, 2019). 

In order to identify the best-performing algorithm and 

its best performance, we applied ML algorithms to the 

best feature set for each classifier. The stratified cross-

validation technique (k-fold where k is 10) (Brownlee, 

2023) was applied to the algorithms to obtain the average 

scores. The best classifier was then tuned using a Random 

Search method (Worcester, 2019) to achieve its optimal 

performance. Figure 6 displays how well each classifier's 

ML algorithms performed for all ROC curve threshold 

values. The results of the four top-performing algorithms 

for each classifier are presented in Tables 6a-b. The 

findings show that in each classifier, RF produces the best 

performance across the majority of metrics. Overall, 

classifier Y’s RF produced the best performance, with the 

tuned hyperparameters and their values listed in Table 6c. 
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Fig. 6: (a) Classifier X's ROC curves of the traditional ML algorithms; (b) Classifier Y's ROC curves of the traditional ML algorithms; (c) Classifier 

Z.1's ROC curves of the traditional ML algorithms; (d) Classifier Z.2's ROC curves of the traditional ML algorithms 

 
Table 6a: Prediction results of top four best-performing traditional ML algorithms for classifiers X and Y 

  Classifier X    Classifier Y 

  --------------------------------------------------  -------------------------------------------- 

Algorithm Acc. (%) FPR (%) FNR (%) F1-score Acc. (%) FPR (%) FNR (%) F1-score 

KNN 84.29 9.34 16.31 0.85 97.21 2.56 9.50 0.98 

DT 89.67 6.34 13.21 0.90 97.53 1.04 7.17 0.99 

RF 90.41 5.92 12.41 0.90 98.59 0.76 5.29 0.99 

GB 82.74 10.24 18.33 0.83 97.97 2.64 7.01 0.97 

 
Table 6b: Prediction results of top four best performing traditional ML algorithms for classifiers Z.1 and Z.2 

  Classifier Z.1    Classifier Z.2 

  --------------------------------------------------  -------------------------------------------- 

Algorithm Acc. (%) FPR (%) FNR (%) F1-score Acc. (%) FPR (%) FNR (%) F1- score 

KNN 85.43 15.29 13.85 0.85 94.95 14.72 4.55 0.96 

DT 86.52 12.93 14.03 0.87 96.52 23.31 2.46 0.97 

RF 90.19 10.29 9.34 0.90 98.42 11.17 0.57 0.98 

GB 86.67 13.77 12.88 0.87 96.89 19.94 2.24 0.97 

 
Table 6c: Optimal RF hyperparameters’ values for classifier Y

Parameter Description Value 

n_estimators Number of trees  800 

max_features Max number of features considered for splitting a node Auto 

max_depth Max number of levels in each decision tree 32 

min_samples_split Min number of data points placed in a node before the node is split 5 

min_samples_leaf Min number of data points allowed in a leaf node 2 

bootstrap Method for sampling data points False 
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Prediction Results of Deep Learning Algorithms 

In these experiments, we use the Fully Connected 

feedforward Deep Neural Networks (FC-DNN), the Long 

Short-Term Memory (LSTM) and the one-dimension 

Convolutional Neural Network (1D CNN) to evaluate the 

performance of the features (Al-Garadi et al., 2018; 

Apruzzese et al., 2018; Berman et al., 2019; Dertat, 2017; 

Kiranyaz et al., 2021; Moolayil, 2019; Nguyen, 2018; Phi, 

2018; Verma, 2019). First, the datasets for LSTM and 1D 

CNN were converted into time series (with time step = 1), 

a standard input data format for the algorithms. The 

Random Search method was then used to fine-tune the DL 

algorithms. We first identified important tuning 

hyperparameters and their wide range of values for 

assessment (indicated in Table 7). We also attempted to 

tune using multiple hidden layers, but we discovered that 

only one hidden layer was necessary to produce the best 

results for each algorithm. The performances were not 

boosted by more layers. The classifiers were then built 

using the determined optimal values of all the 

hyperparameters. The results in Tables 8a-b demonstrate 

that LSTM outperformed the other algorithms in 

classifiers Y and Z.2, while FC-DNN performed best in 

classifiers X and Z.1. Overall, LSTM in classifier Y 

outperformed the other algorithms in all four classifiers, 

achieving the best performance. The three network 

architectures of the top-performing classifier (classifier 

Y) and their tuned hyperparameters are shown as 

examples in Figs. 7a-c. 

Overall Prediction Results of the Architectures 

We discovered that the tuned RF outperformed the 

DL algorithms in all metrics by comparing the results of 

the ML and DL algorithms for each classifier. Next, we 

consider all the architectures proposed in section 5.1 to 

identify the one that offers the best performance for 

predicting the phishing NS flux hostnames. The overall 

performances of the architectures were first assessed. In 

order to achieve the overall accuracy at the leaf class (in 

this case, the phishing NS flux hostname), we used the 

method proposed by Kowsari et al. (2017), which takes 

the accuracy of the child classifier as a fraction of the 

accuracy of its parent classifier. We calculate the 

misclassification errors at the leaf class by adding the 

errors of the parent and child classifiers since the LCPN 

hierarchical approach propagates misclassification 

errors from top to bottom (Silla and Freitas, 2011). The 

accuracy and error rates are calculated using the 

following formulas: 

 

 
 

 
 
Table 7: Hyperparameters values evaluated for tuning each DL algorithm 

Hyperparameter Range of evaluated values 

Number of neurons in dense layers of FC-DNN/ 10, 30, 50, 80, 100, 150, 200, 300, 400, 600, 800, 1000, 1200, 
memory units in a hidden layer of LSTM/ filters in  1400, 1600, 1800, 2000, 2200, 2400, 2800, 3000 
convolution layer of CNN 
Activation functions optimization algorithms Relu, tanh, linear, soft plus, soft sign, softmax SGD, Adam,  
 Adamax, Nadam, RMSprop, Adagrad, Adadelta 
Learning rates 0.001, 0.01, 0.1, 0.2, 0.3 
Kernel initializers Uniform, glorot_uniform, he_normal, he_uniform, 
 lecun_uniform, normal, zero, glorot_normal  
Dropout rates 0.1, 0.2, 0.3, 0.4, 0.5 
Batches 15, 30, 50, 70, 90, 110, 130, 150 
Epochs 10, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300 

 
Table 8a: Prediction results of DL algorithms for classifiers X and Y 

  Classifier X    Classifier Y 
  -----------------------------------------------  ------------------------------------------------- 
Algorithm Acc. (%) FPR (%) FNR (%) F1-score Acc. (%) FPR (%) FNR (%) F1-score 

FC-DNN 85.59 9.01 17.13 0.86 97.84 0.44 21.89 0.98 
LSTM 81.94 11.59 26.09 0.82 98.51 0.25 16.60 0.98 
CNN 74.39 16.74 28.23 0.74 98.40 0.42 21.49 0.98 

 
Table 8b: Performance results of the evaluated DL algorithms for classifiers Z.1 and Z.2 

  Classifier Z.1    Classifier Z.2 

  ----------------------------------------------  ------------------------------------------------- 

Algorithm Acc. (%) FPR (%) FNR (%) F1-score Acc. (%) FPR (%) FNR (%) F1-score 

FC-DNN 86.43 12.20 15.55 0.86 95.77 0.89 23.01 0.96 

LSTM 85.25 14.39 24.03 0.86 97.54 0.65 18.63 0.98 

CNN 78.91 14.92 19.43 0.79 97.40 0.71 21.05 0.98 
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 (a) 

 

 
 (b) 

 

 
 (c) 

 

Fig. 7: (a) FC-DNN architecture of classifier Y with the optimal hyperparameters’ values; (b) LSTM architecture of classifier Y with the optimal 

hyperparameters’ values; (c) 1D CNN architecture of classifier Y with the optimal hyperparameters’ values 
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The best performance of each architecture is 
summarized in Table 9. The RF performances of 
classifiers Z.1 and Z.2 are combined for architecture Z 
using the aforementioned formulas. Following 
architecture X in terms of performance across all metrics 
was architecture Y. As a result, we draw the conclusion 
that architecture Y is the most effective one for 
implementing the model 

Analysis of Prediction Performance and Feature 

Importance Ranking  

The effectiveness of feature categories and specific 

features on the best-performing classifier (classifier Y) 
is examined in this section. Based on feature importance 
weights, the feature selection method resulted in the 
classifier's top 11 features (Fig. 8), all of which are third-
party-based and are being proposed for the first time for 
this problem. 

The most important feature is feature 21 (Table 3 for 

feature numbers), which determines whether web server 

software is installed on the NS hosts. According to the 

data we gathered, Fig. 9a demonstrates that nearly 70% of 

NS hosts of the phishing NS flux hostnames have web 

servers installed, 40% of NS hosts of the phishing NS non-

flux hostnames, and less than 5% of NS hosts of the 

legitimate NS non-flux hostnames. Even after combining 

the two NS non-flux hostnames, their total percentage is 

still less than half of the percentage in the NS flux 

hostnames (Fig. 9b). Assuming equal numbers of samples 

of each hostname type in the dataset, then if only this 

feature is known, a hostname with a 'Yes' value is about 

1.6 times more likely than not to be a phishing NS flux 

hostname in the three-class case and about 3.3 times more 

likely to be a phishing NS flux hostname in the two-class 

case. In contrast to legitimate NSs, which are typically 

hosted on dedicated servers, it is plausible that the 

majority of NSs of phishing hostnames are co-hosted with 

malicious websites. Attackers may have gained access to 

a small percentage of legitimate NSs with web servers to 

host their malicious web services. The average number of 

websites that are co-hosted in a hostname's NS servers is 

the second-ranked feature (feature 12). Its data 

distributions in Figs. 10a-b, which show a correlation with 

those in the prior feature, support our suspicion. We 

believe attackers host multiple malicious websites in 

addition to the NS application on their servers for two 

reasons: (1) These websites expect to receive a lower 

volume of user requests than the established legitimate 

websites, which reduces the need for more computing 

resources; and (2) Attackers prefer to use a small number 

of resources to launch numerous attacks in order to 

maximize their return of investment. 
 
Table 9: Prediction performances of the architectures 

Architecture Acc. (%) FPR (%) FNR (%) Classification type 

X 90.41 5.92 12.41 Multi-class 

Y 98.59 0.76 5.29 Binary 

Z 88.76 21.46 9.91 Multi-class 

 

 

 
Fig. 8: The ranking of best features of classifier Y by importance weights. Numbers in the brackets represent numbers of the features 

as indicated in Table 2 
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(a) 

 

 
(b) 

 
Fig. 9: (a) Percentage of hostnames for each class whose NSs 

have web servers installed; (b) Percentage of classifier Y 

hostnames whose NSs are installed with web servers 
 

 
(a) 

 
(b) 

 

Fig. 10: (a) Distribution of average counts of distinct websites 
shared in the hostname’s NSs for each hostname 
class; (b) Distribution of average counts of distinct 
websites shared in the hostname’s NSs for the two 
classes of hostnames in classifier Y 

 

The average uptime of NS hosts of a hostname 

(feature 3), which is ranked in the third position, is the 

highest-ranked temporal feature. According to Fig. 11a data 

distribution, the median uptime of the hosts of NSs for 

phishing NS flux hostnames is higher than that of the other 

classes but the distribution is much more concentrated at 

low values. Very few phishing NS flux hostnames have 

average uptimes above 5 million seconds while a sizeable 

minority of other hostnames have uptimes above this value 

and some exceed 30 million seconds. It appears that a 

subject with a very low average uptime is probably a 

legitimate NS non-flux hostname, one with a medium 

average uptime is probably a phishing NS non-flux 

hostname and one with a high average uptime is probably a 

phishing NS flux hostname. The binary classification case 

in Fig. 11b shows a similar pattern. 

The fifth-ranked feature is the number of network hops 

between a user and the NS hosts of the same hostname 

(feature 5). Its data distribution in three and two class 

classifications are shown in Figs. 12a-b, respectively. 

Based on the median numbers and density distributions, NS 

hosts for phishing NS flux hostnames are typically farther 

away from the user in termas of network hops than those 

for the other two classes of hostnames, with legitimate NS 

non-flux hostnames having the lowest median number. 

Other spatial features ranked at positions 4, 6, and 11 show 

comparable patterns. Therefore, our data supports previous 

studies that NS flux agents are more geographically 

dispersed than NSs of non-flux networks. This is consistent 

with the hypothesis that the malware in charge of the flux 

networks infects vulnerable computers in a random 

manner from a large number of networks. 
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(a) 

 

 
(b) 

 

Fig. 11: (a) Distribution of hostname NSs' average uptime for 

each class; (b) Distribution of hostname NSs' average 

uptime in classifier Y 

 

 
(a) 

 
(b) 

 
Fig. 12: (a) The three hostname classes' respective averages for 

the number of network hops between users and NS 
hosts; (b) The two hostname classes' respective 
averages for the number of network hops between users 
and NS hosts in classifier Y 

 

The only reputation-based feature in the ranking, 

Registrar of NS Records (feature 26), is in eighth place. 

Figures 13a-b, some of the registrars including 

Namecheap Inc., R01, PDR Ltd, eName Technology Co. 

Ltd, Dynadot LLC, and Internet Domain Service BS Corp 

register a high proportion of NS records for both phishing 

NS flux and non-flux hostnames. This implies that some 

registrars take less stringent measures to verify record 

owners at the time of registration and to keep an eye on 

how the records are used, which makes it easier for 

attackers to exploit their platforms. 

The TTL of the NS Records feature (feature 4) is 

ranked at position 10 in the list. The distributions of its 

data are shown in Figs. 14a-b. While the majority of NS 

non-flux hostnames have TTLs of 86400 and 3600 sec, 

the majority of phishing NS flux hostnames have TTLs 

of 600 sec followed by 86400 and 7200 sec. In order to 

maintain the fluxing behavior of the NS networks, it is 

expected that NS flux hostnames use short TTLs to make 

sure that frequently changed NS records are returned to 

users when they query from their authoritative NSs 

instead of the cached records.  

Additionally, the best feature subset of classifier Y's 

composition and each feature category's performance 

contribution were examined. A categorization is shown 

in Table 10. The best feature set has the most temporal 

and spatial-based features. While none of the network 

features were included in the set, DNS, host, and 

reputation-based features each contributed slightly less 

than half of their proposed features. This is in line with 

how well each category performs when run with the 

tuned classifier Y shown in Fig. 15. The best accuracy, 
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the lowest FPR, and the second-lowest FNR were 

produced by spatial features. While producing slightly 

lower accuracies and FPRs than spatial features, 

temporal and DNS features produced the highest FNRs. 

Conversely, the reputation category yielded the lowest 

accuracy and FNR but the highest FPR. None of the 

categories produced the best performance across all 

three metrics. 

 

 
 

Fig. 13: (a) Distribution of NS record registrars among the three hostname classes; (b) Distribution of registrars of NS records of the 

two classes of hostnames in classifier Y 

 

 
 
Fig. 14: (a) TTL distribution for NS records for each of the three hostname classes; (b) TTL distribution for NS records for each of 

the two hostname classes in classifier Y 
 

Table 10: Composition of categories of classifier Y’s best feature set 
   Best features # 

Feature category Tally of full features Tally of best features (# from Table 5.12) 

Temporal 4 3 1, 3, 4 

Spatial 6 4 5, 6, 7, 10 

DNS 3 1 12 

Network 4 0 - 

Host 5 2 20, 21 

Reputation 4 1 26 
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(a) 

 

 
(b) 

 
Fig. 15: (a) Comparison of the classifier Y's feature category 

accuracy rates; (b) Comparison of classifier Y's feature 

category error rates 

 

Detection Time 

To evaluate the efficiency of our best classifier 

(classifier Y) in identifying phishing NS flux hostnames 

in real-time, the runtimes of its three phases (feature 

extraction, dataset training, and prediction) were 

measured (Table 11). The retrieval of feature data from 

their sources accounts for the majority of the 5.1 sec 

detection time (sum of the first two phases in Table 11). 

The breakdown of times of activities for extracting the 

best features is shown in Fig. 16. The strongest predictor, 

an HTTP header request to check the presence of a web 

server, takes the longest. The second longest time was 

spent on host scanning using Nmap to extract uptime and 

common OS features (at the third and ninth positions in 

Fig. 8), while the quickest time was spent on NS records 

queries to extract TTL (10th position). There is little room 

for reducing the detection time by removing the least 

significant features from the set because the strongest 

predictors took the longest to extract. We also measured 

the detection times for classifiers X and Z in a similar 

manner and they were found to be 5.4 and 6.3 sec, 

respectively. The reason for the slight variations in the 

times between the three classifiers is primarily due to their 

distinct sets of best features, which has an impact on the 

overall time required to extract the features. 

Model Evaluation Using New Data 

Using a new dataset compiled over a distinct time 

period, the performance consistency of the best classifier 

was examined. Between January 10 and March 15, 2021, 

a total of 1,413 legitimate and 1,398 phishing websites 

were collected for the new testing dataset. When tested on 

the new dataset, Classifier Y achieved accuracy rates of 

97.18%, FPR rates of 1.85%, and FNR rates of 6.09%, 

which are only marginally worse than those recorded with 

the training dataset. The differences in accuracy, FPR, and 

FNR were 1.41, 1.09 and 0.8%, respectively. In order to 

learn more about the performance consistency of the 

classifier, including whether it is caused by a change in 

the strategies used by phishers over time, we intend to 

carry out additional validation tests using additional new 

datasets amassed in additional separate periods in the 

future. Despite the variations, the testing results are still 

acceptable and fall within the range reported in the 

majority of works in the field of IP flux network detection. 

 

 
 

Fig. 16: Distribution of feature extraction times by activities 
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Table 11: Classifier Y’s runtimes for the prediction of phishing 

NS flux hostnames 

Phase Time (s) 

Feature extraction per webpage 5.0571 

Prediction per webpage 0.0001 

Detection time 5.0572 

Training the dataset 11.0100 
 

Discussion 

Comparison with Related Works 

In this section, we contrast our research with previous 
studies that propose approaches for detecting phishing NS 
flux hostnames. Only two such works, Kadir et al. (2012); 
Pa et al. (2015), were found, as explained Key aspects of 
the comparison are summed up in Table 12. The detection 
time is the primary distinction between our work and the 
other works. While the other two studies collected feature 
data over longer periods of time, resulting in detection 
times of 3 and 6 months respectively, our work used 
feature data collected at a single point in time, yielding the 
5.1 sec detection time. The other proposed approaches 
give fluxing NSs under investigation sufficient time to 
continue serving phishing websites and therefore not 
suited for real-time detection. 

The diversity of features used is the other difference. 

While our work used 5 different feature categories, the other 

two works only used DNS-based features for the prediction. 

As we have previously noted, compared to using a large 

number of categories, the use of a small number of feature 

categories increases the risk of detection evasion. For 

instance, the total number of NSs' unique IP addresses and 

their fluxing rates throughout the observation period were 

used as the features by Kadir et al. (2012). Some of the 

legitimate NSs also change their IP addresses, as shown in 

our data though at a lower rate than phishing NSs do. In order 

to increase the error rates thus decreasing the effectiveness of 

detection, the attacker may opt to reduce the fluxing rates 

and/or the number of unique IP addresses of phishing NSs to 

a range similar to those of legitimate NSs. 

The time interval between consecutive DNS queries 

for A records of NSs during the NS monitoring phase is 

another notable difference. Kadir et al. (2012) queried the 

A records once every 12 h, whereas Pa et al. (2015) did 

not specify their time interval. The records used in our 

study were monitored every 2 h for the reason outlined. 

Our study is likely to have captured more precise 

information about the NS fluxing behaviors due to our 

shorter time interval than Kadir et al. (2012) work and 

as a result, should be able to make better prediction. 

Applications, Limitations and Future Work 

Our proposed model has a number of applications. 

Protecting users from visiting phishing websites whose 

DNS records are hosted in fluxing NSs is one of the 

applications. This can be done, for example, by 

incorporating the model in a web browser or network 

gateway application to filter out any phishing websites 

that users are attempting to access. In an effort to 

achieve a latency suitable for a potential real-time 

application, the current detection time can be decreased 

by extracting features concurrently rather than 

sequentially (the current implementation). Before 

extracting the rest of the features in parallel, the query 

of NS records to identify names of NSs and then the 

query of their A records to identify IP addresses would 

have to be performed first. With this approach, the 

detection time will drop to 2.1 sec, the longest time to 

extract a feature, as indicated in Fig. 16. As 

recommended by MachMetrics (2021), this time is 

feasible for real-time protection of users. 
 
Table 12: Comparison of some of the related works with our work 

 Feature # and   Data size Evaluation Detection 
Work categories Classification type (URLs) algorithms time Performance 

Kadir et al. 7 DNS Binary classification 500 k-NN 3 months FPR = 0% 
(2012) features (NS IP flux hostnames     FNR = 0% 
  versus benign hostnames)    
Pa et al.  3 DNS Binary classification 50,030 Mappings of IP 6 months FPR = 0.8% 
(2015) features (NS IP flux hostnames   and hostnames 
  versus non-NS IP flux  of NSs  
  hostnames) 
Our  3 temporals, Binary classification 13, 268 LR, k-NN, DT, 5.1 sec Acc = 98.59% 
work 4 spatial, (phishing NS IP flux   NB, SVM, ANN,  FPR = 0.76% 
 1 DNS, 2 host hostnames versus   RF, GB, FC-DNN,  FNR = 5.29% 
 and 1 reputation phishing non-NS   LSTM, 1D CNN  Prec. = 0.99 
 features IP flux hostnames)    Recall = 0.98 
      F1 = 0.99 
      AUC = 0.99 
  Multi-class classification   6.3 sec Acc = 90.41%  
  (phishing NS IP flux    FPR = 5.92%  
  hostnames versus phishing     FNR = 12.41% 
  NS IP non-flux and legitimate  
  NS IP non-flux hostnames) 



Thomas Nagunwa / Journal of Computer Science 2024, 20 (1): 10.32 

DOI: 10.3844/jcssp.2024.10.32 

 

29 

Note that the Kadir et al. (2012) model, despite 

having a lengthy detection time, produced no prediction 

errors. Their model and ours can be used in parallel to 

improve the overall prediction task by combining their 

accurate detection with our model's fast detection 

capability. In this approach, our model will provide 

instant detection of most phishing NS flux hostnames 

with a few errors while their model will provide a more 

accurate detection in the long run. This will lessen the 

number of phishing NS flux hostnames that our model 

will misclassify and allow the hostnames to continue to 

operate before being detected by the second model. 

Our model can be used to build a blacklist of phishing 

NS flux hostnames, as was mentioned in the introduction. 

We are not aware of any blacklists of NS flux hostnames 

that are currently in existence. In this manner, the model 

would be fed with a continuous stream of hostnames from 

different sources, including user emails, network traffic, 

and databases of legitimate and phishing websites. The 

blacklist would be updated to include hostnames 

identified as phishing NS flux websites. The blacklist can 

then be applied in a number of ways to offer end users 

real-time protection. A web browser plug-in and a cloud 

anti-malware suite with its clients installed at the end 

users are two examples of such applications. For real-time 

applications, a blacklist approach has shown to be 

effective in other cybersecurity-related fields (Chen et al., 

2014; Kordestani and Shajari, 2013) fields. For further 

research into phishing NSIFNs and the development of 

various tools to address networks and the web services 

they host, security researchers, vendors, and authorities 

may find the blacklist to be a useful resource. 

Lastly, classifier Z.2, which has produced a relatively 

good performance, can serially be combined with a 

model, such as that proposed by Nagunwa et al. (2020), 

that distinguishes phishing websites from legitimate ones 

with a high prediction performance. In this integration, the 

latter would be used to first detect phishing websites and 

the ones that were found would then be fed into the former 

model to determine whether the inputs were phishing NS 

flux hostnames or phishing NS non-flux hostnames. This 

can be helpful when security professionals need to 

differentiate between the two phishing hostnames in order 

to implement the right countermeasures to the attacks at 

the network level. For instance, for phishing NS flux 

hostnames, this would require an approach described in 

the introduction section. For phishing NS non-flux 

hostnames, phishing NSs can be directly identified 

through querying A records of NSs of the hostnames and 

then blacklisting the returned IP addresses. 

We argue that in addition to technological approaches, 

effective mitigation of phishing attacks can be 

accomplished by integrating non-technical strategies. 

Having strict anti-phishing or cybercrime laws is one of 

them. In response to the shortcomings of general criminal 

laws in combating crimes in cyberspace, many nations 

around the world have begun to adopt specific national 

laws for cybercrimes (Mehta et al., 2022). The cross-

border nature of phishing attacks, however, may limit 

individual countries' efforts to combat the attacks because 

national laws may differ in their interpretations of 

cybercrimes and their scope, resulting in varying degrees 

of legal action against attackers. This might encourage 

attackers to move their operations to nations with lax 

laws. In order to address all types of cross-border 

cybercrimes equally, we call for the establishment of 

international cybercrime laws. 

The main drawback of our model is that all 11 of its 

best features came from third-party services. The 

performance of the model could be significantly impacted 

by the inability to connect to the services or by a lack of 

the requested data. Our analysis of the data revealed that 

8 of the 11 features had missing value percentages ranging 

from 1.6-31%. Only one feature had 31% and one feature 

also had the second-highest percentage (17.9%). 

However, the data distribution of our dataset suggests that 

under typical conditions, it is less likely to have many 

features with high percentages of missing values. Even 

with the missing values, our model was still able to 

achieve a good performance. 

Attackers may be able to combine different types of 

fluxing behaviors, such as IP flux, domain flux, NS IP 

flux, and NS name flux in the same network, as 

observed by Salusky and Danford (2008); Kadir et al. 

(2012); Yadav et al. (2012). In the future, we aim to 

extend our work by investigating the extent to which 

attackers use some or all of these behaviors 

concurrently. Additionally, we intend to investigate 

any potential approaches for detecting hostnames 

hosted in domain flux and NS name flux.  

A number of ML models have been shown to be 

vulnerable to adversarial ML attacks in recent years, such 

as those described in the MITRE Adversarial Threat 

Landscape for Artificial-Intelligence Systems (ATLAS) 

knowledge base (MITRE, 2021). Attackers can employ 

these techniques to introduce corrupted data samples 

into the training data or slightly tamper with some of 

the benign training data samples in order to reduce the 

classification rates of the models (Boesch, 2021; 

Martins et al., 2020). It is advised that the developer 

evaluate the model against these potential attacks through 

various experiments in order to assess the confidence 

level of a model in resisting the attacks. We aim to 

undertake this evaluation for our proposed model. 

Conclusion  

An ML-based model for predicting phishing 

hostnames hosted in NS flux networks has been proposed 

in this study. The model is based on 11 features that are 
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all new to this problem and are divided into five 

categories. Three model implementation architectures 

based on binary and multi-class classification approaches 

were proposed and evaluated using eight conventional 

ML and three DL algorithms. The findings indicated that 

the binary classification-based architecture, which 

distinguishes phishing NS flux hostnames from legitimate 

NS non-flux hostnames and phishing NS non-flux 

hostnames combined as a single class, was the model's 

most accurate architecture. The two-class classification-

based architecture was found to be more accurate than the 

three-class multi-class classification-based architecture, 

which is useful in identifying a particular hostname type 

among the three hostnames.  

Investigation into the importance of the proposed features 

for prediction in the best-performing architecture revealed 

that the strongest predictors are those in the spatial and 

temporal categories, while network-related features have no 

bearing on prediction. The proposed model has produced 

high detection performance comparable to other similar 

works in the literature, indicating that our novel features are 

as effective as the existing ones. Our approach, in contrast to 

the existing ones, has achieved fast detection for real-time 

applications, has employed more diverse features to improve 

resistance to detection evasions, and has approached the 

problem as a three-class classification problem, providing a 

more pragmatic solution to the problem. Additionally, the 

results were reported using a broader range of performance 

metrics, affirming the solution's reliability. 

It is important to note that the nature of the dataset 

used to train the model in this study has an impact on the 

performance obtained. Attackers are likely to vary 

configurations of their flux networks over time, which 

could lead to variations in the efficacy of some detection 

features and even the model itself. We believe that in 

order to maintain a high level of detection performance, it 

is crucial to continuously observe the behaviors of the flux 

networks and re-evaluate the model using fresh datasets 

that are collected on a regular basis. 
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