

 © 2024 S. Priya and R. S. Ponmagal. This open-access article is distributed under a Creative Commons Attribution (CC-BY)

4.0 license.

Journal of Computer Science

Original Research Paper

Periodic Service Behavior Strain Analysis-Based Intrusion

Detection in Cloud

1S. Priya and 2R. S. Ponmagal

1Department of Computer Science and Engineering, School of Computing, SRM Institute of Science and Technology,

Kattankulathur, Tamil Nadu, India
2Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology,

Kattankulathur, Tamil Nadu, India

Article history

Received: 16-08-2023

Revised: 24-10-2023

Accepted: 17-11-2023

Corresponding Author:

R. S. Ponmagal

Department of Computing

Technologies, School of

Computing, SRM Institute of

Science and Technology,

Kattankulathur, Tamil Nadu,

India
Email: rsponmagal@gmail.com

Abstract: The problem of intrusion detection in cloud environments has

been well studied. The presence of adversaries would challenge data security

in the cloud by generating intrusion attacks towards the cloud data and should

be mitigated for the development of the cloud environment. In mitigating

intrusion attacks, there exist several techniques in the literature. The method

uses different features like frequency of access, payload details, protocol

mapping, etc. However, the methods need to improve to achieve the expected

performance in detecting intrusion attacks. An efficient Periodic Service

Behavior Strain Analysis (PSBSA) is presented to handle this issue. Unlike

earlier methods, the PSBSA model analyzes the behavior of users in various

time frames like historical, recent, and current spans. The model focused on

identifying intrusion attacks in several constraints, not just considering the

current nature. The performance of intrusion detection can be improved by

viewing the user's behavior in historical, present, and recent timespan. Unlike

other approaches, the proposed PSBSA model considers the user's behavior

at different times in measuring the user's trust towards intrusion detection.

Accordingly, the proposed PSBSA model analyzes the behavior of users

under various situations. It examines the behavior in accessing the services

at historical, current, and recent times. The method performs Historical Strain

Analysis (HSA) Current Strain Analysis (CSA) and Recent Strain Analysis

(RSA). HSA analysis is performed according to the historical data, CSA is

performed based on the current access data and RSA is performed with the

recent access data. The model estimates various legitimacy support values on

each analysis to conclude the trust of any user. According to the support

values, intrusion detection has been performed. The proposed PSBSA model

introduces higher accuracy in intrusion detection in a cloud environment.

Keywords: Cloud, Cloud Security, Energy Efficiency, Intrusion Detection,

Behavior Analysis

Introduction

The recent development in information technology has

changed the shape of the informatics world. The

organization has shifted its data to the cloud in order to

maintain it. The cloud environment has become the most

supporting entity for organizations to maintain and access

their data without any hazards. The cloud service

providers provide various services to access the data in the

cloud and the registered users can access them with the

required privilege. This supports the organizations from

the difficulty of maintaining dedicated data servers,

maintaining integrity, and investing higher costs.

In reality, the cloud is a loosely coupled environment

and the service provider knows nothing about the client

who accesses the service. Earlier, the user had been

verified by a Third-Party Auditor (TPA) in restricting the

service access and many challenges were identified, like

leakage of data and so on. As with any environment, the

cloud faces various security threats regarding data and

service. Different threats can be named, which target the

services and data. Among them, intrusion attacks are the

most dominant ones targeting the service. The presence of

such a threat must be detected to maintain the Quality of

Service (QoS) of the environment because it would affect

S. Priya and R. S. Ponmagal / Journal of Computer Science 2024, 20 (2): 140.149

DOI: 10.3844/jcssp.2024.140.149

141

the service throughput and introduce latency which would

degrade the overall QoS performance. Any service

deployed in the cloud has been designed to work on a

specific goal and an intrusion attack is a malicious activity

that targets the service and data. Any service has its nature

or protocol, which takes clear input and returns the

specific output. Any user generates an intrusion attack,

whether from an insider or outsider. Whoever it is, they

target the service throughput and data behind it. If the

malicious user succeeds with the attack, they can steal the

data and degrade the service integrity.

Cloud security has been viewed on different levels as

data and service. Regarding data level security, separate

access restriction approaches restrict malicious access.

Also, various data encryption approaches are available

to encode the data so the dedicated user can decode it.

Similarly, other access restriction approaches are

recommended by different researchers in terms of

service level security. This article focuses on detecting

intrusion attacks and discusses an efficient method to

handle the issue.

The intrusion attacks can be detected in several ways

by enforcing rigid access restriction algorithms. Many

access restriction approaches restrict the access of

malicious users according to their profile-which verifies

whether the user concerned has access to the service but

suffers from identifying the threat when the user submits

malformed data to the service even though he has access

to the service. Similarly, key-based approaches are used,

which verify the key submitted before giving access to the

service. This approach suffers from poor performance as

the user would submit malicious data after clearing the

trust check. Further, attribute-based techniques verify the

access grant for different attributes accessed by the service

and so on. However, the performance of the methods differs

for each of them based on the process of measuring trust

values. Because the trust-based approach verifies the user's

trust based on different constraints, this article presents a

novel time-orient service-centric behavioral strain analysis

toward effective intrusion detection.

Problem Statement

The presence of malicious users in the environment

would produce an intrusion attack. The malicious user

would be an outsider or insider but they are capable of

producing an intrusion attack. As the service provided

would be accessed by various users and to identify the

presence of intrusion attacks, it is necessary to monitor

how the user accesses the service. By enforcing the

adequate access restriction approaches, the user will be

filtered in the initial stage, but when the service fails, it is

necessary to find the intrusion attack and identify who

generates the attack, or it is essential to conclude the

presence of an intrusion attack. Energy efficiency is the

primary concern in determining intrusion attacks suitable

for loosely coupled service-orient environments. For

example, to perform intrusion detection in mobile

networks that access services through different devices,

energy efficiency becomes a dominant entity that must be

considered to improve intrusion detection.

Contribution

With the consideration to improve the performance of

detecting intrusion attacks in the cloud, a novel model is

described in this study. By analyzing the behavior of the

user, you can identify the presence of an intrusion attack

directly. You cannot directly say that the user has been

involved in an intrusion attack straightaway. Even a

genuine user would generate the request with incomplete

features due to some mistakes in keyboarding. All these

encourage the analysis of the behavior of the user to be

performed in identifying the presence of an intrusion

attack. Considering all these, the proposed PSBSA model

analyzes the behavior in various strains to conclude the

existence of intrusion attacks. Unlike earlier methods, the

PSBSA model analyzes the behavior of users in various

time frames like historical, current, and recent, which

helps to achieve higher accuracy in intrusion detection.

The model analyses the user behavior in the historical

strain as HAS performs Recent Strain Analysis (RSA) and

performs Current Strain Analysis (CSA) towards effective

intrusion detection. Integrating the proposed model with

the environment improves service performance and

overall QoS performance has been hiked. The detailed

approach is presented in this section.

Several articles have analyzed and discussed the

problem of intrusion detection in the cloud. This section

discusses some of the more popular and effective

approaches for the problem considered.

An Artificial Intelligence (AI) based intrusion

detection scheme is presented in Shrivastav and Dhawan

(2018) which uses the firefly algorithm to optimize the

data and uses a support vector machine to classify multi-

class problems. A sequential minimal optimization

technique is presented for intrusion detection, which uses

k-means clustering for grouping similar records and

applies Sequential Minimal Optimization (SMO) for

classification (Chandra et al., 2019). An Intelligent

Intrusion Detection Framework (IIDF) is presented in

Urmila and Balasubramanian (2019) and uses header data

and payload information in detecting intrusion attacks. An

active learning-based threat detection approach is

presented by Ramaiah et al. (2018) which continuously

monitors the systems for their activities and applies

artificial intelligence to detect the intrusion attack. The

method uses the feedback values of different

administrators in detecting the attack. A snort-based

intrusion detection system is presented in Olanrewaju et al.

(2018) which uses a set of rules to define the threats and

S. Priya and R. S. Ponmagal / Journal of Computer Science 2024, 20 (2): 140.149

DOI: 10.3844/jcssp.2024.140.149

142

based on that, the method collects the sensor details to

perform threat detection. The technique works towards

various categories of attacks. The process uses multiple

traffic information in classifying the threats. A deep

learning model for an Intrusion Detection System (IDS) is

presented by Almi'ani et al. (2018) focusing on unlearned

attacks. The method continuously monitors the behavior of

nodes to perform intrusion detection. A self-organized map-

based intrusion detection scheme is presented by Ren et al.

(2019) which uses hierarchical agglomerative clustering and

sensitivity and consumption time in detection. A hybrid

optimization technique with machine learning has been

shown by Divyasree and Sherly (2018) to detect intrusion

detection. The DO_IDS (Deep Organized Intrusion

Detection System) algorithm uses isolation forest to

eliminate the outliers and the genetic algorithm is used in

feature selection. Also, the random forest has been used

as a classifier. An ensemble Core Vector Machine (CVM)

based intrusion detection scheme is presented in

Vinayakumar et al. (2019) which uses ensemble Core

Vector Machine (CVM) towards intrusion detection and

is capable of detecting different threats. A neural network

ensemble-based intrusion detection scheme is presented

in Ludwig (2019) capable of detecting various threats.

A machine learning-based hybrid intrusion detection

system is presented by Aljamal et al. (2019) which works

based on monitored events. The possibilities are a set of

network activities raised by various network activities.

The method groups the events using the K means

algorithm and performs a Support Vector Machine (SVM)

for classification.

A trust-based game theoretical model is presented by

Abusitta et al. (2018) for intrusion detection in the cloud.

The method works according to the game theory and

works collaboratively to perform intrusion detection. A

behavior-based network intrusion detection scheme is

presented by Ghanshala et al. (2018) which uses statistical

learning and works according to the traffic behavior of

different nodes in identifying the threat. A Cooperative

Distributed Intrusion Detection System (C-DIDS) is

presented by Ghribi et al. (2018) which uses the rates and

delay features in real-time detection.

A self-adaptive genetic algorithm-based deep neural

network IDS is presented by Chiba et al. (2019) which

trains the network and uses a genetic algorithm in feature

selection. The services provided by any network are

accessed by various users who are eligible to face attacks at

low rates. Low-rate attacks are handled and mitigated using

the multi-threshold mechanism (Baskar et al., 2021).

A Virtual Machine Introspection (VMI) based

security system (VM guard) is presented in Mishra et al.

(2018) to support cloud systems that extract the features

using term frequency and inverse document frequency

approaches. The random forest has been used for

classification. A Deep Blockchain Framework (DBF) is

presented for intrusion detection by Alkadi et al. (2020)

which uses smart contracts and blockchain in privacy

preservation. The method uses a Bidirectional Long

Short-Term Memory (BiLSTM) deep learning algorithm

in threat detection.

A Vehicular-Edge Computing (VEC) based approach

is presented by Mourad et al. (2020) for detecting

intrusion attacks in vehicular networks. A collaborative

IDS is presented by Tan et al. (2014) to handle

vulnerabilities in accessing big data. Mishra et al. (2021)

present Virtual Machine Introspection (VMI) to monitor

granular attacks in system calls.

An efficient approach is designed to handle a variety

of attacks (Nadeem et al., 2021) which monitors the

devices for attacks and the rate of attacks. According to

that, threat detection is performed and addresses the

problem. An auto Isolation Forest (IF) based approach is

presented in Sadaf and Sultana (2020) which uses deep

learning Auto Encoder algorithm in feature extraction

and isolation forest for feature selection. Further, the

method performs binary classification according to the

features selected.

A fuzziness-based semi-supervised learning scheme is

presented for intrusion detection by Gao et al. (2018),

which generates the ensembles using the labeled data. The

fuzziness-based approach is used in classification. A Dew

Computing as a Service (DaaS) for intelligent intrusion

detection in Edge of Thing (EoT) ecosystems is presented

by Singh et al. (2020). The method uses deep belief

networks in classification. A secure approach to isolate

malicious nodes according to the actual time transmission

features is presented by Fatani et al. (2021).

Kasongo (2021) a Convolution Neural Network

(CNN) based feature extraction scheme is presented,

which also adapts short Search Optimization (TSO) for

feature selection. The Transient Search Optimization

Differential Evolution (TSODE) method uses a differential

evolution algorithm in classification. A multi-level intrusion

detection scheme is presented by Mishra et al. (2021) which

performs intrusion detection in multiple levels to perform

classification. Abdel-Basset et al. (2021) a genetic

algorithm-based IDS for Industrial Internet of Things (IIoT)

is presented and uses random forest for classification. The

genetic algorithm is used for feature selection. In Sun and

Grishman (2022) an introspection-based security

approach called VMS held is was given, which uses the

behavior of runtime processes. The method extracts the

features of system calls and uses PSO and random forest

classifiers in detecting the intrusion attack. An Intelligent

Forensics System-based Deep learning model (Deep IFS)

is presented for intrusion attacks in IIoT traffic. A residual

connection between layers is designed to prevent

information loss. The method performs intrusion

S. Priya and R. S. Ponmagal / Journal of Computer Science 2024, 20 (2): 140.149

DOI: 10.3844/jcssp.2024.140.149

143

detection by distributing the traffic data across fog nodes

and sharing it between the nodes. A Lexicalized

Dependency Path (LDP) based training representation is

presented, which handles the sparsity problem by using

entity types and subtypes to refine the model. Supervised

learning is used in classification.

All the methods discussed above suffer from poor

performance in detecting intrusion attacks in a cloud

environment. Accordingly, this article presents a novel

Periodic Service Behavior Analysis (PSBSA) model for

intrusion detection. The model differs from other

approaches as it measures the user's trust by analyzing the

user's behavior in different time domains like historical,

recent, and current timestamps. This helps the proposed

approach in improving the accuracy of intrusion detection.

Materials and Methods

The proposed Periodic Service Behavior Strain model

(PSBSA) fetches the cloud access traces and performs

preprocessing. The preprocessing involves identifying the

features and eliminating the traces with noisy and missing

features. Further, the traces are split into different time

stamps and historical, recent, and current strains are

analyzed. The method performs Historical Strain Analysis

(HSA), Current Strain Analysis (CSA), and Recent Strain

Analysis (RSA). HSA analysis is performed according to

the historical data, CSA is performed based on the current

access data and RSA is performed with the recent access

data. Each strain analysis returns a legitimate score using

which the method computes the legitimate score for the

user. Based on the value of the legitimate score, the

technique performs intrusion detection. The detailed

approach is discussed in this section.

The architecture of the proposed PSBSA model has

been pictured in Fig. 1 and the steps involved in the

analysis are detailed in this section.

Fig. 1: Architecture of PSBSA intrusion detection model

Preprocessing

The cloud trace belongs to access performed by

various users and is used in preprocessing. The service

handler has fetched the trace, which finds the set of

features present in entire traces. Further, each trace has

been checked for all features identified. The traces which

have missing features are removed from the trace set.

Second, the method determines the set of all-time stamps

in months, years, and weeks. The traces are split into

several sub-sets according to the time stamps identified.

The traces split based on the time stamp have been used

to perform further analysis towards intrusion detection.

Consider the cloud access trace CaT contains a set of

traces and then the method finds a set of all features in all

the traces as follows:

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑡 𝐹 𝑆𝑒𝑡 = 𝑠𝑖𝑧𝑒(𝐶𝑎𝑇)𝐹𝑠𝑒𝑡 (1)
∪ (∅(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∈ 𝐶𝑎𝑇(𝑖)) ∩ 𝐹𝑠𝑒𝑡) 𝑖 = 1

Now, each trace Ti belongs to CaT is verified for the

containment of features present in F Set as follows:

Flag = 𝑠𝑖𝑧𝑒(𝐹 𝑆𝑒𝑡) 𝑖𝑓𝑇𝑖 ∈ 𝐹𝑠𝑒𝑡(𝑖)𝑡ℎ𝑒𝑛 ? 1: 0 𝑖 = 1 (2)

The above equation checks the access trace Ti for the

containment of all the features of the F set, if the feature

is not present in the trace Ti, then the equation returns 0

otherwise, it will return a value of 1. so that the flag value

has been used as the result of verification towards the

selection of trace. The flag value has been used to verify

whether the feature is available in the trace. If the flag is

0, the trace does not contain the feature. Otherwise, it has

the feature. This supports noise removal in preprocessing.

If the value returned by Eq. (2) is 0, then the trace Ti

will be removed from the access trace set CaT.

Further, the set of time stamps present in the trace CaT

is identified as follows:

𝑇𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝 𝑠𝑒𝑡 𝑇𝑠 = T ∪ (∅(𝑇𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝 ∈ (3)
𝐶𝑎𝑇(𝑖)) ∩ 𝑇𝑠

//The time stamp is identified according to the number

of months, years, weeks, and days. You can split the trace

into any time stamp according to available traces.

Now, the traces CaT has been split into several time

stamp trace TsT as follows:

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝 𝑠𝑒𝑡. 𝑇𝑠𝑇 =
𝑠𝑖𝑧𝑒(𝑇𝑠) 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝑠𝑒𝑡(𝑇𝑠(𝑖)) 𝑖 = 1 (4)

Finally, split the traces according to time stamp as

follows: For example, the traces belonging to time stamp

Tsi are identified as follows:

𝑇𝑠𝑇(𝑇𝑠𝑖) = 𝑆𝑖𝑧𝑒(𝐶𝑎𝑇) 𝑇𝑠𝑇 ∪ (𝐶𝑎𝑇(𝑖). (5)
𝑇𝑖𝑚𝑒 𝑆𝑡𝑎𝑚𝑝 = 𝑇𝑠𝑖) 𝑖 = 1

S. Priya and R. S. Ponmagal / Journal of Computer Science 2024, 20 (2): 140.149

DOI: 10.3844/jcssp.2024.140.149

144

The time stamp traces generated are used to analyze

various strains to perform intrusion detection. The traces

contain the time of generation, which has been used to

split the traces under multiple timestamps. Also, the entire

duration has been divided into months, weeks, and years.

This is how the traces are separated according to the time

stamp. The cloud access trace would contain several

features like the time of access, the service accessed, the

status of the service, a payload of data submitted, the

completeness of the service, the user who accessed the

service, and so on. The method first identifies what the

features present in the trace overall are. Accordingly, the

traces with incomplete features are removed and the traces

are split according to the time they were created to support

the analysis in various forms. To keep the research, the traces

are divided under different time stamps when they are made.

So, by reading the time stamp traces belonging to various

time stamps, the method performs other analyses to measure

the user's trust towards intrusion detection.

Historic Strain Analysis (HAS)

The historic strain analysis algorithm measures the

Historical Legitimacy Support (HLS) based on the

behavior of the user in accessing the service with genuine.

To calculate the value of HLS, the method considers the

service access with two constraints: One is honest in

following the protocol and the other is how the user

supports the service growth. According to this, the method

first measures the value of Protocol Support (PS) based on

the number of times the user accessed the service and the

number of times the user followed the protocol. Similarly,

according to corollary two, the Service Growth Support

(SGS) is measured based on the number of times the

service is accessed and several times the service is

completed. Using these two values, the method computes

the value of HLS to support intrusion detection.

Pseudocode

Give : Time stamp trace TST, Time stamp set Ts

Obtai : HLS

Start
Read TST, Ts

For each timestamp Tsi:

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑃𝑠 =
𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑖)) 𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇(𝑇𝑠𝑖(𝑖)).𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝑆𝑡𝑎𝑡𝑒==1) 𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖))
 (6)

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐺𝑟𝑜𝑤𝑡ℎ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑆𝐺𝑆) =
𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑖)) 𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇(𝑇𝑠𝑖(𝑖)).𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑆𝑡𝑎𝑡𝑒==1) 𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖))
 (7)

End:

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐻𝐿𝑆 =
𝑆𝑖𝑧𝑒(𝑇𝑠) ∑ 𝑇𝑠(𝑖).𝑃𝑠𝑛

𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠)
× (8)

𝑆𝑖𝑧𝑒(𝑇𝑠) ∑ 𝑇𝑠(𝑖).𝑆𝐺𝑆𝑛

𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠)

Stop

The historic strain analysis approach measures the

protocol support and service growth support the user

delivered at various time stamps to measure the value of

HLS. As the traces are split under different time stamps and

based on the total time stamps identified, the method finds

the traces produced at the specific time stamp. For the traces

of timestamp, the process computes Protocol Support (PS)

and Service Growth Support (SGS) to support the

measurement of HLS. Protocol support is the measure that

represents the trust of the user in following the service

protocol. Service growth support is the value measured

based on the number of times the user completed the

service for a specific number of service accesses. The

historic strain analysis algorithm computes the value of

Protocol Support (PS) and Service Growth Support (SGS)

to add the value of HLS for the user. According to the value

of HLS, the method would perform intrusion detection.

Recent Strain Analysis (RSA)

The recent strain analysis algorithm considers the

frequency of service access made by any user at various and

current time stamps. Also, the analysis finds the payload

support at different time stamps and recent time stamps.

Similarly, the method considers the protocol strain in other

and current time stamps. The method computes the

Frequency Strain Value (FSV) based on the value of the

frequency of access at historical and recent times. Similarly,

the Payload Strain Value (PSV) is measured based on the

mean payload at historical times and the mean payload at

current times. The Frequency Strain Value (FSV) is the

measure that represents the access frequency of the user

towards the service and the number of times it has been

going malicious. It is measured based on the number of

times the user accessed the service in recent times for the

overall number of times and several times it has been

identified as malicious at the current time and the number

of times it has been identified as malicious in general times.

Similarly, the Payload Strain Value (PSV) is measured

based on the number of times the user followed the payload

metrics in the recent time for the number of times the user

tracked in overall time. The number of times it has been

identified as malicious in the current time with several times

it has been identified as malicious in overall time. Using

these values, the method computes the value of Recent

Legitimate Support (RLS) to support intrusion detection.

Pseudocode

Compute Frequency Strain Value FSV =
𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑅)) 𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇(𝑇𝑠𝑅(𝑖)).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆) 𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑅))

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑖)) 𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇(𝑇𝑠𝑖(𝑖)).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆) 𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖))

×

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑅)) 𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇(𝑇𝑠𝑅(𝑖)).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑆𝑡𝑎𝑡𝑒==𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠) 𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖𝑅))

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑖)) 𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇(𝑇𝑠𝑖(𝑖)).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑆𝑡𝑎𝑡𝑒==𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠) 𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖))

 (9)

S. Priya and R. S. Ponmagal / Journal of Computer Science 2024, 20 (2): 140.149

DOI: 10.3844/jcssp.2024.140.149

145

where, TSR is the recent trace set, the sub-set of the trace set

includes traces of little time stamps generated in recent times.
Compute Payload Strain value PSV:

𝑃𝑆𝑉 =
𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑅)) 𝑆𝑢𝑚(𝑇𝑆𝑇(𝑇𝑠𝑅(𝑖)).𝑃𝑎𝑦𝑙𝑜𝑎𝑑) 𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑅))

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑖)) 𝑆𝑢𝑚(𝑇𝑆𝑇(𝑇𝑠𝑖(𝑖)).𝑃𝑎𝑦𝑙𝑜𝑎𝑑) 𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖))

×

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑅)) 𝑆𝑢𝑖𝑚(𝑇𝑆𝑇(𝑇𝑠𝑅(𝑖)).𝑃𝑎𝑦𝑙𝑜𝑎𝑑==𝑆 && 𝑆𝑡𝑎𝑡𝑒==𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠) 𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖𝑅))

𝑆𝑢𝑚𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑖)) (𝑇𝑆𝑇(𝑇𝑠𝑖(𝑖)).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑆𝑡𝑎𝑡𝑒==𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠) 𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖))

 (10)

End:

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑅𝐿𝑆 =
𝑆𝑖𝑧𝑒(𝑇𝑠) ∑ 𝑇𝑠(𝑖).𝐹𝑆𝑉𝑛

𝑖=1 𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠)
× (11)

𝑆𝑖𝑧𝑒(𝑇𝑠) ∑ 𝑇𝑠(𝑖).𝑃𝑆𝑉𝑛

𝑖=1

𝑠𝑖𝑧𝑒(𝑇𝑠)

Stop

The recent strain analysis algorithm measures the

user's trust in submitting proper payload to the service

point by computing the payload strain value and the value

frequency strain value FSV to represent the user's trust in

the frequency of access. By analyzing a user's trust

through recent strain analysis, the user behavior in recent

times can be identified and how the user behaves in recent

times can be monitored. This would help to determine the

malicious user most concretely. As the method computes

the Payload Strain Value (PSV) and Frequency Strain

Value (FSV) to measure the value of RLS, the presence

of intrusion detection can be identified effectively.

Current Strain Analysis (CSA)

The current strain analysis algorithm monitors the user's

behavior toward the legitimacy of accessing the service

based on the user's access profile and the access grant for the

user. According to that, the method computes Grant Strain

Value (GSV). The GSV value is measured based on the

average contribution on service access identified from the

current time trace. The average grant placed on service

access with the overall trace. Similarly, the method computes

the user's Malformed Strain Value (MSV) towards the

service in historical and current times. The value of MSV is

measured by calculating the average malicious request

produced by the user at the present trace with the average

malicious access created by the user at the overall time trace.

Using both these values, the method computes the value of

CSA to support the detection of intrusion attacks.

Pseudocode

Given : Time stamp Trace TsT, Time stamp set Ts

Obtain : CLS

Start

Compute Grant Strain Value (GSV) =
𝑆𝑖𝑧𝑒(𝑅𝑇𝑆) ∑ 𝑅𝑇𝑆(𝑖).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑅𝑇𝑆(𝑖).𝐺𝑟𝑎𝑛𝑡==𝐹𝑎𝑙𝑠𝑒𝑛

𝑖=1

𝑆𝑖𝑧𝑒(𝑅𝑇𝑆)

𝑆𝑖𝑧𝑒(𝑇𝑠𝑇) ∑ 𝑇𝑆𝑇(𝑖).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑇𝑆𝑇(𝑖).𝐺𝑟𝑎𝑛𝑡==𝐹𝑎𝑙𝑠𝑒𝑛
𝑖=1

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇)

 (12)

Compute Malicious Strain Value (MSV) =
𝑆𝑖𝑧𝑒(𝑅𝑇𝑆) ∑ 𝑅𝑇𝑆(𝑖).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑅𝑇𝑆(𝑖).𝑆𝑡𝑎𝑡𝑒==𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝑛

𝑖=1

𝑆𝑖𝑧𝑒(𝑅𝑇𝑆)

𝑆𝑖𝑧𝑒(𝑇𝑠𝑇) ∑ 𝑇𝑆𝑇(𝑖).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑇𝑆𝑇(𝑖).𝑆𝑡𝑎𝑡𝑒==𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝑛
𝑖=1

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇)

 (13)

Compute CLS = GSV × MSV (14)

Stop

The current strain analysis algorithm measures GSV and

MSV values according to the strain values computed over

malicious access and the classified values of the service

access. The value of GSV is calculated based on the number

of grants given to the user and the number of features

accessed by the user. Similarly, the value of MSV is

measured according to the number of malicious requests

generated by the user among the number of malicious

requests identified. Using both values, the method

computes the value of CLS to support intrusion detection.

By analyzing the user's trust in the current time stamp, like

the current week, current month, and current year, the

performance of intrusion detection can be identified

effectively. It shows how the user behaves at present, which

speaks to the user's trust in the most concrete way.

FSBSA Intrusion Detection

The proposed model performs intrusion detection by

performing strain analysis at the different time stamps. To

achieve this, the access trace has been used and preprocessed

initially. Further, the method performs historical strain

analysis, recent strain analysis, and current strain analysis.

Each analysis returns a legitimate score to support intrusion

detection. The HAS algorithm returns the value of HLS.

The RSA algorithm returns RLS and the CSA algorithm

returns CLS. Using these values, the method computes the

value of Legitimacy Support (LS) based on the

classification of user requests. The Legitimacy Support

(LS) represents the user's trustworthiness in accessing the

service and it has been measured by computing LS based

on the results of various strain analyses.

Pseudocode

Give : Cloud access Trace CaT, service request SR

Obtain : Boolean

Start

Read CaT and SR.

Service Requested sreq = Request ∈ 𝑆𝑅

Time Stamp Trace TST = perform

 preprocessing (CaT)

HLS = Perform historical strain

 analysis (TST, time

 stamp set Ts)

RLS = Perform recent strain

 analysis (TST, TS)

CLS = Perform current strain

 analysis (TST, TS)

S. Priya and R. S. Ponmagal / Journal of Computer Science 2024, 20 (2): 140.149

DOI: 10.3844/jcssp.2024.140.149

146

Compute LS =
𝑅𝐿𝑆

𝐻𝐿𝑆
𝐶𝐿𝑆 (15)

If LS>Th, then

Return true

Else

Return false

End

Stop

The above-discussed algorithm performs various

strain analyses to compute different legitimacy support

values. Based on the values obtained, the method

computes the legitimate support to perform intrusion

detection. The threshold value is set according to the

frequency of the threat identified and has been adjusted in

a dynamic manner. The threshold for decision-making is

computed dynamically according to the rate of threat

determined. If there is a higher threat ratio, then the value

of the threshold will be higher. Otherwise, it will result in

a moderate level.

Results and Discussion

 The proposed Periodic Service Behavior Strain

Analysis (PSBSA) model-based intrusion detection

scheme has been implemented and evaluated for its

performance under various constraints. The model has

been implemented with Python and for the performance

evaluation, the data set collected in Microsoft Azure has

been used. The model has used the access trace

maintained by different cloud models and environments

to perform the analysis. The performance of the model has

been measured on various parameters and compared with

the results of other approaches. This section details the

results obtained and the parameters considered for the

evaluation presented in Table 1.

The constraints considered for the evaluation of the

proposed approach are Table 1. The methods are

evaluated for their performance on the following factors.

Table 1: Evaluation details

Parameter Value

Tool used Python
Data set Amazon
Platform Microsoft azure
Total records 1 million
No of services 100
No of users 5000

Table 2: Analysis of intrusion detection accuracy

 Intrusion detection accuracy %

 --

No of records 3 Lakhs 5 Lakhs 10 Lakhs

GA-RF 69 74 79

VMShield 73 77 82

Deep-IFS 79 85 87

PSBSA 87 93 98

Intrusion Detection Accuracy

The method's accuracy in finding the presence of an

attack is measured according to the total number of attacks

generated and several instances detected successfully.

Also, it has been measured based on the True Positive

(TP) and True Negative (TN) classifications. It has been

measured as follows:

𝐼𝐷𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑡𝑎𝑐𝑘𝑠
100 (16)

The performance in intrusion detection is measured for

various approaches according to the traces available. In

each test case, the performance is computed and compared

with multiple methods in Table 2. The proposed PSBSA

approach achieves higher intrusion detection accuracy

than other techniques. The increasing number of traces

would greatly help intrusion detection performance. The

performance of intrusion detection is directly proportional

to the number of traces in the set.

The performance of various methods at detecting

intrusion attacks is measured with multiple records in the

data set; it's shown in Fig. 2. The proposed PSBSA model

achieves higher performance in intrusion detection than

other techniques. As the proposed PSBSA model performs

intrusion detection by analyzing the behavior of users in

different time stamps in accessing the services, the PSBSA

model achieves higher intrusion detection accuracy.

False Ratio in Intrusion Detection

The false ratio in intrusion detection is the measure

that shows the false classification of different requests. It

is measured according to the number of True Negative

(TN) and False Positive (FP) classifications made by the

algorithm. It has been calculated as follows:

𝐹𝑅𝐼𝐷 =
𝐹𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑡𝑎𝑐𝑘𝑠
100 (17)

The performance of methods in false classification or false

ratio in detecting the intrusion detection attack is measured by

the availability of a different number of traces in the data set.

In each test case, the performance is measured for various

approaches and compared in Table 3. The proposed PSBSA

has produced less false ratio performance in intrusion

detection than other approaches. The false detection ratio

gets reduced with the increased number of traces in the set.

The performance of various methods at a false ratio in

intrusion detection is measured and compared in Fig. 3.

The proposed PSBS model introduces less false detection

than other techniques.

Time Complexity

The time complexity of the intrusion detection scheme

is measured according to the total time taken by the

approach in detecting the intrusion attack.

S. Priya and R. S. Ponmagal / Journal of Computer Science 2024, 20 (2): 140.149

DOI: 10.3844/jcssp.2024.140.149

147

Fig. 2: Analysis of intrusion detection accuracy

Fig. 3: Analysis of false ratio in intrusion detection

Fig. 4: Analysis of time complexity in intrusion detection

Table 3: Analysis of false ratio in intrusion detection

 False ratio in intrusion detection %

 --

No of records 3 Lakhs 5 Lakhs 10 Lakhs

GA-RF 31 26 21

VMShield 27 23 18

Deep-IFS 21 15 13

PSBSA 13 7 2

Table 4: Analysis of time complexity in intrusion detection

Time complexity in intrusion detection in seconds

--

No of records 3 Lakhs 5 Lakhs 10 Lakhs

GA-RF 33 56 89

VMShield 28 43 78

Deep-IFS 25 35 67

PSBSA 17 27 42

The value of time complexity introduced by various

approaches in intrusion detection has been measured and

presented in Table 4. The PSBSA model introduces less

time complexity in all the cases. The increasing number

of traces does not significantly increase the time

complexity and only has a negligible effect.

The performance of time complexity in intrusion

detection has been measured for different methods with

different records calculated and presented in Fig. 4. The

proposed PSBSA model introduces less time complexity

than other approaches.

Conclusion

This study presented a novel Periodic Service Behavior

Strain Analysis (PSBSA) towards intrusion detection in a

cloud environment. The proposed model analyzes the user's

behavior in accessing the service at different historical,

recent, and current times. According to the analysis values,

the method computes the value of legitimate support for the

user. Based on the importance of legitimate support, the

process performs intrusion detection. The inclusion of

behavior analysis in various time stamp support the proposed

PSBSA model to achieve higher performance in intrusion

detection by up to 97% with the least time complexity.

Acknowledgment

Thank you to the publisher for their support in the

publication of this research article. We are grateful for the

resources and platform provided by the publisher, which

have enabled us to share our findings with a wider

audience. We appreciate the efforts of the editorial team

in reviewing and editing our work, and we are thankful for

the opportunity to contribute to the field of research

through this publication.

Funding Information

The authors have not received any financial support or

funding to report.

Author’s Contributions

S. Priya: Behavior strain analysis, interpretation of
data drafted the article.

S. Priya and R. S. Ponmagal / Journal of Computer Science 2024, 20 (2): 140.149

DOI: 10.3844/jcssp.2024.140.149

148

R. S. Ponmagal: Reviewed article critically for
significant intellectual content and gave final approval of
the version to be submitted and any revised version.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

that no ethical issues are involved.

Conflicts of Interest

The authors declare that they have no conflicts of
interest to report regarding the present study.

References

Abdel-Basset, M., Chang, V., Hawash, H., Chakrabortty,

R. K., & Ryan, M. (2020). Deep-IFS: Intrusion

detection approach for industrial internet of things

traffic in fog environment. IEEE Transactions on

Industrial Informatics, 17(11), 7704-7715.

 https://doi.org/10.1109/TII.2020.3025755

Abusitta, A., Bellaiche, M., & Dagenais, M. (2018). A

trust-based game theoretical model for cooperative

intrusion detection in multi-cloud environments.

In 2018 21st Conference on Innovation in Clouds,

Internet and Networks and Workshops (ICIN), 1-8.

IEEE.

 https://doi.org/10.1109/ICIN.2018.8401625

Aljamal, I., Tekeoğlu, A., Bekiroglu, K., & Sengupta, S.

(2019). Hybrid intrusion detection system using

machine learning techniques in cloud computing

environments. In 2019 IEEE 17th International

Conference on Software Engineering Research,

Management and Applications (SERA) (84-89). IEEE.

 https://doi.org/10.1109/SERA.2019.8886794

Alkadi, O., Moustafa, N., Turnbull, B., & Choo, K. K. R.

(2020). A deep blockchain framework-enabled

collaborative intrusion detection for protecting IoT

and cloud networks. IEEE Internet of Things

Journal, 8(12), 9463-9472.

 https://doi.org/10.1109/JIOT.2020.2996590

Almi'ani, M., Ghazleh, A. A. Rahayfeh A. A., & Razaque,

A. (2018). Intelligent intrusion detection system

using clustered self-organized map in Proc. 5th

International Conference on Software Defined

Systems (SDS).

 https://doi.org/10.1109/SDS.2018.8370435

Baskar, M., Ramkumar, J., Karthikeyan, C., Anbarasu,

V., Balaji, A., & Arulananth, T. S. (2021). Low rate

DDoS mitigation using real-time multi threshold

traffic monitoring system. Journal of Ambient

Intelligence and Humanized Computing, 1-9.

 https://doi.org/10.1007/s12652-020-02744-y

Chandra, A., Khatri, S. K., & Simon, R. (2019). Filter-

based attribute selection approach for intrusion

detection using k-means clustering and sequential

minimal optimization techniq. In 2019 Amity

International Conference on Artificial Intelligence

(AICAI), 740-745. IEEE.

 https://doi.org/10.1109/AICAI.2019.8701373

Chiba, Z., Abghour, N., Moussaid, K., El Omri, A., &

Rida, M. (2019). A clever approach to develop an

efficient deep neural network based IDS for cloud

environments using a self-adaptive genetic

algorithm. In 2019 International Conference on

Advanced Communication Technologies and

Networking (CommNet), 1-9. IEEE.

 https://doi.org/10.1109/COMMNET.2019.8742390

Divyasree, T. H., & Sherly, K. K. (2018). A network

intrusion detection system based on ensemble CVM

using efficient feature selection approach. Procedia

Computer Science, 143, 442-449.

 https://doi.org/10.1016/j.procs.2018.10.416

Fatani, A., Abd Elaziz, M., Dahou, A., Al-Qaness, M. A.,

& Lu, S. (2021). IoT intrusion detection system using

deep learning and enhanced transient search

optimization. IEEE Access, 9, 123448-123464.

 https://doi.org/10.1109/ACCESS.2021.3109081

Gao, Y., Liu, Y., Jin, Y., Chen, J., & Wu, H. (2018). A

novel semi-supervised learning approach for network

intrusion detection on cloud-based robotic system.

IEEE Access, 6, 50927-50938.

 https://doi.org/10.1109/ACCESS.2018.2868171

Ghanshala, K. K., Mishra, P., Joshi, R. C., & Sharma, S.

(2018). BNID: a behavior-based network intrusion

detection at network-layer in cloud environment.

In 2018 1st International Conference on Secure

Cyber Computing and Communication

(ICSCCC), 100-105. IEEE.

 https://doi.org/10.1109/ICSCCC.2018.8703265

Ghribi, S., Makhlouf, A. M., & Zarai, F. (2018). C-dids:

A cooperative and distributed intrusion detection

system in cloud environment. In 2018 14th

International Wireless Communications and Mobile

Computing Conference (IWCMC) 267-272. IEEE.

https://doi.org/10.1109/IWCMC.2018.8450478

Kasongo, S. M. (2021). An advanced intrusion detection

system for IIoT based on GA and tree-based

algorithms. IEEE Access, 9, 113199-113212.

 https://doi.org/10.1109/ACCESS.2021.3104113

Ludwig, S. A. (2019). Applying a neural network

ensemble to intrusion detection. Journal of

Artificial Intelligence and Soft Computing

Research, 9(3), 177-188.

https://doi.org/10.2478/jaiscr-2019-0002

https://doi.org/10.1109/TII.2020.3025755
https://doi.org/10.1109/ICIN.2018.8401625
https://doi.org/10.1109/JIOT.2020.2996590
https://doi.org/10.1109/SDS.2018.8370435
https://doi.org/10.1007/s12652-020-02744-y
https://doi.org/10.1109/AICAI.2019.8701373
https://doi.org/10.1109/COMMNET.2019.8742390
https://doi.org/10.1016/j.procs.2018.10.416
https://doi.org/10.1109/ACCESS.2021.3109081
https://doi.org/10.1109/ACCESS.2018.2868171
https://doi.org/10.1109/ICSCCC.2018.8703265
https://doi.org/10.1109/IWCMC.2018.8450478
https://doi.org/10.1109/ACCESS.2021.3104113
https://doi.org/10.2478/jaiscr-2019-0002

S. Priya and R. S. Ponmagal / Journal of Computer Science 2024, 20 (2): 140.149

DOI: 10.3844/jcssp.2024.140.149

149

Mishra, P., Aggarwal, P., Vidyarthi, A., Singh, P., Khan,

B., Alhelou, H. H., & Siano, P. (2021). VMShield:

Memory introspection-based malware detection to

secure cloud-based services against stealthy

attacks. IEEE Transactions on Industrial

Informatics, 17(10), 6754-6764.

 https://doi.org/10.1109/TII.2020.3048791

Mishra, P., Varadharajan, V., Pilli, E. S., & Tupakula, U.

(2018). Vmguard: A vmi-based security architecture

for intrusion detection in cloud environment. IEEE

Transactions on Cloud Computing, 8(3), 957-971.

https://doi.org/10.1109/TCC.2018.2829202

Mourad, A., Tout, H., Wahab, O. A., Otrok, H., & Dbouk,

T. (2020). Ad hoc vehicular fog enabling cooperative

low-latency intrusion detection. IEEE Internet of

Things Journal, 8(2), 829-843.

 https://doi.org/10.1109/JIOT.2020.3008488

Nadeem, M., Arshad, A., Riaz, S., Band, S. S., & Mosavi,

A. (2021). Intercept the cloud network from brute

force and DDoS attacks via intrusion detection and

prevention system. IEEE Access, 9, 152300-152309.

https://doi.org/10.1109/ACCESS.2021.3126535

Olanrewaju, R. F., Khan, B. U. I., Najeeb, A. R., Zahir, K.

N., & Hussain, S. (2018). Snort-based smart and swift

intrusion detection system. Indian Journal of Science

and Technology, 11(4), 1-9.

Ramaiah, C. H., Charan, D. A., Akhil, R. S., & Kumar, P.

P. (2018). Secure Automated Threat Detection and

Prevention (SATDP). Int J Eng Technol, 7, 86-9.

https://doi.org/10.14419/ijet.v7i2.20.11760

Ren, J., Guo, J., Qian, W., Yuan, H., Hao, X., & Jingjing,

H. (2019). Building an effective intrusion detection

system by using hybrid data optimization based on

machine learning algorithms. Security and

Communication Networks, 2019.

 https://doi.org/10.1155/2019/7130868

Sadaf, K., & Sultana, J. (2020). Intrusion detection based

on autoencoder and isolation forest in fog

computing. IEEE Access, 8, 167059-167068.

https://doi.org/10.1109/ACCESS.2020.3022855

Shrivastav, S., & Dhawan, G. (2018). Detection of

intrusion detection system in cloud using artificial

intelligence. Studies (IJACMS), 3(2).

 http://www.ijacms.com/submittedFiles/4e880228-

faf9-4bd7-bd71-d82d94f40d8c.pdf

Singh, P., Kaur, A., Aujla, G. S., Batth, R. S., & Kanhere, S.

(2020). Daas: Dew computing as a service for intelligent

intrusion detection in edge-of-things ecosystem. IEEE

Internet of Things Journal, 8(16), 12569-12577.

https://doi.org/10.1109/JIOT.2020.3029248

Sun, H., & Grishman, R. (2022). Lexicalized dependency

paths based supervised learning for relation

extraction. Computer Systems Science and Engineering,

 43(3). https://doi.org/10.32604/csse.2022.030759

Tan, Z., Nagar, U. T., He, X., Nanda, P., Liu, R. P., Wang,

S., & Hu, J. (2014). Enhancing big data security with

collaborative intrusion detection. IEEE Cloud

Computing, 1(3), 27-33.

 https://doi.org/10.1109/MCC.2014.53

Urmila, T. S., & Balasubramanian, R. (2019). Dynamic

multi-layered intrusion identification and recognition

using artificial intelligence framework. International

Journal of Computer Science and Information

Security (IJCSIS), 17(2).

Vinayakumar, R., Alazab, M., Soman, K. P.,

Poornachandran, P., Al-Nemrat, A., & Venkatraman, S.

(2019). Deep learning approach for intelligent intrusion

detection system. IEEE Access, 7, 41525-41550.

https://doi.org/10.1109/ACCESS.2019.2895334

https://doi.org/10.1109/TII.2020.3048791
https://doi.org/10.1109/TCC.2018.2829202
https://doi.org/10.1109/JIOT.2020.3008488
https://doi.org/10.1109/ACCESS.2021.3126535
https://doi.org/10.14419/ijet.v7i2.20.11760
https://doi.org/10.1155/2019/7130868
https://doi.org/10.1109/ACCESS.2020.3022855
http://www.ijacms.com/submittedFiles/4e880228-faf9-4bd7-bd71-d82d94f40d8c.pdf
http://www.ijacms.com/submittedFiles/4e880228-faf9-4bd7-bd71-d82d94f40d8c.pdf
https://doi.org/10.1109/JIOT.2020.3029248
https://doi.org/10.32604/csse.2022.030759
https://doi.org/10.1109/MCC.2014.53
https://doi.org/10.1109/ACCESS.2019.2895334

