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Abstract: The problem of intrusion detection in cloud environments has 

been well studied. The presence of adversaries would challenge data security 

in the cloud by generating intrusion attacks towards the cloud data and should 

be mitigated for the development of the cloud environment. In mitigating 

intrusion attacks, there exist several techniques in the literature. The method 

uses different features like frequency of access, payload details, protocol 

mapping, etc. However, the methods need to improve to achieve the expected 

performance in detecting intrusion attacks. An efficient Periodic Service 

Behavior Strain Analysis (PSBSA) is presented to handle this issue. Unlike 

earlier methods, the PSBSA model analyzes the behavior of users in various 

time frames like historical, recent, and current spans. The model focused on 

identifying intrusion attacks in several constraints, not just considering the 

current nature. The performance of intrusion detection can be improved by 

viewing the user's behavior in historical, present, and recent timespan. Unlike 

other approaches, the proposed PSBSA model considers the user's behavior 

at different times in measuring the user's trust towards intrusion detection. 

Accordingly, the proposed PSBSA model analyzes the behavior of users 

under various situations. It examines the behavior in accessing the services 

at historical, current, and recent times. The method performs Historical Strain 

Analysis (HSA) Current Strain Analysis (CSA) and Recent Strain Analysis 

(RSA). HSA analysis is performed according to the historical data, CSA is 

performed based on the current access data and RSA is performed with the 

recent access data. The model estimates various legitimacy support values on 

each analysis to conclude the trust of any user. According to the support 

values, intrusion detection has been performed. The proposed PSBSA model 

introduces higher accuracy in intrusion detection in a cloud environment. 

 

Keywords: Cloud, Cloud Security, Energy Efficiency, Intrusion Detection, 

Behavior Analysis 

 

Introduction 

The recent development in information technology has 

changed the shape of the informatics world. The 

organization has shifted its data to the cloud in order to 

maintain it. The cloud environment has become the most 

supporting entity for organizations to maintain and access 

their data without any hazards. The cloud service 

providers provide various services to access the data in the 

cloud and the registered users can access them with the 

required privilege. This supports the organizations from 

the difficulty of maintaining dedicated data servers, 

maintaining integrity, and investing higher costs.  

In reality, the cloud is a loosely coupled environment 

and the service provider knows nothing about the client 

who accesses the service. Earlier, the user had been 

verified by a Third-Party Auditor (TPA) in restricting the 

service access and many challenges were identified, like 

leakage of data and so on. As with any environment, the 

cloud faces various security threats regarding data and 

service. Different threats can be named, which target the 

services and data. Among them, intrusion attacks are the 

most dominant ones targeting the service. The presence of 

such a threat must be detected to maintain the Quality of 

Service (QoS) of the environment because it would affect 
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the service throughput and introduce latency which would 

degrade the overall QoS performance. Any service 

deployed in the cloud has been designed to work on a 

specific goal and an intrusion attack is a malicious activity 

that targets the service and data. Any service has its nature 

or protocol, which takes clear input and returns the 

specific output. Any user generates an intrusion attack, 

whether from an insider or outsider. Whoever it is, they 

target the service throughput and data behind it. If the 

malicious user succeeds with the attack, they can steal the 

data and degrade the service integrity.  

Cloud security has been viewed on different levels as 

data and service. Regarding data level security, separate 

access restriction approaches restrict malicious access. 

Also, various data encryption approaches are available 

to encode the data so the dedicated user can decode it. 

Similarly, other access restriction approaches are 

recommended by different researchers in terms of 

service level security. This article focuses on detecting 

intrusion attacks and discusses an efficient method to 

handle the issue.  

The intrusion attacks can be detected in several ways 

by enforcing rigid access restriction algorithms. Many 

access restriction approaches restrict the access of 

malicious users according to their profile-which verifies 

whether the user concerned has access to the service but 

suffers from identifying the threat when the user submits 

malformed data to the service even though he has access 

to the service. Similarly, key-based approaches are used, 

which verify the key submitted before giving access to the 

service. This approach suffers from poor performance as 

the user would submit malicious data after clearing the 

trust check. Further, attribute-based techniques verify the 

access grant for different attributes accessed by the service 

and so on. However, the performance of the methods differs 

for each of them based on the process of measuring trust 

values. Because the trust-based approach verifies the user's 

trust based on different constraints, this article presents a 

novel time-orient service-centric behavioral strain analysis 

toward effective intrusion detection.  

Problem Statement 

The presence of malicious users in the environment 

would produce an intrusion attack. The malicious user 

would be an outsider or insider but they are capable of 

producing an intrusion attack. As the service provided 

would be accessed by various users and to identify the 

presence of intrusion attacks, it is necessary to monitor 

how the user accesses the service. By enforcing the 

adequate access restriction approaches, the user will be 

filtered in the initial stage, but when the service fails, it is 

necessary to find the intrusion attack and identify who 

generates the attack, or it is essential to conclude the 

presence of an intrusion attack. Energy efficiency is the 

primary concern in determining intrusion attacks suitable 

for loosely coupled service-orient environments. For 

example, to perform intrusion detection in mobile 

networks that access services through different devices, 

energy efficiency becomes a dominant entity that must be 

considered to improve intrusion detection. 

Contribution 

With the consideration to improve the performance of 

detecting intrusion attacks in the cloud, a novel model is 

described in this study. By analyzing the behavior of the 

user, you can identify the presence of an intrusion attack 

directly. You cannot directly say that the user has been 

involved in an intrusion attack straightaway. Even a 

genuine user would generate the request with incomplete 

features due to some mistakes in keyboarding. All these 

encourage the analysis of the behavior of the user to be 

performed in identifying the presence of an intrusion 

attack. Considering all these, the proposed PSBSA model 

analyzes the behavior in various strains to conclude the 

existence of intrusion attacks. Unlike earlier methods, the 

PSBSA model analyzes the behavior of users in various 

time frames like historical, current, and recent, which 

helps to achieve higher accuracy in intrusion detection. 

The model analyses the user behavior in the historical 

strain as HAS performs Recent Strain Analysis (RSA) and 

performs Current Strain Analysis (CSA) towards effective 

intrusion detection. Integrating the proposed model with 

the environment improves service performance and 

overall QoS performance has been hiked. The detailed 

approach is presented in this section.  

Several articles have analyzed and discussed the 

problem of intrusion detection in the cloud. This section 

discusses some of the more popular and effective 

approaches for the problem considered.  

An Artificial Intelligence (AI) based intrusion 

detection scheme is presented in Shrivastav and Dhawan 

(2018) which uses the firefly algorithm to optimize the 

data and uses a support vector machine to classify multi-

class problems. A sequential minimal optimization 

technique is presented for intrusion detection, which uses 

k-means clustering for grouping similar records and 

applies Sequential Minimal Optimization (SMO) for 

classification (Chandra et al., 2019). An Intelligent 

Intrusion Detection Framework (IIDF) is presented in 

Urmila and Balasubramanian (2019) and uses header data 

and payload information in detecting intrusion attacks. An 

active learning-based threat detection approach is 

presented by Ramaiah et al. (2018) which continuously 

monitors the systems for their activities and applies 

artificial intelligence to detect the intrusion attack. The 

method uses the feedback values of different 

administrators in detecting the attack. A snort-based 

intrusion detection system is presented in Olanrewaju et al. 

(2018) which uses a set of rules to define the threats and 
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based on that, the method collects the sensor details to 

perform threat detection. The technique works towards 

various categories of attacks. The process uses multiple 

traffic information in classifying the threats. A deep 

learning model for an Intrusion Detection System (IDS) is 

presented by Almi'ani et al. (2018) focusing on unlearned 

attacks. The method continuously monitors the behavior of 

nodes to perform intrusion detection. A self-organized map-

based intrusion detection scheme is presented by Ren et al. 

(2019) which uses hierarchical agglomerative clustering and 

sensitivity and consumption time in detection. A hybrid 

optimization technique with machine learning has been 

shown by Divyasree and Sherly (2018) to detect intrusion 

detection. The DO_IDS (Deep Organized Intrusion 

Detection System) algorithm uses isolation forest to 

eliminate the outliers and the genetic algorithm is used in 

feature selection. Also, the random forest has been used 

as a classifier. An ensemble Core Vector Machine (CVM) 

based intrusion detection scheme is presented in 

Vinayakumar et al. (2019) which uses ensemble Core 

Vector Machine (CVM) towards intrusion detection and 

is capable of detecting different threats. A neural network 

ensemble-based intrusion detection scheme is presented 

in Ludwig (2019) capable of detecting various threats.  

A machine learning-based hybrid intrusion detection 

system is presented by Aljamal et al. (2019) which works 

based on monitored events. The possibilities are a set of 

network activities raised by various network activities. 

The method groups the events using the K means 

algorithm and performs a Support Vector Machine (SVM) 

for classification.  

A trust-based game theoretical model is presented by 

Abusitta et al. (2018) for intrusion detection in the cloud. 

The method works according to the game theory and 

works collaboratively to perform intrusion detection. A 

behavior-based network intrusion detection scheme is 

presented by Ghanshala et al. (2018) which uses statistical 

learning and works according to the traffic behavior of 

different nodes in identifying the threat. A Cooperative 

Distributed Intrusion Detection System (C-DIDS) is 

presented by Ghribi et al. (2018) which uses the rates and 

delay features in real-time detection.  

A self-adaptive genetic algorithm-based deep neural 

network IDS is presented by Chiba et al. (2019) which 

trains the network and uses a genetic algorithm in feature 

selection. The services provided by any network are 

accessed by various users who are eligible to face attacks at 

low rates. Low-rate attacks are handled and mitigated using 

the multi-threshold mechanism (Baskar et al., 2021). 

A Virtual Machine Introspection (VMI) based 

security system (VM guard) is presented in Mishra et al. 

(2018) to support cloud systems that extract the features 

using term frequency and inverse document frequency 

approaches. The random forest has been used for 

classification. A Deep Blockchain Framework (DBF) is 

presented for intrusion detection by Alkadi et al. (2020) 

which uses smart contracts and blockchain in privacy 

preservation. The method uses a Bidirectional Long 

Short-Term Memory (BiLSTM) deep learning algorithm 

in threat detection.  

A Vehicular-Edge Computing (VEC) based approach 

is presented by Mourad et al. (2020) for detecting 

intrusion attacks in vehicular networks. A collaborative 

IDS is presented by Tan et al. (2014) to handle 

vulnerabilities in accessing big data. Mishra et al. (2021) 

present Virtual Machine Introspection (VMI) to monitor 

granular attacks in system calls.  

An efficient approach is designed to handle a variety 

of attacks (Nadeem et al., 2021) which monitors the 

devices for attacks and the rate of attacks. According to 

that, threat detection is performed and addresses the 

problem. An auto Isolation Forest (IF) based approach is 

presented in Sadaf and Sultana (2020) which uses deep 

learning Auto Encoder algorithm in feature extraction 

and isolation forest for feature selection. Further, the 

method performs binary classification according to the 

features selected.  

A fuzziness-based semi-supervised learning scheme is 

presented for intrusion detection by Gao et al. (2018), 

which generates the ensembles using the labeled data. The 

fuzziness-based approach is used in classification. A Dew 

Computing as a Service (DaaS) for intelligent intrusion 

detection in Edge of Thing (EoT) ecosystems is presented 

by Singh et al. (2020). The method uses deep belief 

networks in classification. A secure approach to isolate 

malicious nodes according to the actual time transmission 

features is presented by Fatani et al. (2021). 

Kasongo (2021) a Convolution Neural Network 

(CNN) based feature extraction scheme is presented, 

which also adapts short Search Optimization (TSO) for 

feature selection. The Transient Search Optimization 

Differential Evolution (TSODE) method uses a differential 

evolution algorithm in classification. A multi-level intrusion 

detection scheme is presented by Mishra et al. (2021) which 

performs intrusion detection in multiple levels to perform 

classification. Abdel-Basset et al. (2021) a genetic 

algorithm-based IDS for Industrial Internet of Things (IIoT) 

is presented and uses random forest for classification. The 

genetic algorithm is used for feature selection. In Sun and 

Grishman (2022) an introspection-based security 

approach called VMS held is was given, which uses the 

behavior of runtime processes. The method extracts the 

features of system calls and uses PSO and random forest 

classifiers in detecting the intrusion attack. An Intelligent 

Forensics System-based Deep learning model (Deep IFS) 

is presented for intrusion attacks in IIoT traffic. A residual 

connection between layers is designed to prevent 

information loss. The method performs intrusion 
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detection by distributing the traffic data across fog nodes 

and sharing it between the nodes. A Lexicalized 

Dependency Path (LDP) based training representation is 

presented, which handles the sparsity problem by using 

entity types and subtypes to refine the model. Supervised 

learning is used in classification.  

All the methods discussed above suffer from poor 

performance in detecting intrusion attacks in a cloud 

environment. Accordingly, this article presents a novel 

Periodic Service Behavior Analysis (PSBSA) model for 

intrusion detection. The model differs from other 

approaches as it measures the user's trust by analyzing the 

user's behavior in different time domains like historical, 

recent, and current timestamps. This helps the proposed 

approach in improving the accuracy of intrusion detection. 

Materials and Methods 

The proposed Periodic Service Behavior Strain model 

(PSBSA) fetches the cloud access traces and performs 

preprocessing. The preprocessing involves identifying the 

features and eliminating the traces with noisy and missing 

features. Further, the traces are split into different time 

stamps and historical, recent, and current strains are 

analyzed. The method performs Historical Strain Analysis 

(HSA), Current Strain Analysis (CSA), and Recent Strain 

Analysis (RSA). HSA analysis is performed according to 

the historical data, CSA is performed based on the current 

access data and RSA is performed with the recent access 

data. Each strain analysis returns a legitimate score using 

which the method computes the legitimate score for the 

user. Based on the value of the legitimate score, the 

technique performs intrusion detection. The detailed 

approach is discussed in this section. 

The architecture of the proposed PSBSA model has 

been pictured in Fig. 1 and the steps involved in the 

analysis are detailed in this section. 

 

 
 
Fig. 1: Architecture of PSBSA intrusion detection model 

Preprocessing 

The cloud trace belongs to access performed by 

various users and is used in preprocessing. The service 

handler has fetched the trace, which finds the set of 

features present in entire traces. Further, each trace has 

been checked for all features identified. The traces which 

have missing features are removed from the trace set. 

Second, the method determines the set of all-time stamps 

in months, years, and weeks. The traces are split into 

several sub-sets according to the time stamps identified. 

The traces split based on the time stamp have been used 

to perform further analysis towards intrusion detection. 

Consider the cloud access trace CaT contains a set of 

traces and then the method finds a set of all features in all 

the traces as follows: 
 
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑡 𝐹 𝑆𝑒𝑡 =  𝑠𝑖𝑧𝑒(𝐶𝑎𝑇)𝐹𝑠𝑒𝑡 (1) 
∪ (∅(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∈ 𝐶𝑎𝑇(𝑖)) ∩ 𝐹𝑠𝑒𝑡) 𝑖 = 1  
 

Now, each trace Ti belongs to CaT is verified for the 

containment of features present in F Set as follows: 
 
Flag = 𝑠𝑖𝑧𝑒(𝐹 𝑆𝑒𝑡) 𝑖𝑓𝑇𝑖 ∈ 𝐹𝑠𝑒𝑡(𝑖)𝑡ℎ𝑒𝑛 ? 1: 0 𝑖 = 1 (2) 
 

The above equation checks the access trace Ti for the 

containment of all the features of the F set, if the feature 

is not present in the trace Ti, then the equation returns 0 

otherwise, it will return a value of 1. so that the flag value 

has been used as the result of verification towards the 

selection of trace. The flag value has been used to verify 

whether the feature is available in the trace. If the flag is 

0, the trace does not contain the feature. Otherwise, it has 

the feature. This supports noise removal in preprocessing. 

If the value returned by Eq. (2) is 0, then the trace Ti 

will be removed from the access trace set CaT. 

Further, the set of time stamps present in the trace CaT 

is identified as follows: 
 
𝑇𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝 𝑠𝑒𝑡 𝑇𝑠 = T ∪ (∅(𝑇𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝 ∈ (3) 
𝐶𝑎𝑇(𝑖)) ∩ 𝑇𝑠   
 

//The time stamp is identified according to the number 

of months, years, weeks, and days. You can split the trace 

into any time stamp according to available traces. 

Now, the traces CaT has been split into several time 

stamp trace TsT as follows: 
 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝 𝑠𝑒𝑡. 𝑇𝑠𝑇 =
𝑠𝑖𝑧𝑒(𝑇𝑠) 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝑠𝑒𝑡(𝑇𝑠(𝑖)) 𝑖 = 1 (4) 
 

Finally, split the traces according to time stamp as 

follows: For example, the traces belonging to time stamp 

Tsi are identified as follows: 
 
𝑇𝑠𝑇(𝑇𝑠𝑖)  =  𝑆𝑖𝑧𝑒(𝐶𝑎𝑇) 𝑇𝑠𝑇 ∪ (𝐶𝑎𝑇(𝑖). (5) 
𝑇𝑖𝑚𝑒 𝑆𝑡𝑎𝑚𝑝 = 𝑇𝑠𝑖) 𝑖 = 1  
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The time stamp traces generated are used to analyze 

various strains to perform intrusion detection. The traces 

contain the time of generation, which has been used to 

split the traces under multiple timestamps. Also, the entire 

duration has been divided into months, weeks, and years. 

This is how the traces are separated according to the time 

stamp. The cloud access trace would contain several 

features like the time of access, the service accessed, the 

status of the service, a payload of data submitted, the 

completeness of the service, the user who accessed the 

service, and so on. The method first identifies what the 

features present in the trace overall are. Accordingly, the 

traces with incomplete features are removed and the traces 

are split according to the time they were created to support 

the analysis in various forms. To keep the research, the traces 

are divided under different time stamps when they are made. 

So, by reading the time stamp traces belonging to various 

time stamps, the method performs other analyses to measure 

the user's trust towards intrusion detection. 

Historic Strain Analysis (HAS) 

The historic strain analysis algorithm measures the 

Historical Legitimacy Support (HLS) based on the 

behavior of the user in accessing the service with genuine. 

To calculate the value of HLS, the method considers the 

service access with two constraints: One is honest in 

following the protocol and the other is how the user 

supports the service growth. According to this, the method 

first measures the value of Protocol Support (PS) based on 

the number of times the user accessed the service and the 

number of times the user followed the protocol. Similarly, 

according to corollary two, the Service Growth Support 

(SGS) is measured based on the number of times the 

service is accessed and several times the service is 

completed. Using these two values, the method computes 

the value of HLS to support intrusion detection. 

Pseudocode  

Give : Time stamp trace TST, Time stamp set Ts 

Obtai : HLS 

Start 
Read TST, Ts 

For each timestamp Tsi:  

 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑃𝑠 =
𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑖)) 𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇(𝑇𝑠𝑖(𝑖)).𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝑆𝑡𝑎𝑡𝑒==1) 𝑖=1 

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖))
 (6) 

 
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐺𝑟𝑜𝑤𝑡ℎ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑆𝐺𝑆)  =
𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑖)) 𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇(𝑇𝑠𝑖(𝑖)).𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑆𝑡𝑎𝑡𝑒==1) 𝑖=1 

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖))
  (7) 

 
End: 

 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐻𝐿𝑆 =  
𝑆𝑖𝑧𝑒(𝑇𝑠) ∑ 𝑇𝑠(𝑖).𝑃𝑠𝑛

𝑖=1  

𝑠𝑖𝑧𝑒(𝑇𝑠)
× (8) 

 
𝑆𝑖𝑧𝑒(𝑇𝑠) ∑ 𝑇𝑠(𝑖).𝑆𝐺𝑆𝑛

𝑖=1  

𝑠𝑖𝑧𝑒(𝑇𝑠)
 

Stop 

The historic strain analysis approach measures the 

protocol support and service growth support the user 

delivered at various time stamps to measure the value of 

HLS. As the traces are split under different time stamps and 

based on the total time stamps identified, the method finds 

the traces produced at the specific time stamp. For the traces 

of timestamp, the process computes Protocol Support (PS) 

and Service Growth Support (SGS) to support the 

measurement of HLS. Protocol support is the measure that 

represents the trust of the user in following the service 

protocol. Service growth support is the value measured 

based on the number of times the user completed the 

service for a specific number of service accesses. The 

historic strain analysis algorithm computes the value of 

Protocol Support (PS) and Service Growth Support (SGS) 

to add the value of HLS for the user. According to the value 

of HLS, the method would perform intrusion detection.  

Recent Strain Analysis (RSA) 

The recent strain analysis algorithm considers the 

frequency of service access made by any user at various and 

current time stamps. Also, the analysis finds the payload 

support at different time stamps and recent time stamps. 

Similarly, the method considers the protocol strain in other 

and current time stamps. The method computes the 

Frequency Strain Value (FSV) based on the value of the 

frequency of access at historical and recent times. Similarly, 

the Payload Strain Value (PSV) is measured based on the 

mean payload at historical times and the mean payload at 

current times. The Frequency Strain Value (FSV) is the 

measure that represents the access frequency of the user 

towards the service and the number of times it has been 

going malicious. It is measured based on the number of 

times the user accessed the service in recent times for the 

overall number of times and several times it has been 

identified as malicious at the current time and the number 

of times it has been identified as malicious in general times. 

Similarly, the Payload Strain Value (PSV) is measured 

based on the number of times the user followed the payload 

metrics in the recent time for the number of times the user 

tracked in overall time. The number of times it has been 

identified as malicious in the current time with several times 

it has been identified as malicious in overall time. Using 

these values, the method computes the value of Recent 

Legitimate Support (RLS) to support intrusion detection. 

Pseudocode 

Compute Frequency Strain Value FSV = 
𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑅)) 𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇(𝑇𝑠𝑅(𝑖)).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆) 𝑖=1 

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑅))

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑖)) 𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇(𝑇𝑠𝑖(𝑖)).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆) 𝑖=1 

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖))

×

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑅)) 𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇(𝑇𝑠𝑅(𝑖)).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑆𝑡𝑎𝑡𝑒==𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠) 𝑖=1 

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖𝑅))

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑖)) 𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇(𝑇𝑠𝑖(𝑖)).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑆𝑡𝑎𝑡𝑒==𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠) 𝑖=1 

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖))

 (9) 
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where, TSR is the recent trace set, the sub-set of the trace set 

includes traces of little time stamps generated in recent times.  
Compute Payload Strain value PSV: 

 

𝑃𝑆𝑉 = 
𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑅)) 𝑆𝑢𝑚(𝑇𝑆𝑇(𝑇𝑠𝑅(𝑖)).𝑃𝑎𝑦𝑙𝑜𝑎𝑑) 𝑖=1 

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑅))

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑖)) 𝑆𝑢𝑚(𝑇𝑆𝑇(𝑇𝑠𝑖(𝑖)).𝑃𝑎𝑦𝑙𝑜𝑎𝑑) 𝑖=1 

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖))

×

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑅)) 𝑆𝑢𝑖𝑚(𝑇𝑆𝑇(𝑇𝑠𝑅(𝑖)).𝑃𝑎𝑦𝑙𝑜𝑎𝑑==𝑆 && 𝑆𝑡𝑎𝑡𝑒==𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠) 𝑖=1 

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖𝑅))

𝑆𝑢𝑚𝑆𝑖𝑧𝑒(𝑇𝑆𝑇(𝑇𝑠𝑖)) (𝑇𝑆𝑇(𝑇𝑠𝑖(𝑖)).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑆𝑡𝑎𝑡𝑒==𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠) 𝑖=1 

𝑠𝑖𝑧𝑒(𝑇𝑠𝑇(𝑇𝑠𝑖))

 (10) 

  
End: 

 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑅𝐿𝑆 =
𝑆𝑖𝑧𝑒(𝑇𝑠) ∑ 𝑇𝑠(𝑖).𝐹𝑆𝑉𝑛

𝑖=1  𝑖=1 

𝑠𝑖𝑧𝑒(𝑇𝑠)
× (11) 

 
𝑆𝑖𝑧𝑒(𝑇𝑠) ∑ 𝑇𝑠(𝑖).𝑃𝑆𝑉𝑛

𝑖=1  

𝑠𝑖𝑧𝑒(𝑇𝑠)
  

 

Stop 

The recent strain analysis algorithm measures the 

user's trust in submitting proper payload to the service 

point by computing the payload strain value and the value 

frequency strain value FSV to represent the user's trust in 

the frequency of access. By analyzing a user's trust 

through recent strain analysis, the user behavior in recent 

times can be identified and how the user behaves in recent 

times can be monitored. This would help to determine the 

malicious user most concretely. As the method computes 

the Payload Strain Value (PSV) and Frequency Strain 

Value (FSV) to measure the value of RLS, the presence 

of intrusion detection can be identified effectively.  

Current Strain Analysis (CSA) 

The current strain analysis algorithm monitors the user's 

behavior toward the legitimacy of accessing the service 

based on the user's access profile and the access grant for the 

user. According to that, the method computes Grant Strain 

Value (GSV). The GSV value is measured based on the 

average contribution on service access identified from the 

current time trace. The average grant placed on service 

access with the overall trace. Similarly, the method computes 

the user's Malformed Strain Value (MSV) towards the 

service in historical and current times. The value of MSV is 

measured by calculating the average malicious request 

produced by the user at the present trace with the average 

malicious access created by the user at the overall time trace. 

Using both these values, the method computes the value of 

CSA to support the detection of intrusion attacks. 

Pseudocode 

Given : Time stamp Trace TsT, Time stamp set Ts 

Obtain : CLS 

Start 

 
Compute Grant Strain Value (GSV) = 
𝑆𝑖𝑧𝑒(𝑅𝑇𝑆) ∑ 𝑅𝑇𝑆(𝑖).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑅𝑇𝑆(𝑖).𝐺𝑟𝑎𝑛𝑡==𝐹𝑎𝑙𝑠𝑒𝑛

𝑖=1  

𝑆𝑖𝑧𝑒(𝑅𝑇𝑆)

𝑆𝑖𝑧𝑒(𝑇𝑠𝑇) ∑ 𝑇𝑆𝑇(𝑖).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑇𝑆𝑇(𝑖).𝐺𝑟𝑎𝑛𝑡==𝐹𝑎𝑙𝑠𝑒𝑛
𝑖=1  

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇)

 (12) 

Compute Malicious Strain Value (MSV) = 
𝑆𝑖𝑧𝑒(𝑅𝑇𝑆) ∑ 𝑅𝑇𝑆(𝑖).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑅𝑇𝑆(𝑖).𝑆𝑡𝑎𝑡𝑒==𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝑛

𝑖=1  

𝑆𝑖𝑧𝑒(𝑅𝑇𝑆)

𝑆𝑖𝑧𝑒(𝑇𝑠𝑇) ∑ 𝑇𝑆𝑇(𝑖).𝑆𝑒𝑟𝑣𝑖𝑐𝑒==𝑆 && 𝑇𝑆𝑇(𝑖).𝑆𝑡𝑎𝑡𝑒==𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝑛
𝑖=1  

𝑆𝑖𝑧𝑒(𝑇𝑆𝑇)

 (13) 

 
Compute CLS = GSV × MSV (14) 
 

Stop 

The current strain analysis algorithm measures GSV and 

MSV values according to the strain values computed over 

malicious access and the classified values of the service 

access. The value of GSV is calculated based on the number 

of grants given to the user and the number of features 

accessed by the user. Similarly, the value of MSV is 

measured according to the number of malicious requests 

generated by the user among the number of malicious 

requests identified. Using both values, the method 

computes the value of CLS to support intrusion detection. 

By analyzing the user's trust in the current time stamp, like 

the current week, current month, and current year, the 

performance of intrusion detection can be identified 

effectively. It shows how the user behaves at present, which 

speaks to the user's trust in the most concrete way. 

FSBSA Intrusion Detection 

The proposed model performs intrusion detection by 

performing strain analysis at the different time stamps. To 

achieve this, the access trace has been used and preprocessed 

initially. Further, the method performs historical strain 

analysis, recent strain analysis, and current strain analysis. 

Each analysis returns a legitimate score to support intrusion 

detection. The HAS algorithm returns the value of HLS. 

The RSA algorithm returns RLS and the CSA algorithm 

returns CLS. Using these values, the method computes the 

value of Legitimacy Support (LS) based on the 

classification of user requests. The Legitimacy Support 

(LS) represents the user's trustworthiness in accessing the 

service and it has been measured by computing LS based 

on the results of various strain analyses.  

Pseudocode 

Give : Cloud access Trace CaT, service request SR 

Obtain : Boolean 

Start 

Read CaT and SR. 

Service Requested sreq = Request ∈ 𝑆𝑅 

Time Stamp Trace TST = perform   

  preprocessing (CaT) 

HLS = Perform historical strain 

  analysis (TST, time  

  stamp set Ts)  

RLS = Perform recent strain  

  analysis (TST, TS) 

CLS = Perform current strain 

  analysis (TST, TS) 
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Compute LS = 
𝑅𝐿𝑆

𝐻𝐿𝑆
𝐶𝐿𝑆 (15) 

 

If LS>Th, then 

Return true 

Else 

Return false 

End 

Stop 
 

The above-discussed algorithm performs various 

strain analyses to compute different legitimacy support 

values. Based on the values obtained, the method 

computes the legitimate support to perform intrusion 

detection. The threshold value is set according to the 

frequency of the threat identified and has been adjusted in 

a dynamic manner. The threshold for decision-making is 

computed dynamically according to the rate of threat 

determined. If there is a higher threat ratio, then the value 

of the threshold will be higher. Otherwise, it will result in 

a moderate level. 

Results and Discussion 

 The proposed Periodic Service Behavior Strain 

Analysis (PSBSA) model-based intrusion detection 

scheme has been implemented and evaluated for its 

performance under various constraints. The model has 

been implemented with Python and for the performance 

evaluation, the data set collected in Microsoft Azure has 

been used. The model has used the access trace 

maintained by different cloud models and environments 

to perform the analysis. The performance of the model has 

been measured on various parameters and compared with 

the results of other approaches. This section details the 

results obtained and the parameters considered for the 

evaluation presented in Table 1. 

The constraints considered for the evaluation of the 

proposed approach are Table 1. The methods are 

evaluated for their performance on the following factors. 
 
Table 1: Evaluation details 

Parameter Value 

Tool used  Python 
Data set Amazon 
Platform  Microsoft azure 
Total records 1 million 
No of services 100 
No of users 5000 
 
Table 2: Analysis of intrusion detection accuracy 

 Intrusion detection accuracy % 

 ---------------------------------------------------- 

No of records 3 Lakhs 5 Lakhs 10 Lakhs 

GA-RF 69 74 79 

VMShield 73 77 82 

Deep-IFS 79 85 87 

PSBSA 87 93 98 

Intrusion Detection Accuracy 

The method's accuracy in finding the presence of an 

attack is measured according to the total number of attacks 

generated and several instances detected successfully. 

Also, it has been measured based on the True Positive 

(TP) and True Negative (TN) classifications. It has been 

measured as follows: 
 

𝐼𝐷𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑡𝑎𝑐𝑘𝑠
100 (16) 

 
The performance in intrusion detection is measured for 

various approaches according to the traces available. In 

each test case, the performance is computed and compared 

with multiple methods in Table 2. The proposed PSBSA 

approach achieves higher intrusion detection accuracy 

than other techniques. The increasing number of traces 

would greatly help intrusion detection performance. The 

performance of intrusion detection is directly proportional 

to the number of traces in the set. 

The performance of various methods at detecting 

intrusion attacks is measured with multiple records in the 

data set; it's shown in Fig. 2. The proposed PSBSA model 

achieves higher performance in intrusion detection than 

other techniques. As the proposed PSBSA model performs 

intrusion detection by analyzing the behavior of users in 

different time stamps in accessing the services, the PSBSA 

model achieves higher intrusion detection accuracy. 

False Ratio in Intrusion Detection 

The false ratio in intrusion detection is the measure 

that shows the false classification of different requests. It 

is measured according to the number of True Negative 

(TN) and False Positive (FP) classifications made by the 

algorithm. It has been calculated as follows: 
 

𝐹𝑅𝐼𝐷 =
𝐹𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑡𝑎𝑐𝑘𝑠
100 (17) 

 

The performance of methods in false classification or false 

ratio in detecting the intrusion detection attack is measured by 

the availability of a different number of traces in the data set. 

In each test case, the performance is measured for various 

approaches and compared in Table 3. The proposed PSBSA 

has produced less false ratio performance in intrusion 

detection than other approaches. The false detection ratio 

gets reduced with the increased number of traces in the set. 

The performance of various methods at a false ratio in 

intrusion detection is measured and compared in Fig. 3. 

The proposed PSBS model introduces less false detection 

than other techniques.  

Time Complexity 

The time complexity of the intrusion detection scheme 

is measured according to the total time taken by the 

approach in detecting the intrusion attack.  
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Fig. 2:  Analysis of intrusion detection accuracy 
 

 
 
Fig. 3: Analysis of false ratio in intrusion detection 

 

 
 
Fig. 4: Analysis of time complexity in intrusion detection 
 
Table 3: Analysis of false ratio in intrusion detection 

 False ratio in intrusion detection % 

 ---------------------------------------------------- 

No of records 3 Lakhs 5 Lakhs 10 Lakhs 

GA-RF 31 26 21 

VMShield 27 23 18 

Deep-IFS 21 15 13 

PSBSA 13 7 2 

Table 4: Analysis of time complexity in intrusion detection 

Time complexity in intrusion detection in seconds 

---------------------------------------------------------------------------- 

No of records 3 Lakhs 5 Lakhs 10 Lakhs 

GA-RF 33  56  89 

VMShield 28  43  78 

Deep-IFS 25  35  67 

PSBSA 17  27  42 

 

The value of time complexity introduced by various 

approaches in intrusion detection has been measured and 

presented in Table 4. The PSBSA model introduces less 

time complexity in all the cases. The increasing number 

of traces does not significantly increase the time 

complexity and only has a negligible effect. 

The performance of time complexity in intrusion 

detection has been measured for different methods with 

different records calculated and presented in Fig. 4. The 

proposed PSBSA model introduces less time complexity 

than other approaches. 

Conclusion 

This study presented a novel Periodic Service Behavior 

Strain Analysis (PSBSA) towards intrusion detection in a 

cloud environment. The proposed model analyzes the user's 

behavior in accessing the service at different historical, 

recent, and current times. According to the analysis values, 

the method computes the value of legitimate support for the 

user. Based on the importance of legitimate support, the 

process performs intrusion detection. The inclusion of 

behavior analysis in various time stamp support the proposed 

PSBSA model to achieve higher performance in intrusion 

detection by up to 97% with the least time complexity. 
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