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Abstract: In the domain of underwater image processing, the images 

obtained in underwater lighting conditions are of very poor in quality and 

contain distortions due to the scattering of lights and color absorption of 

images in water. This makes it difficult to analyze these images for scientific, 

commercial and military purposes. Therefore, there is a need for efficient 

techniques that can remove the noise from these images. In this study, the 

experimental study of regulated autoencoders namely, denoising 

autoencoders, sparse autoencoders, deep autoencoders, variational 

autoencoders and convolutional autoencoders for noise removal in 

underwater images have been performed and the. These models have been 

implemented in Python, trained tested and evaluated on the dataset known as 

Enhancing Underwater Visual Perception (EUVP) image dataset. Our results 

show that Denoising Autoencoder (DAE) can effectively remove noise from 

underwater images, with a good structural index and high peak signal-to-

noise ratio. The sparse autoencoder was fine-tuned to fit for underwater 

image denoising. However, our study shows that the obtained results show 

that Denoising Autoencoder (DAE) can enhance the quality of underwater 

images visually and effectively denoise the images.  

 

Keywords: Autoencoder, Convolutional Autoencoder, Deep 

Autoencoder, Denoising Autoencoder, PSNR-Peak Signal to Noise Ratio, 

Sparse Autoencoder, SSIM-Structural Similarity Index Measure, 

Variational Autoencoder 

 

Introduction 

Underwater image processing plays a vital role in the 

real world, in studying the pattern and behavior of the 

marine world. Due to light absorption and scattering in 

aquatic environments, underwater images generally suffer 

from low contrast, poor visibility and color distortion. 

With technological improvements, underwater image 

study has become a good field of study for researchers 

who would ensure to preservation of the underwater 

ecosystem. The marine ecosystem gives us an insight into 

the marine habitat and vegetation but also help a lot in 

scientific research as well. Underwater environments are 

subjected to poor lighting conditions, water turbidity, 

camera sensors that were used to capture the pictures, 

underwater motions and blurring effects. So eventually, 

there could be various forms of noises and distortions in 

the image that is captured. Efficient underwater image 

denoising is critical for various applications like marine 

biology, underwater exploration research and 

archaeology. Image noises refer to undesired fluctuations 

in color that obscure details in the captured image. Noise 

in the image may arise from underexposure, when pixels 

in the intended image have little light variation to report 

but are being over-amplified by higher ISO settings. In 

addition, a variety of other problems, such as heat from 

the sensors or outside interference, can make sensors 

vulnerable and cause noise in the final image. The ways 

that light scatters and absorbs in water influence the 

overall performance of underwater imaging systems. 

Additional substances like dissolved organic materials or 

tiny visible floating particles can also have absorption 

and scattering effects in addition to water. The effects 

of absorption and scattering are amplified by the 

presence of floating particles, often known as marine 

snow (Hou et al., 2015). 

Artificial lighting can expand the visibility range, but 

it tends to illuminate the environment unevenly, creating 

a brilliant spot in the middle of the image with a badly 

lighted area surrounding it. Additionally, depending on 

their wavelengths, colors disappear one by one as the 

amount of light diminishes with depth. The limited range 

visibility and contrast with uneven lighting and blurring, 

the bright artifacts, decreased colors and noise effects can 

all affect the underwater images. For using the underwater 
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images, it is crucial to eliminate these disturbances. 

Underwater images can be further used for studying 

underground volcanoes to tectonic plate activities. It is 

believed that most of the prehistoric earth data is 

preserved under the sea. Images are the only way most 

researchers have access to that data. Hence by enhancing 

the images not only the researchers can be benefitted but 

also, but also many mysteries of the earth we live in can 

be understood. 

 Image restoration aims to improve the visual quality 

of an image by reconstructing the original image which 

was a degraded or noisy image. This can be achieved with 

image enhancement filters, designed to minimize the 

effects of various degradations such as noises due to 

sensors, blur effects, inappropriate focus of the camera, 

relative motion of the camera and atmospheric pressure. 

Unlike image enhancement, which is subjective relying 

on the user's preferences, image restoration is an objective 

process based on mathematical or probabilistic models of 

image degradation. In general practice, the images that 

were denoised can be denoised using median filters, 

gaussian blur filters, etc. The dataset that has been pre-

processed using various filters can be fed into an 

autoencoder for denoising. 

An autoencoder disregards the signal noise and creates 

an input representation for the given input data by 

reducing the dimensionality of the input. It is a type of 

unsupervised neural network to learns and identifies the 

crucial patterns in an image. A reconstruction side is also 

taught along with the reduction side and it involves an 

autoencoder to attempt and create an image representation 

by minimizing the encoding data and creating an output 

like the input image without the noise. This enables 

autoencoders to detect crucial data points. A denoising 

autoencoder is a type of autoencoder that does not allow 

the neural network to learn the identity function of the 

input image. The implementation of autoencoders has 

many issues, including a lack of training data, training for 

the incorrect use case, too lossy and imprecise decoding, 

misinterpretation of critical variables and an inadequate 

bottleneck layer. Hence, all these must be kept in mind 

before using autoencoders, the purpose of a denoising 

autoencoder is not to resemble the identity function. 

Defective data can be recovered using a denoising 

autoencoder. It may be employed as a feature selection 

tool because it reduces noise by filtering it out. 

Contribution of the Paper 

The main contributions of the work are: 
 

• Detailed experimental study on five different types of 

regulated autoencoders such as denoising 

autoencoder, sparse autoencoder, deep autoencoder, 

variational autoencoder and convolutional 

autoencoders has been done on underwater images and 

have concluded that the Denoising Autoencoders 

(DAE) is best suited for noise removal in underwater 

images based on the PSNR and SSIM metrics 

• The sparse autoencoder was not appropriate for 

underwater images. So, it has been fine-tuned in such 

a way as to work for underwater images by adding 

dropout layers. Though the sparse autoencoder has been 

modified and fine-tuned, the Denoising Autoencoder 

(DAE) still had a high PSNR value and works best in 

noise removal. The details have been briefed in the 

sections below 
 

The paper has been written in such a way the literature 

review section discusses the existing techniques available 

for the enhancement of underwater images. The dataset 

information and the experimental setup are discussed in 

the next section. The experimental study of autoencoders 

with under-water images in which the structure of each of 

the five different types of autoencoders for denoising the 

image dataset namely denoising autoencoder, sparse 

autoencoder, deep autoencoder, convolutional and 

variational autoencoder have been discussed elaborately 

in the further sections. The sparse autoencoder was also 

tuned so that denoising could be done on underwater 

images by making modifications to the layers. The details 

are briefed in the sparse autoencoder section along with 

the validation details that have been considered. The 

results that have been obtained for PSNR and SSIM for 

the five autoencoders and the output images for the five 

autoencoders are discussed in the result analysis section. 

The conclusions are based on our outputs obtained and 

the future directions that could be done from this study 

are elaborated. 

Over the past years, underwater images have been 

analyzed and many researchers have been trying to 

enhance the image resolution and contrast and remove the 

noise from underwater images. A survey on denoising 

techniques over the past years has been done and briefed 

in this review. 

Dabov et al. (2007) demonstrated an image-denoising 

method based on an improvised sparse representation in 

the transformation domain. The results of the experiments 

showed that this approach performs better than most 

algorithms. Denoising 1-D signals, video and pictures 

were the few examples of applications where the 

recommended method might be modified to make use of 

exceedingly sparse signal representations. 

Kalantari et al. (2015) proposed a nonlinear regression 

model, based on a multilayer perceptron neural network, 

to understand the intricate link between optimum filter 

parameters and noisy scene data. The trained network 

produced filtered images quickly with different effects 

like depth of field, blurred motion, area illumination and 

glassy reflections. The authors had done noise removal in 

digital images using a non-linear PDE-based algorithm. 
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The results showed that the noise present has been largely 

removed while keeping the edges intact. Overall, the 

authors have highlighted the potential of machine learning 

techniques for generating high-quality filtered images in 

a short time frame. 

The researcher in his work Gondara (2016) had 

implemented Convolutional Denoising Autoencoders 

(CDAE) for medical image denoising. The approach was 

based on a deep learning architecture that learned from 

large datasets and extracted the features that were 

essential for denoising. Traditional denoising techniques 

were compared to the CDAE approach and the results 

showed that the CDAE methodology outperforms existing 

techniques in terms of both objective and subjective 

evaluations. The proposed approach for medical image 

denoising was useful for enhancing image quality and 

facilitating diagnosis.  

Skribtsov and Surikov (2016) have suggested a 

regularization method for training sparse denoising 

autoencoders for designing a model for image denoising 

and inpainting. This model gave greater stability to the 

denoising methods. The method processed all the images 

gathered from various types of sensors such as visible 

spectrum and multispectral sensors. Small-sized objects 

and identical areas can be effectively stripped of noise 

using linear and nonlinear filters, but not applicable to 

heterogeneous areas. To address this limitation (Jeelani and 

Veena, 2017) used an optimum filter that utilized locally 

estimated parameter values for noise removal. The 

proposed filter outperformed other well-known filters in 

terms of noise reduction, as evaluated by MSE and PSNR 

metrics. Overall, the research highlighted the importance 

of considering the local characteristics of an image for 

developing effective image-denoising filters.  

Iqbal et al. (2007) the objective was to enhance image 

quality. First, the RGB contrast stretching algorithm is 

used. Second, to address the lighting issue, saturation and 

intensity stretching are applied. The development of 

interactive software for underwater image enhancement. 

The benefit of using two stretching models is that it can 

assist balance out lighting issues and color issues. In 

Xiang and Pang's (2018) work an improved Denoising 

Autoencoder (DAE) for image denoising was proposed. 

The proposed model incorporates both local and non-local 

information through an encoder-decoder architecture. The 

encoder extracts local features while the decoder learns 

non-local features using a self-attention mechanism. The 

authors evaluated their proposed method against several 

state-of-the-art denoising techniques and demonstrated its 

superior performance. They also carried out ablation 

research to demonstrate the efficiency of every part of the 

suggested model. Overall, the study offered an efficient 

deep learning-based picture-denoising approach. 

Fan et al. (2019) presented a summary of significant 

research in image denoising, highlighting various 

techniques and their characteristics. As the complexity 

and demands of image denoising continue to grow, noise 

analysis has become an increasingly important tool for 

developing new denoising methods. In the study by 

Hashisho et al. (2019), it was suggested to use a U-net 

denoising autoencoder for underwater image color 

restoration. It discussed the challenges in underwater 

imaging and how the proposed method addresses them. 

Pre-processing, feature extraction, denoising and color 

restoration were all done and the results showed that 

the U-net denoising autoencoder was a cutting-edge 

technique in image denoising.  

Han et al. (2018) and the authors discussed the cause of 

underwater image degradation and examined the 

strategies used for underwater image dehazing and 

restoration using deep learning techniques. The 

applications of underwater image processing were briefed 

and underwater image color evaluation metrics were 

elaborated. A complete survey of all the methods 

proposed had been done, including their shortcomings. 

Goyal et al. (2020) did a complete comparison and 

evaluation of various image-denoising methods. Spatial 

domain, transform domain, hybrid, sparse representation 

and dictionary learning methods are the five groups in 

which underwater image denoising techniques have been 

divided. These techniques have higher noise levels. To 

remove the noise the study suggested that combining 

different denoising methods from various domains can 

help overcome the limitations of individual methods and 

harness their unique attributes. A single denoising 

algorithm may not be sufficient to achieve optimal results. 

Zhou et al. (2020) in their work have suggested the use 

of the Stacked Convolutional Sparse Denoising 

Autoencoder (SCSDA) model to eliminate noise from 

data containing heterogeneous undersea information. To 

uncover the underlying features of the data and eliminate 

noise, the model made use of the characteristics of 

Convolutional Neural Networks (CNNs) and sparse 

coding. SCSDA model is compared with several 

existing denoisers on simulated and real-world 

underwater images and the results demonstrated its 

superior denoising performance. The proposed model 

has potential applications in underwater image 

processing and other fields where heterogeneous 

information data needs to be denoised. 

The noise data in the GPR images were not uniform, 

so a fixed threshold in the denoising algorithms in each 

sub-band of the hyper-wavelet cannot be used. To address 

this issue, a new denoising algorithm called NSST-based 

GWO has been developed. This algorithm used the Grey 

Wolf Optimization (GWO) method to optimize the 

threshold values and provided exceptional noise removal 

while preserving the image edges. The experimental 

results showed that the suggested approach performs 

better than the current denoising methods for GPR 
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images. Therefore, effective GPR image denoising can be 

achieved using the suggested NSST-based GWO 

algorithm (Zhou et al., 2020).  

For many types of noise, like Gaussian, impulse, 

Poisson, mixed and real-world noise, the application of 

image denoisers based on machine learning and 

Generative Adversarial Networks (GANs) is investigated. 

Based on their PSNR values, the denoisers are assessed 

and the best outcomes for various noise kinds are 

addressed along with prospects. A complete analysis of 

many image-denoising models based on machine 

learning for image denoising has been done. In the 

paper, Thakur et al. (2021) have provided valuable 

insights into the current state of machine learning-based 

image de-noising algorithms. Cherian et al. (2021) 

proposed a new model for de-noising that increased the 

quality of the image. CLAHE is applied to improve the 

contrast of the image furthermore. The reconstructed 

images had a high SNR value (Thakur et al., 2021). 

 Du Toit et al. (2023) proposed a deep supervised 

autoencoder model with an optimized Bayesian 

hyperparameter for terrain classification. The autoencoder 

was combined with a supervised learner to perform the 

classification of different types of terrain. After training 

and fitting the dataset over six distinct terrain surfaces-

asphalt, dirt, epoxy, grass, paving and stone surfaces-with 

a raspberry Pi computer and a sense HAT inertial 

measurement unit, Bayes hyperparameter values were 

determined. The results were compared with an SVM 

classifier, a regression model and an XGBoost model and 

was found that the supervised autoencoder could be used 

effectively for terrain classification. Chandra et al. (2023) 

suggested and implemented a deep CNN-based Color 

Balancing and Denoising Technique (CNN-CBDT) with 

the activation function RELU to enhance the underwater 

images. The model has enhanced the images with good 

PSNR values and SSIM values. The PSNR value was 

increased to 17% of the original value of 19.580 and the 

SSIM was 15% enhanced with the value of 0.952. The 

proposed method. 

Arbahri et al. (2024) have worked on oceanographic 

data for the prediction of critical marine resources using 

machine learning algorithms. The agency for the study 

and application of technology's (BPPT) marine database 

provided the oceanographic data for the years 2009-19. 

The raw data was converted with respect to the 

oceanographic parameters such as conductivity, temperature 

and depth of data. Supervised machine learning algorithms 

such as Decision Tree (DT), Linear Regression (LR) and 

random forest classifiers have been applied to the dataset and 

the outputs were compared and analyzed. This study has the 

potential to provide data and information that may be used 

as a reference for creative investigations. 

Li et al. (2024) have proposed an adaptive underwater 

image enhancement method that uses a legitimate dataset 

with ground truth to minimize haze and correct image 

color. The hue channel statistics have been used to create 

a dataset of color-corrected images from different 

underwater images. A transformer-like network has been 

trained with a hazy terrestrial image dataset to remove the 

haziness. The model performed in a robust manner for 

underwater images when compared to other state-of-the-

art methods.  

From the literature, it is understood that various 

efforts have been taken to enhance the quality of the 

underwater images. The image processing methods are 

also used for removing the haziness and color 

distortions. In this era, numerous deep-learning models 

are now being exploited for the enhancement of marine 

images. Image processing methods may have 

limitations in providing the number of images to the 

model. Whereas the deep learning models can have an 

input of a huge dataset of images. 

Dataset 

The Enhancing Underwater Visual Perception 

(EUVP) an online largescale dataset has been used in this 

study. This underwater image dataset is designed to make 

the training of underwater image enhancement models 

easier. It includes paired and unpaired image samples with 

different perceptual qualities. The paired dataset is prepared 

with 11670 underwater dark images, 8670 ImageNet and 

4500 underwater scenes. The unpaired dataset consists of 

6665 images of which good-quality images are 3140 and 

poor-quality images are 3195. The images were 

downloaded in the google drive and were kept ready for 

applying pre-processing techniques. The dataset has a 

collection of 20 k images which was used in our work. 

The dataset is available at http://irvlab.cs.umn. 

edu/resources/euvp-dataset. 

 Training Model 

To train an image dataset with an autoencoder various 

issues were faced. Images are typically high-dimensional 

data, which means that each image can have many pixels, 

resulting in a high number of input features. This makes it 

computationally difficult and the time taken to train the 

autoencoder is very high leading to overfitting with image 

datasets. This may require the use of distributed 

computing resources, such as cloud-based services or a 

cluster of GPUs. When a model is overfitting, it gets 

exceedingly complex and begins to memorize the training 

set of data rather than learning broad traits that may be 

applied to fresh data. 

Pre-processing the image data is a complex task, as it 

may involve tasks such as resizing, normalization and 

augmentation. Choosing the right pre-processing 



Shreya Priyadarshini Roy et al. / Journal of Computer Science 2024, 20 (6): 670.681 

DOI: 10.3844/jcssp.2024.670.681 

 

674 

techniques can influence the performance of the 

autoencoder. Converting an image dataset into a NumPy 

dataset is an essential step in building an autoencoder model 

for image reconstruction. However, this process can be 

challenging, requiring attention to detail to ensure the model 

can accurately learn the features of the dataset. The versions 

of NumPy, OpenCV and Matplotlib libraries were installed 

and must be compatible. Loading the image dataset with 

OpenCV is another challenge, requiring images to be in the 

correct format. The images must also be pre-processed to 

ensure effective learning, requiring techniques such as 

resizing, normalization and color space conversion. The 

optimal setting for each image requires experimentation. 

Converting images into NumPy arrays requires the 

dimensions of the resulting array to correspond to the 

image size and number of channels. Saving the dataset 

must also ensure it is in a format easily loaded for 

processing and training the autoencoder. Using the 

NumPy library's 'Savez' function to save the dataset as a 

compressed archive file accomplishes this. By addressing 

each issue, the image dataset can be successfully 

converted into a NumPy dataset, preparing it for further 

processing and training of the autoencoder model. 

Experimental Setup of Autoencoders with 

Under-water Images 

Traditional image processing methods are often 

insufficient in removing noise and artifacts from 

underwater images, resulting in low visual quality. To 

address this, learning-based methods such as autoencoders 

have been deep extensively used for image denoising. 

The experiments were done in google Co-lab. The 

dataset was loaded into google drive and to obtain reliable 

findings, the dataset had to be divided into both clear and 

noisy image samples. But the labeling was not sequential, 

hence it was converted into a numpy format. After 

manually labeling the pairs with their corresponding noisy 

and clear images the dataset had been converted into 

numpy format. While converting the images into numpy 

arrays loss of data occurs such as color depth, resolution, 

or pixel values and hence that needs to be taken care of. 

Before converting images into numpy arrays, they require 

preprocessing such as resizing, normalization and 

cropping to ensure that they are of uniform size and 

quality. This can add additional complexity and time to 

the conversion process. 

Autoencoders  

In the realm of unsupervised machine learning, 

autoencoders are a unique kind of neural network. From 

their compressed version, these autoencoders learn to 

recreate images, text and data. The input image is 

compressed or down-sampled by the encoder into a latent 

space representation, which is a compressed or warped 

replica of the original image. The decoder will then use this 

as input to rebuild the image to its original image dimension. 

This could be a lossy reconstruction of the original image. 

The autoencoder functions are as given below: 
 
𝑃: 𝑋𝑛  → 𝕏𝑝 (𝐸𝑛𝑐𝑜𝑑𝑒𝑟)  (1) 

 

𝑄: 𝕏𝑝  →  𝑋𝑛  (𝐷𝑒𝑐𝑜𝑑𝑒𝑟)  (2) 
 

These functions must satisfy the minimization of an 

expected function value: 
 
𝑎𝑟𝑔 𝑚𝑖𝑛𝑃.𝑄 𝐸[𝛥(𝑧, 𝑄 𝜊 𝑃(𝑧)] (3) 
 

In this case, the reconstruction loss function Δ, 

measures the discrepancy between the decoder's output 

and input and E is the expectation throughout the z 

distribution, are both present. “P” is the encoder function 

mapped to the latent space represented as “z," and "Q” is 

the decoder function mapped to the latent space 

represented as “z.” Figure 1 shows the autoencoder model 

in action (Kalantari et al., 2015). The commonly used 

reconstruction loss for the autoencoders is Mean Squared 

Error (MSE) loss: 
 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑥𝑖 − 𝑥̂𝑖)2𝑁

𝑖=1   (4) 
 

Here N is the number of elements in the input data 

and 𝑥𝑖 and 𝑥𝑖̂ are the ith elements of the input and 

reconstruction respectively. The reconstruction loss 

function is designed to minimize the difference 

between the input and the output of the autoencoder and 

thereby learns the representation of the data that 

captures its important features. 

Figure 1 shows the general architecture of a regulated 

autoencoder. “X” is the input image which is encoded by 

the encoder to generate a compressed representation and 

the decoder reconstructs the image “X” from the 

compressed representation by learning only the important 

pixels and on the way removes the noise in the image. 
 

 
 
Fig. 1: Architecture diagram of autoencoder (source: Bank et al., 

2023) 
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To overcome the drawbacks of undercomplete and 

overcomplete autoencoders, regularized autoencoders 

have been used. In this study, five different regulated 

autoencoder models such as denoising autoencoder, 

sparse autoencoder, deep autoencoder, convolutional 

autoencoder and variational autoencoder improve the 

visual quality of underwater images. The usage of these 

several autoencoder types enables an accurate evaluation 

of each model's efficiency in underwater image denoising. 

By selecting and comparing multiple models, this study 

aims to develop an approach that can provide high-quality 

denoising results for underwater images. 

Denoising Autoencoder 

Denoising the autoencoders model prevents simply 

copying the input to the output without picking up 

crucial details. This autoencoder adds some noise to a 

partially corrupted input to achieve this. During 

training, the model tries to rebuild the original, 

unaltered input from this damaged input. A mapping 

between the input data and a lower dimensional 

manifold that characterizes the natural data is learned 

to successfully cancel out the extra noise. The objective 

of this approach is to obtain a good representation of 

the input that can be reliably obtained from a corrupted 

input and used to recover the corresponding clean 

input. The lingering nodes that remain, duplicate the 

given input to a noisy input and randomly skew a 

portion of the input values. The model then attempts to 

minimize the loss function between the corrupted input 

and the output node (Hou et al., 2015). 

Formally, let us say that (𝑥̃) ∼ p, (𝑥̃) ∽ p (𝑥̃|x) jointly 

define a conditional probability of distribution p (x, 𝑥̃) = 

p (𝑥̃|x) p(x). A posterior distribution representation is 

given by a denoising autoencoder. The numerator 

represents the joint probability of observing 𝑥̃ given 𝑥 

multiplied by the prior probability of 𝑥. The denominator 

assures that the conditional probability distribution 

𝑝 (𝑥̃|𝑥) is normalized over all values of x for the given 𝑥̃: 

 

𝑝(𝑥|𝑥̃) =
𝑝 (𝑥̃|𝑥)𝑝(𝑥)

∫ 𝑝(𝑥̃ |𝑦)𝑝(𝑦)𝑑𝑦
𝛼

𝑋

  (5) 

 
Figure 2 depicts the architecture of a denoising 

autoencoder. An underwater image is given as input and a 

random noise is added to the image to create a noisy 

image. The noisy image is given as input to the encoder 

which consists of convolution layers that generate an 

encoded representation.  

The encoded representation is given to the decoder 

which has the transposed convolution layers. The 

decoder generates the noise-free image as output. The 

denoising autoencoder is the latest and most effective 

denoising technique that has been implemented for our 

EUVP dataset. 

 
  
Fig. 2: Denoising autoencoder architecture 

 

Sparse Autoencoder 

 Sparse autoencoders are neural networks that have 

more hidden nodes than input nodes, through which they 

extract key features from the input data. A sparsity 

restriction is added to the hidden layer to make sure the 

output layer does not just replicate the input data. This can 

be implemented by either manually setting all but the 

strongest activations to zero or by manually introducing 

additional terms to the loss function during training that 

promote a low probability distribution of hidden unit 

activations. Sparse autoencoders are designed to address 

the problem of overfitting by introducing a sparsity 

penalty on the hidden layer. In addition to the 

reconstruction error, a small but not quite zero amount is 

added as the sparsity penalty. To avoid employing all the 

hidden nodes at once, this promotes the model to use 

fewer hidden nodes overall. 

The larger activation values in the hidden layer are 

alone considered by sparse autoencoders, while the 

remaining activation values are set to zero. The model's 

efficacy is increased because of this strategy, which limits 

the model's reliance on a small subset of the hidden nodes. 

The trained model's individual nodes must be data-

dependent for this method to work, which means that 

various inputs will cause different nodes to be active 

throughout the network. Taking into consideration the 

scenario in which we have two loss functions, L1 and L2 

stand for L1 and L2 regularisation, respectively. 
 
𝐿1 = ∥ 𝑤 ∥ , 𝐿2 = 𝑤2 (6) 

 

The L1 regularization used in sparse autoencoder and 

the loss function are given as below: 
 

𝑂𝑏𝑗 = 𝐿(𝑥, 𝑥̂) + 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 +  𝜆 ∑ |𝑎𝑖
(ℎ)

|𝑖  (7) 

 

In addition to the first two terms, add a third term that 

degrades the absolute value of the activation vector for 

sample "i" in layer h. The effect on the entire loss function 

is then controlled using a hyperparameter. Our 

construction of a sparse autoencoder follows.  
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Fig. 3: Sparse autoencoder architecture 

 

Figure 3 shows the architecture of a sparse 

autoencoder. Here the general architecture has been 

modified by adding dropout layers which drop 20% of the 

input. The hidden layer has a loss function of L1 

regularization. This is a variation from the general 

architecture where there will be only encoding, decoding 

and hidden layers. Adding the dropout layers removes the 

issue of overfitting during the training process. 

Adding Drop-Out Layer in Sparse Autoencoder 

During the creation of the sparse autoencoder model 

for fitting the EUVP dataset, some modifications were 

made to the original model. One important addition was 

the incorporation of dropout layers to help alleviate the 

issue of overfitting during training. Following each 

encoding layer, a dropout layer was introduced, which 

performs a dropout operation where 20% of the neuron 

outputs are randomly set to zero. The dropout layer's goal 

is to increase the model's capacity for generalization by 

preventing individual neurons from unduly depending on 

certain characteristics or patterns in the training data. By 

randomly dropping out a portion of the neuron outputs 

during each training iteration, dropout introduces a form 

of regularization that encourages the neurons to learn 

more robust and diverse representations of the data.  

In the sparse autoencoder model, the dropout layers 

were strategically placed after each encoding layer. This 

positioning allowed for dropout to be applied to the 

encoded representations at multiple levels, ensuring that 

the learned sparse features were not overly influenced by 

any single layer. By applying dropout layers, the model 

became more resilient to overfitting, which is especially 

important when dealing with limited or noisy images such 

as the EUVP dataset. By introducing dropout layers with 

a 20% dropout rate, the model effectively reduced the risk of 

overfitting and improved its ability to generalize to unseen 

data. This adjustment helped enhance the performance 

and robustness of the sparse autoencoder model for 

denoising the underwater images in the EUVP dataset. 

Deep Autoencoder 

A Deep Autoencoder is constructed with two alike 

networks, the encoder and the decoder which both 

combine to form an unsupervised neural network. The 

deep encoder is pre-trained layer-by-layer with a 

Restricted Boltzmann Machine (RBM) which is also an 

unsupervised learning network that learns the probability 

distribution over a set of input data in each layer. Deep 

belief networks are the core building blocks of the 

RBMs that are utilized to comprehend how data is 

dispersed. The dropout layer's purpose is to increase 

the model's generalizability by preventing individual 

neurons from becoming overly dependent on specific 

traits or patterns in the training data. These models 

have a wide range of applications, including topic 

modeling, which involves statistically modeling 

abstract ideas dispersed throughout a group of papers. 

Additionally, deep autoencoders can compress images 

into 30-number vectors. In cases where the input data 

is real-valued, Gaussian rectified transformations can 

be used for the RBMs. Since there are more model 

parameters than there are input data, overfitting may be a 

problem. Training deep autoencoders can also be 

challenging since the learning rate needs to be adjusted 

during the decoder's backpropagation based on the binary 

or continuous nature of the data. Slowing down the 

learning rate can help prevent overfitting. The definition 

of the convolution operation in the 2D discrete space: 

 

𝑂(𝑖, 𝑗) =  ∑ ∑ 𝐹(𝑢, 𝑣)𝐼(𝑖 − 𝑢, 𝑗 − 𝑣))∞
𝑣=−∞

∞
𝑢=−∞   (8) 

 

In the image domain where the signals are finite, this 

formula becomes: 

 

𝑂(𝑖, 𝑗) = ∑ ∑ 𝐹(𝑢, 𝑣)𝐼(𝑖 − 𝑢, 𝑗 − 𝑣)2𝑘+1
𝑣=−2𝑘−1

2𝑘+1
𝑢=−2𝑘−1   (9) 

 

Figure 4 depicts the architecture of a deep 

autoencoder. A deep autoencoder consists of a series of 

convolutional and max pooling layers before the encoding 

layer which later compresses the image to a compressed 

format and then the decoder up samples the image with 

the and thereby removes the noise. 

The other challenges of deep autoencoder are 

computational complexity, vanishing or exploding gradients 

problems, dimensionality reduction and complex 

representations leading to complicated interpretability. 
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Fig. 4: Deep autoencoder architecture 

 

 
 

Fig. 5: Variational autoencoder architecture 

 

Variational Autoencoder 

Variational Autoencoders (VAEs) are a type of 

generative model that expands the functionalities of 

autoencoders with probabilistic modeling with a different 

approach to learning the latent representations compared 

to other models. Assuming a directed graphical model for 

the data generation procedure, they employed encoders 

which are the recognition models and decoders which are 

the generative models with parameters 𝜃 and 𝛷, 

respectively, to learn an approximation of the posterior 

distribution. The model is optimized using the training 

approach, which also includes a second loss component 

and the stochastic gradient variational bayes estimator. In 

contrast to regular autoencoders, variational 

autoencoders' probability distribution of the latent vector 

often resembles the training data. Variational 

autoencoders offer greater control over the modeling of 

the latent distribution. After training, sampling from the 

distribution and decoding can generate new data. During 

training, backpropagation is used to calculate the 

relationship of each network parameter with the final 

output loss. However, extra attention is required when 

sampling from the distribution. The distributions of the 

learned latent variables will be influenced by a KL 

divergence term in the loss function: 

 

𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧)) = 𝐸[𝑙𝑜𝑔𝑞(𝑧|𝑥) − 𝑙𝑜𝑔𝑝(𝑧)] (10) 

The conventional definition of a VAE's probabilistic 

framework is defined below. To maximize the Evidence 

Lower Bound (ELBO), the VAE is given as: 
 
 𝐸𝐿𝐵𝑂 = 𝐸𝑞(𝑏|𝑎)[log(𝑝(𝑎|𝑏))] − 𝐾𝐿 (𝑞(𝑏|𝑎)||𝑝(b)) (11) 
 

Here, latent variables: “B” is presumptively distributed 

previously p(b). “a,” is presumed to follow a probability 

distribution and is one of the observed variables. The joint 

distribution of the observable and latent variables is 

shown by the expressions p(a|b) and p(a, b) = p(a|b) p(b). 

The reconstruction loss function measures the difference 

between input data and the reconstructed image. The 

Mean Squared Error (MSE) is used for continuous data a 

binary cross entropy is used for binary data and the 

Kullback-Leibler divergence (KL divergence) is used for 

penalizing the divergence between the learned latent 

distribution and the previous distribution: 
 

𝑀𝑆𝐸(𝑥, 𝑥̂) =  
1

𝑁
∑ (𝑥𝑖 −  𝑥̂𝑖)2𝑁

𝑖=1  (12) 
 

Equation 12 is for continuous data and for binary data 

Eq. 13 can be used as follows: 
 

 𝐾𝐿((𝑞|𝑥)||𝑝(𝑧)) = −
1

2
∑ (1 + log(𝜎𝑖

2) − 𝜇𝑖
2 −𝐾

𝑖=1 𝜎𝑖
2 (13) 

 
Here, μ and σ are the mean and standard deviation of 

the learned latent distribution q(z∣x) and p(z) is the prior 

distribution (usually a standard Gaussian). The total loss 

function for a VAE is given as the sum of reconstruction 

loss and KL divergence as given in Eq. (14): 
 
𝐿𝑜𝑠𝑠 = 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 + 𝐾𝐿 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (14) 
 

Figure 5 portrays the architecture of a variational 

autoencoder that uses probability distribution of the latent 

vector in addition to the convolutional function. 

It also has a resampling function after which the 

decoder decodes the output image which is free of noise. 

Convolutional Autoencoder 

Convolutional autoencoders use convolutional layers 

to produce a compressed image format, by using the 

dimensionality reduction principle. This is an 

unsupervised learning model that compresses the image 

to reduce or remove the noise and keeps the useful and 

robust features intact. The use of convolutional features is 

the basic difference between the traditional autoencoders 

and convolutional ones. The encoder converts the input 

data to compressed latent space and the decoder 

reconstructs the compressed latent space representation to 

produce an output image that is remarkably close to the 

input but noise-free (Li et al., 2024). The block diagram 

of the Convolutional Autoencoder (CAE) is given in Fig. 6. 

It consists of an encoder convolutional network that 

converts the input to a latent space from which the 

decoder reconstructs the output by desampling the latent 

expression to noise-free data. 
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Fig. 6: Convolutional autoencoder architecture 
 

Mathematically, the reconstruction error CAEe  is used 

to assess the convolutional autoencoder performance 

which is defined by: 
 
𝑒𝐶𝐴𝐸 =  𝐿𝐶𝐴𝐸((𝑎̂(𝑘), 𝑎(𝑘))) (15) 
 

LCAE is the difference measurement which is the square 

Euclidean distance, which is given as given below: 

 

𝐿𝐶𝐴𝐸((𝑎̂(𝑘), 𝑎(𝑘))) = 
1

2
 ∥  𝑎̂(𝑘)  −  𝑎(𝑘) ∥2 (16) 

  

The cost function can therefore be expressed in its 

generic form as follows: 

 

𝐽𝐶𝐴𝐸 =
1

𝑀
∑ 𝐿𝐶𝐴𝐸(𝐷(𝐸(𝑀

𝑘=1 𝑎(𝑘))), 𝑎(𝑘) (17) 

 

The ideal weight settings for the convolutional 

autoencoder are determined by minimizing the cost 

function JCAE. Furthermore, CAEs are often prone to 

overfitting, which implies that under some conditions, 

high-quality data may not be obtained for fitting a deep 

learning model. The level of compression is influenced by 

both the CAE’s architecture and the encoder’s output 

(Pintelas et al., 2021). 

Validation 

It is an essential step in machine learning to ensure that 

the model has learned meaningful patterns from the data 

and is not simply memorizing the training data. In this 

study, validation for each of the five autoencoder models 

namely convolutional autoencoders, variational 

autoencoders, sparse autoencoders, deep autoencoders 

and denoising autoencoders to denoise the underwater 

images has been performed. To validate the models, the 

dataset has been split into 250 images for the training set and 

150 images for the testing set. Each model has been 

trained using the training dataset and the testing set is 

used to estimate its performance. To determine the 

difference between the original and denoised images, 

the Peak Signal-to-Noise Ratio (PSNR). 

Was employed to calculate the signal-to-noise ratio. 

Performance is enhanced when the PSNR is higher. The 

structural index of the images in the models was also 

examined using SSIM. 

To ensure that the models were not overfitting to the 

training data, the PSNR values throughout the training 

process. If the model's performance on the testing set 

started to decrease while the performance on the training 

set continued to improve, the training process was paused. 

It is worth noting that PSNR is a commonly used metric 

for image denoising tasks but it does have its limitations. 

For example, it does not always correspond well with 

human perception of image quality and may not capture 

certain aspects of the image that are important for the task 

at hand. Hence SSIM was also used to analyse the result. 
SSIM is a widely used image quality metric that 

measures the structural similarity between two images. A 

score of 1 indicates a complete resemblance between the two 

images. The SSIM index has a range of 0-1. The SSIM value 

can be used in the context of underwater image denoising to 

compare the denoised image with the original image and 

estimate the eminence of the denoised image. The model 

efficiency has been estimated on the validation set and the 

SSIM value can be used. The SSIM index can be calculated 

between the denoised image and the corresponding original 

image. If the SSIM value is higher it implies that the denoised 

image resembles the original image, which suggests that 

the model performed well. We also performed a visual 

inspection of the denoised images to ensure that the 

models were producing high-quality denoised images that 

were visually similar to the original images. By 

performing thorough validation, it is ensured that the 

autoencoder models were producing denoised images of 

high quality and were not overfitting to the training data. 

Results 

This study implemented five types of autoencoders 

(denoising, sparse, deep, convolutional and variational) 

on the EUVP dataset to compare their performance. The 

denoising autoencoder was used to remove noise, the 

sparse autoencoder to generate sparse representation, the 

deep autoencoder to learn multiple levels of 

representation and the variational autoencoder to generate 

a continuous and smooth latent space. The datasets varied 

in size, image quality and complexity. The study found 

that the performance of each autoencoder model varied 

depending on the dataset and the task at hand. The 

experiments performed on these datasets revealed that, 

based on the dataset and the task at hand, different 

autoencoders performed better or worse. For example, it is 

observed that the simple denoising autoencoder performed 

well on the MNIST dataset, but not as well on the CBIS-

DDSM dataset. Similarly, here it is observed that the sparse 

autoencoder had lower SSIM and PSNR when compared to 

denoising autoencoders.  

Results of Regulated Autoencoders 

The original input and the noise-removed outputs are 

given below for the five different autoencoders (Figs. 9-13). 
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The original and denoised images obtained for the five 

autoencoders such as denoising autoencoder (Fig. 9), 

sparse autoencoder (Fig. 10), deep autoencoder (Fig. 11), 

variational autoencoder (Fig. 12), convolutional 

autoencoder (Fig. 13). From the experiments which have 

been conducted, we can understand and analyze the 

results of regularized autoencoders both qualitatively and 

quantitatively. Our results showed that the performance of 

each autoencoder varied with respect to the dataset and 

the application. 
 

Table 1: PSNR and SSIM values for autoencoders on the 

EUVP dataset 

 Metrics for image quality 

 ------------------------------------------- 

 Peak Signal  Structural 

 to Noise Ratio  Similarity Index 

Type of autoencoder (PSNR)  (SSIM) 

Denoising autoencoder 28.97 0.2530 

Sparse 28.83 0.2380 

autoencoder 

Deep 28.82 0.2313 

autoencoder 

Variational autoencoder 28.86 0.2305 

Convolutional 28.46 0.2302 

autoencoder  

 

 
 

Fig. 7: Bar chart representation of structural similarity index 

 

 

 

Fig. 8: Bar chart representation of peak signal-to-noise ratio 

Figure 7 bar chart representation of structural 

similarity index autoencoder performed comparatively 

well on the EUVP dataset, but not as well on the MNIST 

dataset. The PSNR and SSIM values of the autoencoders 

are listed in Table 1.  

The Figs. 7-8 shows the bar chart representation of the 

Structural Similarity Index measure (SSIM) and the Peak 

Signal to noise Ratio (PSNR) values obtained for the 5 

autoencoders we have worked. From the graphical 

representation we can see that the denoising autoencoder has 

the highest SSIM and good PSNR values. 

 

Outputs of Autoencoders 
 

 
 
Fig. 9: Output of denoising autoencoder 

 

Sparse Autoencoder 

 
 
Fig. 10: Output of sparse autoencoder 

 

Deep Autoencoder 

 
 
Fig. 11: Output of deep autoencoder 

 

Variational Autoencoder 

 
 
Fig. 12: Output of variational autoencoder 

 

Convolutional Autoencoder 

 
 
Fig. 13: Output of convolutional autoencoder 
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Quantitatively from the results obtained, it is observed 

that the Peak signal-to-noise Noise Ratio (PSNR) is high 

for denoising autoencoders and the Structural Similarity 

Index Measure (SSIM) is also best suited for denoising 

autoencoders in comparison with other autoencoders. 

DAE has achieved better performance among all the five 

autoencoders in terms of visual quality. The denoising 

autoencoder is the best suited for denoising of underwater 

images in terms of PSNR and SSIM. The results obtained 

by DAE when we have been seen with the eyes, it is clear 

that DAE performs better. So, it can be concluded that the 

denoising autoencoder is best suited for underwater 

images quantitatively and qualitatively. This experimental 

study provides insights into the performance of different 

autoencoder models and their applicability in 

underwater images. 

Conclusion 

Five different types of regulated autoencoder models 

were successfully implemented for the task of denoising 

underwater images in the EUVP dataset. The results show 

that all five models were able to significantly reduce the 

noise in the images and improve their quality, with the 

denoising autoencoder model performing slightly better 

than the others. The PSNR and SSIM metrics have been 

used to evaluate the performance of the models and 

ensured that they did not overfit the training data. Our 

work differs from pre-existing works on denoising 

underwater images in the use of a diverse dataset, a 

systematic evaluation approach and the comparison of 

multiple autoencoder models. Despite some limitations, 

such as the limited availability of underwater image 

datasets and the need for significant computational 

resources, our approach has shown promising results in 

denoising underwater images. 

The sparse autoencoder has been tuned in a manner 

that it could work for underwater images. Modifications 

were applied by adding a drop-out layer after each 

encoder layer. By doing so the issue of overfitting has 

been effectively overcome and its ability to generalize to 

unseen data was improved. Thus, the efficiency and 

robustness of the Sparse autoencoder were improvised 

using our model. 

Future Works 

In terms of future work, it is better to explore the use 

of transfer learning to further improve the performance of 

these models. Pre-trained models also can be applied to 

large datasets and can be fine-tuned on smaller 

underwater image datasets. Additionally, we can 

investigate the use of generative models such as GANs to 

enhance underwater images. The dataset can be expanded 

to include more diverse types of underwater images and 

noises to further test the robustness of the models. Overall, 

our work shows that denoising models can be efficient and 

effective providing a starting point for further exploration 

of this subject area. 
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