

 © 2024 Neelam Gupta, Sarvesh Tanwar and Sumit Badotra. This open-access article is distributed under a Creative

Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Efficiency Assessment of Software-Defined Networking for

Real-Time Network Systems

1Neelam Gupta, 1Sarvesh Tanwar and 2Sumit Badotra

1Amity Institute of Information Technology, Amity University Uttar Pradesh, Noida, India
2School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India

Article history

Received: 14-02-2024

Revised: 01-03-2024

Accepted: 08-03-2024

Corresponding Author:

Sarvesh Tanwar

Amity Institute of Information

Technology, Amity University

Uttar Pradesh, Noida, India
Email: dr.sarveshtanwar@gmail.com

Abstract: Software Networking (SDN) is growing in popularity due to its

benefits, which include portability, mobility, analytics, and ease of creation.

But it needs to be adequately shielded from security risks. One of the main

vulnerabilities to the SDN network is the Distributed Denial-of-Service

(DDoS) attack. To fulfill the demands of the complex and demanding

security concerns of today, a new network philosophy is needed. Because

SDN relies on a central controller, it has a single point of attack and failure.

The present research monitors and analyses network traffic coming from

switches, host computers, emulators, and wireless access points using a

multi-vendor packet sampling technique using sFlow. In the process, we have

clarified the usefulness and efficiency of the recommended strategy, which

makes use of SDN controllers for the detection and mitigation of DDoS

flooding attacks. The outcomes also demonstrate that the ODL controller

outperforms the other remaining controllers in terms of load-shedding

efficiency and flow setup latency. According to TCP bandwidth

measurements, the ODL controller performs better in terms of processing

power and jitter than the remaining controllers due to its higher

computational complexity. These test results indicate that the jitter

performance of all controllers is comparable. Overall analysis indicates that

ODL is more reliable than other controllers in our scenario.

Keywords: SDN, DDoS Attacks, sFlow, Controllers, Jitter, Latency,

Throughput

Introduction

The new SDN architecture separates the core

networks' control logic from the fundamental routing

and switching components, which act as packet

forwarders (specified by the controller). Due to its

advantages in terms of capacity, versatility, surveillance,

and simplicity of innovation, SDN (Ali et al., 2023) has

become more and more popular recently. Network

control logic is no longer embedded in logically

centralized controllers, making it easier for organizations

to deploy and manage their own networks. This separation

turns network switches into straightforward packet

forwarding devices, adding flexibility, speed, and

programmability, in Fig. 1. Approximately 64% of people

on the planet utilize the internet at least once a day this

is because they are connected to the internet via their

smartphones or computers. Since there have always been

security threats on the internet, there has been a

noticeable growth in concern over internet security over

the past few years.

Fig. 1: SDN architecture

Trojans, worms, port scanning, and denial-of-service

assaults are just some of the cyber-security concerns that

have come to the researcher's attention. In a DDoS attack,

the attacker (Anyanwu et al., 2023) probes the network

for holes and inserts the Trojan horse virus into the

software applications without the victims' knowledge. By

copying this malicious malware onto other network-

connected devices, the intrusive party builds a force of

hacked computer systems that they may command to

launch attacks. The increased use of communications

(Rozam and Riasetiawan, 2023) networks, which enable

Neelam Gupta et al. / Journal of Computer Science 2024, 20 (6): 682.689

DOI: 10.3844/jcssp.2024.682.689

683

users to connect at any time and almost anywhere, has led

to an increase in traffic demand. Unprecedented amounts

of data traffic are being produced by the spread of

numerous smart devices and apps as well as the

development of numerous network technologies. DDoS

attacks cannot be stopped by using conventional security

methods such as intrusion detection systems, firewalls, and

router access control lists. Due to reasons including

decentralization, a lack of collaboration among ISPs,

structural changes, collateral damage, outmoded tactics, and

deployment challenges, there is presently no appropriate

solution for identifying these attacks. Unlike earlier research

that uses sniff, machine learning, etc., this research presents

a sFlow tool based on information theory for distributed

detection and mitigation of DDoS attack types. The goal of

this strategy is to enhance these threats' detection and

mitigation. A further benefit of the study is that, unlike most

currently available research solutions, it has not made

extensive use of real-time detection methodologies or

worked with SDN controllers as extensively.

Both researchers and organizations have recently

shifted their attention toward creating networks that are

more reliable, scalable, and secure. In contrast to the

stable and decentralized ecosystem of traditional

networks (Tao et al., 2023), SDN developments aim to

create a more dynamic and centralized nature of the

network. IP-based networks make it difficult to enforce

necessary regulations and reconfigure network devices. A

new network design called SDN offers hope for effective

network infrastructure. With centralized controllers,

worldwide network monitoring, and on-demand traffic

forwarding rule development, it can improve a network's

security. Vertical integration is another feature of these

networks' rigidity. SDN still faces issues with data

security, manageability, and maintainability, among other

issues. Security is the most pressing of all these issues. In

this research, Gupta et al. (2023), add an effective and

scalable mechanism to these features for executing

anomaly detection and mitigation in SDN infrastructures.

Anomaly detection techniques are renowned for finding

both harmful and benign network patterns. Using sFlow

data gathering capabilities on edge switches, we want to

both enforce mitigation policies and detect network attack

trends in real-time. Flow-based anomaly detection

techniques have been used in numerous studies.

SDN controllers are not fully or completely compared

in the numerous research publications that describe them.

Many earlier studies have examined centralized

OpenFlow controllers or contemplated developing a new

controller. Very little research has been done on the ODL,

ONOS, POX, NOX, Floodlight, and Ryu's performance in

terms of burst rate, latency, throughput, Round Trip Time

(RTT), jitter, and bandwidth. The authors expressly

ignore the numerous other factors that would be of interest

to an industrialist in favor of concentrating on the

controllers' path restoration and software dependability.

However, the experiment design deviates from the

methods used in this publication and the research only

takes a few topologies into account. All SDN controllers

(Gupta et al., 2022a) work in ICMP DDoS attack

situations (topologies in attacks using sFlow). It is crucial

to assess new releases of these controllers to better

comprehend the performance enhancements. We are

expecting that this study will shed light on how these

controllers work. All above these open-source SDN

controllers are the most popular in terms of performance

and acceptance. Due to the significance of the controllers

in SDN, the performance of each controller is assessed in

this study in terms of latency, initial and average ping

delay, jitter, and throughput. sFlow is used to measure

both controllers' latency, initial and average ping delays,

jitter, and throughput while taking into account topologies

for the network. After all the controllers (Gupta et al.,

2022b) were evaluated, it was found that ODL provided

the best responses across the board. When all of them

were evaluated individually, it was discovered that the

trial's findings demonstrated that ODL outperformed

other remaining controllers based on certain criteria.

This has the effect of making the ODL controller the best

of all the controllers. This research can assist many

academics and businesspeople in deciding which of the

two controllers to use in various application settings.

The research is on DDoS flood attacks that target

hosts with controllers and the architectural layout of a

modular mechanism for SDN systems that enables

anomaly detection and mitigation. We compared the

outcomes of all the controllers using the sFlow tool.

Additionally, we examine the performance and

applicability of our suggested mechanism in relation to

other well-known anomaly detection and mitigation

algorithms described in the below section. Performance

evaluations utilizing actual traffic traces confirm the

scalability and efficiency of the suggested sFlow. It is

used to measure both controllers' latency, initial and

average ping delays, jitter, and throughput while taking

into account topologies for the network.

Materials

The latency, ping delays, jitter, and throughput of the

networks were assessed during all trials for the various

controllers evaluated in two standalone test

configurations, have been briefly discussed in this section.

We discussed the effectiveness and efficiency of the

proposed approach using ODL and Ryu controllers in

detecting and mitigating of DDoS flooding attacks.

Methods

We used a 1.70 GHz Intel(R) Core (TM) i3-4005U

CPU with two cores, four logical processors, and eight

Neelam Gupta et al. / Journal of Computer Science 2024, 20 (6): 682.689

DOI: 10.3844/jcssp.2024.682.689

684

gigabytes of RAM. The VirtualBox program generated

various virtual machines with different names such as

controllers, sFlow, Kali Linux, and Emulation. Using the

Layer's switch, these devices are directly linked to the

emulation device. All virtual machines (Yungaicela-

Naula et al., 2022) were configured using the VMware

Workstation VirtualBox software. The most popular

testing tool for SDN controllers is Emulator, which allows

for the creation of a virtual network. The emulator was

utilized to establish network topologies, which were then

launched by the primary SDN controller responsible for

the entire network. The hardware specs of each machine

used for the trials. For all controllers, we used OpenFlow

protocol in various versions such as 1.3, 1.1, and 1.0,

respectively for various controllers. An attack detection

tool is one of the components of the Kali Linux (Mehra and

Badotra, 2022) operating system for efficient DDoS

operations. Twenty-five switches, thirty hosts, and one

SDN controller organized with sFlow, running a Linux

OS instance, make up the simulation tool. Each switch

generates synthetic network traffic by randomly

distributing both genuine clients and attackers. In order to

detect infrastructure layer attacks, this testbed has been

used to replay traffic traces, simulate user behavior

quantify the impact of DDoS attacks on controllers using

sFlow, and generate rule sets that are nearly identical to

real ones for validation purposes.

Kali Linux is installed to generate DDoS attack traffic,

as botnets are the primary method for modern DDoS

attacks. The traffic generators were used to provide

authentic background and typical network traffic profiles.

After the topology was established, the connectivity was

checked (Alhijawi et al., 2022) by running the ping

command first. These OVS support OpenFlow, the most

widely used communication protocol. All controllers

underwent performance tests in the simulation to compare

their results. The values are obtained by detecting and

mitigating DDoS attacks on the host, followed by an

analysis of the data using the sFlow tool. It serves as a user

interface for changing the numerous flow table entries that

these OVS possess. SDN controllers are being bombarded

with data packets by the penetration tool, which is sending

8,000 extra data packets per second. It is necessary to take

into account both the type of DDoS attack and the date of

the controllers’ failure when evaluating this metric.

Further, we connected each switch module to the sFlow

agent in order to compute real-time detection and

effectiveness metrics using the network-based software

tool, sFlow.
ICMP DDoS flood attacks are created using the

Hping3 program. You can send packets that have been

altered in terms of volume, amount, and segmentation to

overwhelm the target and evade attacks. Using the hping3

program, you can test security or capabilities amount and

segmentation to overwhelm the target and evade attacks.

Using the hping3 program, you can test security or

capabilities. Hping3 may be helpful for security or

capability testing, as it allows you to send large numbers

of packets over a secure network. We use sFlow, an SDN

technology, to enhance the effectiveness of DDOS

mitigation. The sFlow methodology for detecting

attackers involves capturing and adding up the

incremental flow from each client for analysis by the

sFlow collector. Firewalls and intrusion detection systems

are two techniques for protecting systems from attackers.

They are not well suited to counteract DDoS attacks.

When the sFlow collector (Prasad et al., 2022) identifies

certain traffic as an attacker, the OpenFlow controller

modifies the rule in the OpenFlow table. Therefore, we

can immediately detect and prevent flooding attacks by

combining aggregate flow using sFlow and blocking traffic

using OpenFlow. To prevent attacks by restricting attack

traffic, the OpenFlow controller muddles the rules a bit.

After the controllers had established communication,

simulated performance tests were run on each of them to

compare the results. After generating the topology by

integrating the emulator with sFlow, the connection was

confirmed by first executing the ping command. For

controllers, it should be started first, followed by the

sFlow script in a separate terminal. Following the creation

of the controller-based topologies, the connectivity will

then be checked, and using the pingall command, all hosts

will be connected. The DDoS attack (Kumar et al., 2022)

will then be launched by first creating normal traffic and

data transmission under the topology and when it appears

that the topology is functioning appropriately, use the

sFlow tool to detect and mitigate the flood attack. The

graph shows how data is sent while a host is under a DDoS

attack from malicious packets. The data flow is evidently

occurring both before and after the attack.

The sFlow-RT controller uses set flow and set

thresholds to mitigate DDoS attacks. Since the objective

is to filter flows, the set flow filter defines egress flows

and the set threshold filter shows the specific access ports

that only have thresholds applied to them.

A malicious node coupled with regular traffic arrived

at the edge switch in the flowchart, in Fig. 2; the switch

continuously sends information to the sFlow RT

controller. An example of how a switch is protected from

attacks shows that traffic on the protected hosts is blocked

while normal traffic continues. An OpenFlow rule is sent

to the switch to block the traffic when an attack is

discovered. Attack traffic is quickly identified and

eliminated with the aid of the controller using sFlow-RT

(Udhaya Prasath et al., 2022). Normal traffic is shown to

be unaffected. SDN applications for traffic engineering

are developed and implemented in existing networks

using the open-source sFlow-RT software platform.

Neelam Gupta et al. / Journal of Computer Science 2024, 20 (6): 682.689

DOI: 10.3844/jcssp.2024.682.689

685

Based on the popular sFlow and OpenFlow protocols, it is

a fabric controller with an open, standards-based

JavaScript development environment. Mitigation script

logs (Batool et al., 2022) are once the attack has been

stopped. When the attack is stopped and the mitigation

block is activated, it resumes its normal course. Normal

data flow resumes after that point without any issues.

However, the mitigation rules are now blocking the attack

host every 8 sec to thwart any potential future attacks on

this architecture.

The Proposed Algorithm

The flow buffer searches for rules matching incoming

packets, initiated by the flow table. If a rule is found, the

packet can be sent to the OpenFlow controller or routed to

an output port, with the controller overseeing the flow

table. The OpenFlow protocol (Jiang et al., 2022) is

utilized by controllers and switches to interact, offering an

interface for configuration, monitoring, and data plane

flow tables for packet forwarding. It provides an interface

for managing packets, with received packets indicating

the number of packets matching a flow. The OpenFlow

controller provides network resource management data by

automatically collecting metrics at predefined intervals. It

allows the categorization of traffic as regular or intrusive

based on the collected data. The effectiveness of

mitigation depends on the length of the collection process.

A long time interval may miss the initial stages of an

attack, limiting mitigation time, while a short time interval

increases the detection mechanism’s overhead.

Selection of Parameters

Threshold: Compute the threshold (𝑎 = 2𝑘) of each

flow on each switch using the formula:

𝑎(𝑠_𝑖, 𝑗) = −𝑝_𝑖, 𝑗 ∗ 𝑙𝑜𝑔(𝑝_𝑖, 𝑗 / 𝑏_𝑖) (1)

Average threshold: Compute the average threshold for

each switch:

𝐴𝑣𝑔𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑠_𝑖) = (1 / |𝑆_𝑖|) ∗ ∑ (𝑗 =
1 𝑡𝑜 |𝑆_𝑖|) 𝑎(𝑠_𝑖, 𝑗) (2)

The standard deviation of the threshold: Compute the

standard deviation of the threshold for each switch:

𝑆𝑡𝑑𝐷𝑒𝑣𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑠_𝑖) = 𝑠𝑞𝑟𝑡((1 / |𝑆_𝑖|) ∗ ∑(𝑗 =
1 𝑡𝑜 |𝑆_𝑖|) (𝑎(𝑠_𝑖, 𝑗) − 𝐴𝑣𝑔𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑠_𝑖))^2) (3)

Total threshold: Identify a threshold value:

𝑇𝑜𝑡𝑎𝑙 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝐴𝑣𝑔𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑠) + 𝑘 ∗
 𝑆𝑡𝑑𝐷𝑒𝑣𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑠) (4)

Fig. 2: Flowchart of SDN controller performance modeling

and analysis

The constant value k is chosen based on the expected

sensitivity of the DDoS detection system and network

setup. Switches are continuously monitored for their

threshold levels (Mishra and Gupta, 2022) and if their

value exceeds the threshold, they are considered a

potential DDoS attack target. An alert is raised if a

specific number or percentage of switches are identified

as potential targets within a specified time frame.

Algorithm 1 is a The DDoS detection method

functions on the basis that each attack node inside a botnet

uses standard programming logic that has been pre-

established to route network traffic to the target. Thus,

attack traffic flows frequently resemble the much more

dynamic and varied patterns of real network traffic

(Valizadeh and Taghinezhad-Niar, 2022). As a result,

attack traffic flows have distinct packet header properties

compared to regular traffic flows. The first step in

calculating traffic is calculating the actual number of

packets arriving and comparing it to the threshold a.

Alternatively, comparing the current rate of traffic

arriving in each time frame 𝑇𝑤 can help detect attacks

when there is a noticeable divergence from the data

distance value.

If the 𝑃_𝑖, 𝑗/𝑆_𝑖, 𝑗 value is more than the threshold

value, we classify it as attack traffic; if not, we classify

it as valid traffic. Although high-rate traffic may be

categorized as legitimate traffic, it may also be the

consequence of an unanticipated increase in network

traffic. We will first establish the threshold value using

the recommended detection approach, after which we

will utilize algorithm 1 to recognize the attack, algorithm

2 to carry out mitigation, and algorithm 1 to safeguard

our data flow.

Algorithm 1: A DDoS attack detection Algorithm

1. Set

a. 𝑀: number of switch ports in SDN network

b. 𝑠_𝑖 flow statistics for switch 𝑖
c. 𝑝_𝑖, 𝑗 packet count for flow 𝑗 on switch 𝑖

Neelam Gupta et al. / Journal of Computer Science 2024, 20 (6): 682.689

DOI: 10.3844/jcssp.2024.682.689

686

d. 𝑏_𝑖 𝑏𝑦𝑡𝑒 count for all flows on switch 𝑖
e. 𝑇 sampling period

f. 𝑇𝑤 Time window 𝑠𝑖𝑧𝑒 = 1 𝑠𝑒𝑐.
g. 𝑎 threshold at each switch 𝑠_𝑖

2. For each switch port 𝑖
3. While 𝑇 >= 𝑇𝑤, examine the network traffic arising

from the switches

4. Features that extract packet headers:

𝐹 – (𝑠𝑟𝑐𝐼𝑃; 𝑑𝑠𝑡𝐼𝑃; 𝑝𝑘𝑡𝑠𝑖𝑧𝑒; 𝑛𝑜. 𝑜𝑓𝑝𝑘𝑡𝑠(𝑠_𝑖))

classify current 𝑇𝑤 into distinct network flows at

each 𝑠_𝑖.
5. Determine the threshold for each network flow on

each switch based on the current 𝑇𝑤 at each 𝑠_𝑖. using

Eq. (1).

6. Compute the average and standard deviation of the

threshold for each switch network flow using Eqs. (2-3)

respectively at each 𝑠_𝑖.
7. Identify threshold value using Eq. (4)

8. For 𝑗 = 1: 𝑀

9. if 𝑠_𝑖, 𝑗 > 𝑎 then

10. Declare the traffic as DDoS

11. else

12. end if

13. Traffic may be legitimate or LR-DDoS

14. else

15. Declare the traffic as Legitimate.

16. end if

17. increment 𝑇𝑤 and go to step 2.

Algorithm 2: DDoS attack Mitigation

1. Function Mitigation

2. Compile the switches and ports for the current flow

3. Verify that the attack is taking place

4. Collect Port and Switches of attack

5. If 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 – 𝑙𝑜𝑤 = 𝑎𝑡𝑡𝑎𝑐𝑘 – 𝑓𝑙𝑜𝑤, then

6. Create and modify a new flow entry using attack

parameters

7. Send Switch a new flow entry.

8. else

9. avoid action

10. end if

11. end function

The simulations were conducted in phases, with each

packet sampled by sFlow for analysis. All floods were

passed from host to host, with no defined mitigation

threshold. Despite receiving all floods, the mitigation

script from other hosts was activated to identify and stop

the attack using the mitigation port algorithm.

Results and Discussion

This section covers utilizing the sFlow instrument for

identifying and reducing attacks on all controllers. After

that, the results of latency, throughput, and jitter are

assessed and a comparison graph is displayed.

The normal traffic flow rate was 2000 packets per

second (Anyanwu et al., 2023; Rozam and Riasetiawan,

2023) until DDoS attacks began to penetrate the system. The

controllers are inundated with a massive amount of ICMP

traffic. The network is inundated with up to 8,000 packets

per second; the rate has since grown to 10,000 packets per

second. The departure from typical traffic and the ICMP

faults are readily visible. Figures 3 show typical traffic as

red lines, while ICMP errors are blue bars.

The orange line graph represents the threshold line for

a rising graph attack, while the blue line shows the tool's

ability to detect and secure data flow through mitigation

and upgrade. The bandwidth usage in the first 5 sec

remains consistent for both scenarios, but a DDoS attack

is launched on the 9th sec. The two scenarios showed

similar results until the 33 sec mark. The unprotected

scenario's bandwidth consumption increased due to

lower hard and idle timeout parameters, resulting in 38%

more entries in the flow table (Anyanwu et al., 2022).

The recommended system rejected all attacker machines'

packets, preventing the flow table's entries from

increasing. This is because, although legitimate hosts

also produce traffic, up until that moment, all of it was

produced by the attacking servers. We can also observe

how the sFlow tool is used through the graphic. After

identifying the attack, it employs a mitigation port to

limit data flow and safeguard the attacker's host's

remaining data.

The sFlow analyzer (h8) observed that traffic volume

increased to 10,000 packets per second during a flood

attack from attacking sites directed toward the host,

indicating the rapid exhaustion of network resources

(Sheibani et al., 2022). Switches' limited memory leads to

the flow table filling up quickly, necessitating that the

entire packet be delivered to the controller. A protective

mechanism is crucial to prevent network failure without

overloading the controller. The sFlow detection and

mitigation technique (Swami et al., 2023) demonstrated

success by setting a polling threshold of 1 sec forwarding

one packet per twelve for processing. After setting a

handling rule and updating the flow table, traffic crossed

the threshold line, mitigating the attack in 3 sec. Dropped

packets originated from infected ports.

Table 1 shows that the DDoS detection time grows

with the rate of network traffic for the various situations

and parameters employed. We have also taken care of

other crucial aspects while the DDoS attempts were

being detected. The most crucial information is that, in

the initial situation, where just 10,000 packets were

flooded and a variety of hosts, switches, and topologies

were utilized, each attack resulted in a different degree

of packet loss. The linear topology had fewer hosts,

resulting in higher packet loss.

Neelam Gupta et al. / Journal of Computer Science 2024, 20 (6): 682.689

DOI: 10.3844/jcssp.2024.682.689

687

Table 1: The outcomes of various scenarios with tree topology

 No. of packets Time to identify a DDoS Round Trip Time Packet

Type of attack Controller /second attack (in seconds) (RTT) (in seconds) Loss (%)

ICMP ODL 10,000 1.78 77.40 86.50

ICMP ONOS 10,000 4.12 108.45 99.05

ICMP RYU 10,000 2.40 119.02 100.00

ICMP POX 10,000 5.01 142.25 97.00

ICMP NOX 10,000 6.70 286.11 99.00

ICMP Floodlight 10,000 9.30 178.20 100.00

Table 2: Comparison of jitter, throughput, and latency value in

sequence for SDN controllers

 Throughput

Controllers Jitter (ms) (rates/Gbits/s) Latency (ms)

ODL 0.14 5.39 2.204

ONOS 0.94 8.57 4.968

RYU 0.53 7.96 7.307

POX 0.43 3.02 13.790

NOX 0.89 4.87 109.149

Floodlight 0.87 11.01 19.550

Fig. 3: After a flood of attacks on the host and the detection of

the attack by sFlow

Fig. 4: Comparison of jitter, throughput, and latency value for

controllers

The latency, ping delays, jitter, and throughput of the

networks were assessed during all trials for all controllers

evaluated in various standalone test configurations, in

Table 2. Given that a controller needs some time to run

tests for different traffic types and packet sizes, we

employed IP traffic with ICMP messages of various sizes

to measure performance (Sai et al., 2022). The

performance parameters throughput, jitter, and latency

were recorded for each run. The first ping delay was

utilized to analyze the flow of data between the hosts that are

conceptually distinct in each topology. The throughput is

determined by executing the iperf statement (Sritharan et al.,

2022) in the emulation Command Line Interface (CLI)

console, which gives the bandwidth. The final batch of ten

ICMP messages was collected in order to calculate jitter.

When the controller implements our recommended

procedure, there are frequent instances of a sudden

increase in CPU utilization. This is because, when the

table is huge, our approach tries to get the mean value of

the table, which causes the CPU to utilize 100% of its

resources. Having said that, this is only immediate.

The table above shows that the ODL controller

consistently has slower average ping times than the

remaining controllers. In the event of an ICMP DDoS

attack, the range for the actual ping time is significantly less.

In comparison to the ODL controller, other controller latency

performance indicates that it is a less effective controller. As

a result, the average RTT of the ONOS, POX, NOX,

Floodlight, and Ryu controllers is lower than that of the ODL

controller. These observations were made primarily because

the remaining controllers employed hybrid commercial

tactics, while ODL placed a stronger emphasis on data

centers. Based on the test findings, it can be concluded that

some controllers perform well in terms of jitter.
According to Fig. 4, the ODL-connected topologies

have significantly higher ICMP throughput than the other
controllers-connected networks. This is probably due to
the fact that it already supports very large-scale networks.
The measurements in the virtual test environment are
totally reliant on the capability of the controller. This
enables us to confirm that ODL offers greater
performance in terms of throughput.

The research assessed the performance of SDN-based

networks (Shah et al., 2022) using IP traffic with ICMP

packets. According to the selected criteria, it was discovered

that ODL performs better and logs off before ONOS, POX,

NOX, Floodlight, and Ryu controllers. The DDoS attacks

were launched between hosts, each with its own independent

variable. The study used an emulator-ODL, ONOS, POX,

NOX, Floodlight, and Ryu controller and sFlow testbed to

assess SDN functionality. It compared attack types and

access points with the latency, jitter, and throughput

(dependent variables) of SDN network controllers in a large

scenario. The effect was the dependent variable and

changes in the independent variable affected its value.

Conclusion

The research assessed the performance of SDN-

based networks using IP traffic with ICMP packets. A

Comparison of jitter, Throughput, Latency value

in sequence for SDN Controllers

Controllers Value

 120
100

 80

 60
 40

 20

 0

T
im

e
(m

s)

0 1 2 3 4 5 6 7

Neelam Gupta et al. / Journal of Computer Science 2024, 20 (6): 682.689

DOI: 10.3844/jcssp.2024.682.689

688

DDoS attack was launched between hosts using

emulation analysis and sFlow tools. A virtual traffic

flow was generated during the experiment setup to

simplify performance measurements. The study

evaluated SDN functionality using an emulator- ODL,

ONOS, POX, NOX, Floodlight, and Ryu controller and

sFlow testbed. An ODL controller-based SDN network

was used to imitate a monitoring system that operates

in real-time and is capable of detecting DDoS flood

attacks. This study evaluates SDN network (Shakil et al.,

2022) controllers' latency, jitter, and throughput in a

large scenario, paired with attack type and access

points. ODL outperforms ONOS, POX, NOX,

Floodlight, and Ryu controllers in performance but

requires specific memory, making it the better choice

due to Python-based controllers. This study can help

different academics and industrialists choose between

these controllers in a variety of application scenarios,

such as servers and the Web of things. This research

effort opens a lot of other research possibilities. To have

a complete image showing these controllers’

performance evaluation, we intend to continue

expanding this study with more southbound and

northbound APIs and clustering many controllers.

Acknowledgment

I would like to express my sincere gratitude to my

guide, Dr. Sarvesh Tanwar, and Dr. Sumit Badotra, for their

invaluable guidance, unwavering support, and expert

mentorship throughout the entire research process.

Funding Information

This research did not receive any specific grant from

funding agencies in the public, commercial, or not-for-

profit sectors.

Author’s Contributions

Neelam Gupta: Collected the data and identify the

gaps: Assess the controllers' performance. To the best of

our knowledge, there aren't many studies in the literature

that concentrate on actively measuring the performance of

SDN controllers.

Conceived and designed the analysis: The experiment

design deviates from the methods used in this publication

and the research only takes a few topologies into account.

Contributed data or analysis tools: The SDN

controllers work in different DDoS attack situations.

Performed the analysis: The result of throughput,

jitter, and latency is depicted inside comparative results.

Wrote the manuscript: It is crucial to assess new

releases of these controllers to better comprehend the

performance enhancements.

Sarvesh Tanwar: Help draft the manuscript, provided

valuable guidance and mentorship throughout the research

process, and ensured the paper and quality and rigor.

Sumit Badotra: The author provided expert guidance,

critical insights, and mentorship throughout the research

process ensuring the paper and quality and rigor.

Ethics

The corresponding author declared that this study has

not been submitted elsewhere.

References

Alhijawi, B., Almajali, S., Elgala, H., Salameh, H. B., &

Ayyash, M. (2022). A survey on DoS/DDoS

mitigation techniques in SDNs: Classification,

comparison, solutions, testing tools and datasets.

Computers and Electrical Engineering, 99, 107706.

https://doi.org/10.1016/j.compeleceng.2022.107706

Ali, M. N., Imran, M., din, M. S. U., & Kim, B. S. (2023).

Low rate DDoS detection using weighted federated

learning in SDN control plane in IoT network.

Applied Sciences, 13(3), 1431.

 https://doi.org/10.3390/app13031431

Anyanwu, G. O., Nwakanma, C. I., Lee, J. M., & Kim,

D. S. (2022). Optimization of RBF-SVM kernel

using grid search algorithm for DDoS attack

detection in SDN-based VANET. IEEE Internet of

Things Journal.

 https://doi.org/10.1109/JIOT.2022.3199712

Anyanwu, G. O., Nwakanma, C. I., Lee, J. M., & Kim, D.

S. (2023). RBF-SVM kernel-based model for

detecting DDoS attacks in SDN integrated vehicular

network. Ad Hoc Networks, 140, 103026.

 https://doi.org/10.1016/j.adhoc.2022.103026

Batool, S., Zeeshan Khan, F., Qaiser Ali Shah, S., Ahmed,

M., Alroobaea, R., Baqasah, A. M., ... & Ahsan Raza,

M. (2022). Lightweight statistical approach towards

TCP SYN flood DDOS attack detection and

mitigation in SDN environment. Security and

Communication Networks, 2022.

 https://doi.org/10.1155/2022/2593672

Gupta, N., Maashi, M. S., Tanwar, S., Badotra, S.,

Aljebreen, M., & Bharany, S. (2022a). A comparative

study of software defined networking controllers

using mininet. Electronics, 11(17), 2715.

 https://doi.org/10.3390/electronics11172715

Gupta, N., Tanwar, S., Badotra, S., & Behal, S. (2022b).

Performance Analysis of SDN controller.

International Journal of Performability Engineering,

18(8), 537.

 https://doi.org/10.23940/ijpe.22.08.p1.537544

Neelam Gupta et al. / Journal of Computer Science 2024, 20 (6): 682.689

DOI: 10.3844/jcssp.2024.682.689

689

Gupta, N., Tanwar, S., & Badotra, S. (2023). Review of

Software-Defined Network-Enabled Security.

In Computational Intelligence for Engineering and

Management Applications: Select Proceedings of

CIEMA 2022 (pp. 427-441). Singapore: Springer

Nature Singapore. https://doi.org/10.1007/978-981-

19-8493-8_33

Jiang, S., Yang, L., Gao, X., Zhou, Y., Feng, T., Song, Y.,

... & Cheng, G. (2022). Bsd-guard: A collaborative

blockchain-based approach for detection and

mitigation of SDN-targeted DDOS attacks. Security

and Communication Networks, 2022, 1-16.

 https://doi.org/10.1155/2022/1608689

Kumar, P., Baliyan, A., Prasad, K. R., Sreekanth, N.,

Jawarkar, P., Roy, V., & Amoatey, E. T. (2022).

Machine learning enabled techniques for protecting

wireless sensor networks by estimating attack

prevalence and device deployment strategy for 5G

networks. Wireless Communications and Mobile

Computing, 2022.

https://doi.org/10.1155/2022/5713092

Mehra, A., & Badotra, S. (2022). A Novel Framework for

Prevention against DDoS Attacks using Software

Defined Machine Learning Model. International

Journal of Performability Engineering, 18(8), 580.
https://doi.org/10.23940/ijpe.22.08.p6.580588

Mishra, A., & Gupta, N. (2022). Supervised Machine

Learning Algorithms Based on Classification for

Detection of Distributed Denial of Service Attacks in

SDN-Enabled Cloud Computing. In Cyber Security,

Privacy and Networking: Proceedings of ICSPN

2021 (pp. 165-174). Singapore: Springer Nature

Singapore. https://doi.org/10.1007/978-981-16-

8664-1_15

Prasad, S., Prasad, A., Arockiasamy, K., & Yuan, X. (2022,

February). Emulation and Analysis of Software-

Defined Networks for the Detection of DDoS Attacks.

In International Conference on Computer,

Communication and Signal Processing, (pp. 213-231).

Cham: Springer International Publishing.

 https://doi.org/10.1007/978-3-031-11633-9_16

Rozam, N. F., & Riasetiawan, M. (2023). XGBoost

Classifier for DDOS Attack Detection in Software

Defined Network Using sFlow Protocol.

International Journal on Advanced Science,

Engineering and Information Technology, 13(2).
https://doi.org/10.18517/ijaseit.13.2.17810

Sai, A. D., Tilak, B. H., Sanjith, N. S., Suhas, P., &

Sanjeetha, R. (2022, October). Detection and

Mitigation of Low and Slow DDoS attack in an SDN

environment. In 2022 International Conference on

Distributed Computing, VLSI, Electrical Circuits and

Robotics (DISCOVER), (pp. 106-111). IEEE.

 https://doi.org/10.1109/DISCOVER55800.2022.997

4724

Shah, S. Q. A., Khan, F. Z., & Ahmad, M. (2022).
Mitigating TCP SYN flooding based EDOS attack in
cloud computing environment using binomial
distribution in SDN. Computer Communications,
182, 198-211.

 https://doi.org/10.1016/j.comcom.2021.11.008
Shakil, M., Fuad Yousif Mohammed, A., Arul, R., Bashir,

A. K., & Choi, J. K. (2022). A novel dynamic
framework to detect DDoS in SDN using
metaheuristic clustering. Transactions on Emerging
Telecommunications Technologies, 33(3), e3622.
https://doi.org/10.1002/ett.3622

Sheibani, M., Konur, S., & Awan, I. (2022, August).
DDoS Attack Detection and Mitigation in Software-
Defined Networking-Based 5G Mobile Networks
with Multiple Controllers. In 2022 9th International
Conference on Future Internet of Things and Cloud
(FiCloud), (pp. 32-39). IEEE.

 https://doi.org/10.1109/FiCloud57274.2022.00012

Sritharan, K., Elagumeeharan, R., Nakkeeran, S.,
Mohamed, A., Ganegoda, B., & Yapa, K. (2022,
October). Machine Learning Based Distributed
Denial-of-Services Attacks Detection and Mitigation
Testbed for SDN-Enabled IoT Devices. In 2022 13th
International Conference on Computing

Communication and Networking Technologies
(ICCCNT), (pp. 1-6). IEEE.

 https://doi.org/10.1109/ICCCNT54827.2022.9984248

Swami, R., Dave, M., & Ranga, V. (2023). IQR-based
approach for DDoS detection and mitigation in SDN.
Defence Technology, 25, 76-87.

 https://doi.org/10.1016/j.dt.2022.10.006

Tao, H. Y., Huang, C. K., & Shen, S. H. (2023, July). A
Low-overhead Network Monitoring for SDN-
Based Edge Computing. In 2023 IEEE Symposium
on Computers and Communications (ISCC), (pp.
600-606). IEEE.

 https://doi.org/10.1109/ISCC58397.2023.10218002
Udhaya Prasath, M., Sriram, B., Prakashkumar, P., &

Vetriselvi, V. (2022). DDoS mitigation in SDN using

MTD and behavior-based forwarding. In Innovations
in Electronics and Communication Engineering:
Proceedings of the 9th ICIECE 2021 (pp. 373-380).
Singapore: Springer Singapore.

 https://doi.org/10.1007/978-981-16-8512-5_40

Valizadeh, P., & Taghinezhad-Niar, A. (2022, May).
Ddos attacks detection in multi-controller based
software defined network. In 2022 8th
International Conference on Web Research

(ICWR), (pp. 34-39). IEEE.
 https://doi.org/10.1109/ICWR54782.2022.9786246
Yungaicela-Naula, N. M., Vargas-Rosales, C., Pérez-

Díaz, J. A., & Carrera, D. F. (2022). A flexible SDN-
based framework for slow-rate DDoS attack
mitigation by using deep reinforcement learning.
Journal of Network and Computer Applications, 205,
103444. https://doi.org/10.1016/j.jnca.2022.10344

https://doi.org/10.1007/978-981-19-8493-8_33
https://doi.org/10.1007/978-981-19-8493-8_33

