

 © 2024 Olaa Hajjar, Escelle Mekhallalati, Nada Annwty, Faisal Alghayadh, Ismail Keshta and Mohammed Algabri. This

open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Performance Assessment of CPU Scheduling Algorithms: A

Scenario-Based Approach with FCFS, RR, and SJF

Olaa Hajjar, Escelle Mekhallalati, Nada Annwty, Faisal Alghayadh,

Ismail Keshta and Mohammed Algabri

Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Saudi Arabia

Article history
Received: 22-02-2024
Revised: 23-03-2024
Accepted: 03-05-2024

Corresponding Author:
Ola Faisal Hajjar
Department of Computer
Science and Information
Systems, College of Applied
Sciences, AlMaarefa
University, Saudi Arabia
Email: 212220723@student.um.edu.sa

Abstract: This study presents an extensive examination of CPU scheduling

algorithms, focusing on the First-Come, First-Served (FCFS), Round-Robin

(RR), and Shortest-Job-First (SJF) strategies through a carefully designed

scenario-based approach. By deploying a Java-based simulation to

dynamically generate random process arrival and burst times, this study

simulates a variety of operational conditions to test these scheduling

algorithms’ adaptability and performance in environments that closely
resemble real-world computing scenarios. The research aims to explore the

effects of dynamic quantum size allocation on RR scheduling and assess its

impact on system performance metrics such as response time and context

switching overhead. Through a detailed analysis, this study seeks to provide

new insights into the operational efficiency of the FCFS, RR, and SJF

scheduling strategies, highlighting their strengths, limitations, and

applicability across different computing environments.

Keywords: CPU Scheduling Algorithms, Process Management in Operating

Systems, First-Come, First-Served (FCFS) Scheduling, Round Robin (RR)

Scheduling, Shortest Job First (SJF)

Introduction

A computer system’s program execution and

management process comprises various crucial

components and scheduling algorithms. Upon a user’s

application request, the system initially verifies whether it

resides in the RAM. If not, it is recovered from persistent

storage, such as a hard disk drive. The role of the long-

term scheduler is to determine the selection of programs

that are loaded into the RAM, while the short-term

scheduler is responsible for determining the allocation of

Central Processing Unit (CPU) time to these applications.

The medium-term scheduler performs process swapping

in and out of RAM to manage the allocation of resources

for high-priority tasks when the RAM becomes full. The

short-term scheduler also referred to as the CPU

scheduler, plays a crucial role in deciding which software

will utilize the CPU next (Süzen and Taşdelen, 2018).
The optimal distribution of RAM is vital for the

proper operation of the computer system as a whole.

System performance can be improved by optimizing

main memory and virtual memory management. This

results in increased CPU utilization, decreased response

time, and increased throughput (Gaikwad, 2021).

Furthermore, evidence suggests that analysts’

evaluations of companies’ current activity management

and their forecasts of the companies’ future operational
success are correlated with the utilization of particular

RAM (Omar et al., 2021).

Many CPU scheduling algorithms play a crucial role

in determining which processes are authorized access to

the CPU. The referenced algorithms can optimize the

computer system’s performance by distributing the

central processing unit to various duties. These

algorithms’ essence may be preemptive or non-

preemptive (Adeleke, 2022). In addition, practical

applications of neural networks within the operating

system framework have been suggested, specifically in

predicting delay periods, which could enhance the
efficacy of CPU utilization (Lee and Chung, 2019).

A process control block is a data structure utilized by

an operating system to maintain comprehensive

information about individual processes. The

aforementioned components comprise the process ID,

program counter, process state, priority, inventory of open

files and devices, stack section, and static and global

variable information (Yamada and Kusakabe, 2008). The

collection of data is frequently denoted as the

“environment” of the procedure. If an operating system

interrupts an ongoing process and transitions to another, it

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

973

is imperative to retain the interrupted process’s context to

facilitate a possible resumption. For this to transpire, the

CPU must perform “context switching” between tasks
(Yamada and Kusakabe, 2008).

Context switching involves saving the context of the

preempted process and loading the context of the new

process. It is a fundamental operation in multitasking

operating systems and is crucial for efficient process

management. Context switch misses, which occur when

the required context is not readily available, can impact

system performance (Liu et al., 2008). Additionally,

context switches can affect cache performance, as the

assumption of locality may be violated, leading to

potential cache misses (Mogul and Borg, 1991). The
impact of context switches on cache performance is a

critical consideration for system optimization.

Multiprogramming has undergone substantial

development since the inception of batch operating

systems; contemporary multiprogramming and

multiprocessing systems are the result. Earlier versions of

batch operating systems had a single level of

multiprogramming, which meant that the CPU could

execute a single task in a non-preemptive fashion

(Barroso et al., 2019). The requirement that subsequent

processes await the completion of the present process

before accessing the CPU led to suboptimal CPU
utilization. In addition, the CPU undergoes phases of high

activity during process execution, referred to as CPU

bursts, which are succeeded by phases of inactivity termed

I/O bursts. The CPU is rendered dormant as a result of these

I/O bursts, which wastes CPU time (Towsley et al., 1978).

Today’s multiprogramming and multiprocessing

systems have addressed these inefficiencies by allowing

multiple processes to be executed in parallel, thereby

increasing CPU utilization and efficiency (Barroso et al.,

2019). In modern systems, the idle time during I/O bursts

is utilized by other processes, leading to improved CPU

utilization (Towsley et al., 1978). Furthermore, to

optimize CPU utilization, the principal aim of an optimal

system task scheduler is to select processes from the

available queue (Barroso et al., 2019).

This research paper is notable for its thorough analysis

and comparison of three popular CPU scheduling

algorithms-FCFS, RR, and SJF-with a particular emphasis

on the impacts of dynamic time quantum allocation.

This study employs a scenario-based evaluation

methodology to assess the performance of the FCFS,

RR, and SJF scheduling algorithms. This tactic has

undergone extensive planning and development. This

methodology provides a strong framework for study and

emulates dynamic computer environments, which are
similar to real-world conditions. It uses a broad range of

load attributes to analyze algorithms’ performance in

various scenarios, which sets it apart from standard

evaluation methodologies.

The paper’s main goal is to investigate the effects of

dynamic quantum size allocation in RR scheduling on

reaction time and context switching overhead on system
performance. This study methodically examines how

varying quantum sizes impact the trade-off between

decreasing context switching time and satisfying the

expectations of a variety of system workloads. The paper

offers a thorough analysis of quantum size optimization

along with theoretical and empirical insights into reaching

the best scheduling efficiency.

This study combines analytical viewpoints with

empirical data from well-planned studies to provide new

insights into how the FCFS, RR, and SJF algorithms

operate. This dual strategy reinforces the study’s
conclusions and establishes a solid basis for the suggested

CPU scheduling techniques.

Through this structured exploration, our paper seeks to

contribute valuable knowledge to the field of CPU

scheduling, offering a scenario-based assessment that

enhances our understanding of algorithmic performance

in dynamic computing environments.

CPU Scheduling Criteria

The utilization of CPU scheduling criteria is critical to

maximize the efficiency of computer systems. CPU

utilization, a crucial metric for assessing system

performance, quantifies the duration during which the

CPU is engaged in task processing (Xiong and Chung,

2012). Throughput, which refers to the number of

processes completed in the time allotted, is an additional

critical factor that influences the system’s overall efficacy

(Avrahami and Azar, 2007). The duration required to

complete a specific procedure, known as turnaround time,

is a critical metric for evaluating a system’s performance

and responsiveness (Xiong and Chung, 2012). The

duration that a process remains in the ready queue directly

impacts the system’s overall efficacy and its users’

experience (Liang, 2019). Moreover, completion time,

denoting the moment a process concludes its execution, is

an essential parameter in CPU scheduling that impacts the

system’s efficacy and performance (Xiong and Chung,

2012; Avrahami and Azar, 2007). In addition, CPU

allocation fairness is emphasized, as it guarantees that

every process is allocated the CPU equitably and prevents

depletion (Khatri, 2016).
In CPU scheduling, response time is the duration

required for an application to respond to a specified

input or request. The metric is of utmost importance

when assessing the effectiveness and efficacy of

scheduling algorithms. The importance of response time

in time-sensitive and real-time applications is

underscored by the strong correlation between response

time and scenario urgency (Engström et al., 2024).

Furthermore, in software-defined wide-area networks,
response time optimization strategies, such as those designed

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

974

to reduce the delay in processing control messages during

switch migration, illustrate response time’s significance for

system performance (Sahoo et al., 2020).

Literature

The First Come, First Served (FCFS) scheduling

algorithm, although widely recognized for its simplicity,

has several shortcomings. These include prolonged

waiting times, decreased throughput, and inefficient

resource distribution. On the other hand, recent research

has shown that the application of algorithms such as

Nudge can improve FCFS stochastically, particularly for

light-tailed work size distributions (Van Houdt, 2022). An
improvement on the original FCFS method of Zhao and

Stankovic (2003) called FCFSI, increases the likelihood that

a new job will be added to the available queue (Choi et al.,

2010). Additionally, Choi et al. (2010) showed that the

scheduling results from a Mixed-Integer Linear

Programming (MILP) scheduling method were better than

those from a traditional FCFS scheduler.

Furthermore, in an attempt to increase processing

speed and efficiency, the vast majority of research

literature has been devoted to CPU scheduling algorithm

optimization. Dash et al. (2019), for instance, emphasized
the importance of refining disk scheduling techniques to

increase computational efficiency and performance.

Furthermore, to improve scheduling performance in

High-Performance Computing (HPC) systems, (Fan et al.,

2019) stressed the importance of actively optimizing

numerous resources in addition to CPUs.

Multilevel queue algorithms are inflexible because

processes cannot switch between different accessible queues.

Asef et al. (2009) suggested Thombare et al. (2016) three-

level Multilevel Feedback Queue (MLFQ) technique as a

remedy for this issue. Any operations in the first queue

that take longer than 10 ms are routed to the second queue,
where they are sorted using the SJF algorithm before

being handled by the RR algorithm, which has a variable

time quantum. Should the time quantum be exceeded

again, the processes are moved to the third queue, where

they are subjected to a similar SJF-RR procedure. Using

this approach results in a considerable reduction of the

mean waiting time and turnover time when compared to

the same configuration using a static time quantum.

The proposed MLFQ algorithm aligns with the

findings of Lenka and Ranjan (2012), highlighting the

suboptimal performance of traditional algorithms like RR

in terms of turnaround time. Additionally, Abirami and

Vasudevan (2023) introduced an improved version of

MLFQ that uses a modified version of the RR algorithm

called Shortest Remaining Burst Round-Robin (SRBRR) to

mitigate depletion in reconfigurable computing systems.

Raheja et al. (2014) also proposed a multilevel hybrid

scheduling technique to maximize processor usage in grid

situations. We compare our approach to the idea of

multilevel feedback queues. Additionally, Park et al.

(2022) emphasized how difficult it is to predict queue

waiting times due to job features and the scheduling
algorithm that was used. This emphasizes how important

it is to have dynamic and flexible scheduling procedures.

Shafi et al. (2020) used a neural network to determine

the best time quantum for the RR algorithm. The authors

gathered a body of information by running multiple

algorithms with different static time quanta and saving the

time quanta that resulted in the quickest turnaround times.

When a new program was encountered, the knowledge

base was used to predict the time quantum, provided that

a similar program was found; if not, the program was

given a different time quantum, and the knowledge base
was updated accordingly. The authors showed that for

time quantum algorithms, dynamic time slice allocation

leads to better performance than static time slice

implementation of the RR method.

Furthermore, compared to the traditional RR

algorithm, Sohrawordi's (2019) experimental results

confirm the effectiveness of a dynamic time quantum

iteration of the RR CPU scheduling algorithm in solving

the fixed time quantum problem and reducing the mean

delay time and turnaround time. Furthermore,

experimental analysis carried out by Datta (2015)

demonstrated that, compared to previous algorithms, their
effective RR scheduling algorithm-which included a

dynamic time produced better average turnaround and

waiting times as well as fewer context transitions.

The RR method is a widely used CPU scheduling

mechanism in multitasking operating systems

(Sohrawordi, 2019). A measure of central tendency from

the previous set of processes, such as the median or

arithmetic mean, is used by several implementations of

the RR algorithm to calculate the current process’s time

quantum (Zafar Iqbal et al., 2022; Kumar Mishra and

Rashid, 2014). However, this assumes that the selected

processes have an even distribution of time quanta, which

isn’t always the case (Faizan et al., 2020). Omotehinwa et al.

(2019) presented a method for figuring out the temporal

quantum of RR when the burst timings have an

asymmetric distribution. According to Faizan et al.

(2020), this version of the RR algorithm showed reduced

average turnaround and waiting periods compared to

alternative iterations, such as NIRR, IRRVQ, and DABRR.

This emphasizes how crucial it is to include the burst time

distribution in the RR algorithm to increase its effectiveness.

In addition, many improvements and changes have

been made to the RR algorithm, such as priority-based

versions (Mohanty et al., 2011), dynamic time quantum

adjustments (Kumar Mishra and Rashid, 2014), and

hybrid techniques (Elmougy et al., 2017; Adamu et al.,

2019). By reducing the average turnaround, waiting, and

response times, these changes aim to improve the RR

algorithm’s effectiveness and efficiency. Experimental

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

975

investigations show that the suggested algorithms perform

better than existing algorithms in terms of average

turnaround time, average waiting time, and number of
context switches (Datta, 2015; Abdulrahim et al., 2014).

When it comes to accurately calculating the CPU burst

time of processes that are in the available queue, the SJF

algorithm has a challenge (Altman, 1992). To address this

problem, Helmy et al. (2015) presented a machine-

learning approximation solution for the CPU surge time

in SJF. A variety of procedures were selected, each with

a unique set of characteristics. Additionally, a target

variable and a feature vector were given. The processes

were divided into distinct training and test sets and the

feature vector was a filtered list of process properties.
Models were created by applying a variety of machine

learning methods, such as K-nearest neighbors and

decision trees, using the training dataset. The models’

effectiveness was evaluated by comparing the generated

models to the test set using measures like the correlation

coefficient. The best models were then used to anticipate

CPU surge times for new processes and the SJF method

was implemented based on these predictions. This

approach is in line with the growing body of research

that emphasizes nonparametric methods, particularly in

the fields of computer science and machine learning

(Altman, 1992). The application of machine learning
techniques, such as decision trees and K-nearest

neighbors, indicates the increasing trend of using these

methods to address computational challenges (Altman,

1992; Lundberg et al., 2020).

One widely used CPU scheduling approach is Priority

Scheduling (PS). It distributes CPU access to processes in

the available queue based on their priority level (Xu et al.,

2024). However, one major worry of PS is that low-

priority operations could be stuck in the available queue

forever; this is known as “starvation” (Xu et al., 2024).

Chandiramani et al. (2019) proposed a redesigned version

of PS that included RR scheduling to address this

problem. Their research showed that, in contrast to the

original PS, this hybrid technique reduces the impacts of

famine and improves mean turnaround and waiting

periods (Xu et al., 2024). CPU scheduling is essential to

multiprogramming operating systems because it allows

for the effective distribution of CPU resources among

competing programs (Hasan, 2014). Algorithms for CPU

scheduling are widely used in operating systems and

communication networks, where they greatly increase

system efficiency (Hasan, 2014). In addition, CPU

scheduling includes deciding in which order to assign

processes from the queue to the CPU (Omar et al., 2021).

The literature discusses numerous scheduling policies,

including PS; last-come, first-served scheduling; FCFS

scheduling; and shortest-job-first scheduling (Senan,
2017). According to Sohrawordi (2019), RR is the most

common CPU scheduling technique used in multitasking

operating systems. Furthermore, studies have compared

pre-runtime scheduling to PS (Karapici et al., 2015).

A modified version of simple RR scheduling is created
by combining PS with RR design. This effectively

addresses the issue of low-priority processes being denied

resources and improves system performance in general

(Putra and Purnomo, 2022). Furthermore, Moharana et al.

(2018) highlighted the ineffectiveness of scheduling

techniques due to the random allocation of virtual CPUs

to real CPU cores when context switching occurs.

In the field of CPU scheduling, Generalized Processor

Sharing (GPS) is an idealized scheduling approach. It

achieves perfect fairness and is used as a standard for

evaluating the fairness of other scheduling algorithms
(Mostafa and Kusakabe, 2015). In addition, the literature has

reviewed the Priority-Based Round-Robin (PBRR) CPU

scheduling algorithm, concentrating on the presumptions

made during CPU scheduling (Zouaoui et al., 2019).

CPU Scheduling Algorithms

First Come, First Served (FCFS)

FCFS is the scheduling mechanism utilized by
operating systems’ central processing units. The

execution of the procedures within this non-preemptive

scheduling algorithm is based on the order of arrival. As

a result, the CPU is allocated to the first process that

arrives, with subsequent processes not receiving the CPU

until the earlier processes have finished executing. FCFS

is regarded as one of the most basic and uncomplicated

scheduling algorithms; furthermore, it is remarkably easy

to understand and implement (Sambath et al., 2020).

However, this may also lead to the convoy effect, wherein

shorter processes are forced to wait for longer processes,
which can result in delays, inefficiencies in CPU

utilization, and resource scarcity (Sambath et al., 2020;

Stallings, 2012). However, FCFS could be a viable and

straightforward alternative when processes have similar

durations or the system necessitates a transparent,

equitable method that does not involve prioritization

(Stallings, 2012). Crucially, FCFS, as with banking

clients, operates under the fundamental principle of

serving processes in the order in which they enter the

available queue. Due to the algorithm’s inherently non-

preemptive nature, a process that initiates execution

remains in the queue until it completes (Silberschatz et al.,
2018). FCFS is frequently implemented using a First In,

First Out (FIFO) queue in which processes are released

according to their arrival time (Stallings, 2012). When

discussing CPU scheduling, FCFS is occasionally

contrasted with PS, RR, and SJF, among others. Despite

its user-friendly interface and straightforwardness, FCFS

may not consistently generate the most optimal or

efficient schedule, specifically regarding average waiting

times and turnover times (Abdul Kareem and Hussein,

2022). FCFS and other scheduling algorithms are

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

976

extensively utilized in practical applications, specifically

in the contexts of grid and cloud computing

(Somasundaram and Radhakrishnan, 2009).

Round Robin (RR)

Operating systems commonly employ the RR CPU

scheduling method for job management. It is well known

for allocating CPU time to programs in an equitable and

uncomplicated manner. The RR method assigns a set time

unit, known as a time quantum, to each process in a

circular queue. When a process is scheduled, the CPU is

allocated to it for a single time quantum. If the process has

not completed its execution, it is placed at the end of the
queue to await its next turn (Tajwar et al., 2017). This

approach is suitable for time-sharing systems since it

ensures that every activity is allocated an equitable

amount of CPU time and prevents any single process from

monopolizing the entire CPU (Abdulrahim et al., 2014).

Crucially, in RRCPU scheduling when a process

arrives, it is appended to the end of a circular queue. The

CPU scheduler selects the initial process from the queue,

establishes a timer to interrupt once the time slice elapses,

and allows the process to execute. When the process is

completed before its allocated time slice elapses, it is taken
out of the queue and the CPU proceeds to the subsequent

process. If the allocated time slice elapses before completion,

the process is preempted and returned to the end of the queue,

while the CPU transitions to the subsequent process in the

queue (Tanenbaum and Bos, 2014).

RR offers a notable benefit in terms of fairness, as it

ensures that each process receives an equitable allocation

of the CPU. Nevertheless, the effectiveness of RR

scheduling heavily relies on the duration of the time

quantum. A brief time quantum results in frequent context

shifts and reduces CPU efficiency, but an extended time

quantum transforms RR scheduling into FCFS
scheduling, resulting in longer reaction times for shorter

operations (Stallings, 2012).

Notwithstanding these limitations, RR continues to

be a favored option for time-sharing systems because of

its straightforwardness and impartiality in allocating

CPU resources among activities. It guarantees that all

processes receive regular CPU access without

experiencing endless delays, which is vital in interactive

systems where a responsive user experience is essential

(Silberschatz et al., 2018).

The RR scheduling approach is particularly effective

when the duration of the CPU burst for each task is not

predetermined. Implementing a time quantum restriction

on each activity prevents shorter processes from being

deprived of resources by longer-running processes

(Matarneh, 2009). However, importantly, the RR

algorithm may not be suitable for real-time operating

systems because it tends to result in extended wait,

response, and turnaround times, as well as reduced

throughput (Zouaoui et al., 2019). In addition, one of the

traditional RR scheduling algorithm’s significant

limitations is the overhead caused by context switching.
Context switching refers to the process of saving one

process’s state and loading another’s, which consumes

system resources and time (Tajwar et al., 2017).

To address the limitations of the traditional RR

algorithm and enhance its effectiveness, numerous

researchers have proposed enhancements and

modifications. Soft real-time systems incorporate

priority-based scheduling, intelligent time slice

allocation, and dynamic time quantum allocation to

handle their requirements (Behera et al., 2010; Dash et al.,

2015; Mohanty et al., 2011). In addition, attempts have
been made to enhance the system’s overall performance

by optimizing the RR algorithm by adjusting time slices

according to the remaining CPU bursts of active processes

(Chhugani and Silvester, 2017).

Shortest Job First (SJF)

The SJF scheduling technique prioritizes the pending

process with the shortest execution time (Jeyaprakash and

Sambath, 2021). This method has received considerable

recognition as being the most efficient for decreasing the
average duration needed to accomplish a task (Hu and Li,

2022). SJF aims to enhance throughput by reducing

process waiting times by selecting the shortest available

assignment for execution (Pon Pushpa and Devasigamani,

2014). According to Jeyaprakash and Sambath (2021), the

algorithm operates by prioritizing the execution of the

process with the shortest duration, regardless of the order

in which the processes were received.

One significant advantage of SJF is its ability to decrease

waiting time by prioritizing shorter activities, leading to

faster completion of processes (Hashim Yosuf et al., 2022).

SJF’s effectiveness is particularly evident in scenarios

where the primary goal is to reduce assignment

completion time, as highlighted by Jeyaprakash and

Sambath (2021). Furthermore, its simplicity and ease of

implementation make SJF an attractive option for various

computer systems (Abdul Kareem and Hussein, 2022).

However, SJF does have some disadvantages. A

significant constraint is the potential for starvation, as

lengthier processes may be compelled to wait indefinitely

for the arrival of shorter processes (Younis, 2021). This
issue has the potential to create a power asymmetry

throughout the execution of procedures, as shorter

activities are regularly given higher priority than longer

ones (Younis, 2021). In addition, it is imperative to

guarantee the accuracy of project length estimations, as

inaccurate estimates might result in inefficient scheduling

decisions (Mi et al., 2012). Therefore, to effectively

utilize the SJF algorithm in various computer contexts, it

is crucial to possess a thorough understanding of its

characteristics and implications.

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

977

Experimental Setup

We developed a Java-based simulation designed to

dynamically produce random arrival and burst times,

tailored to five distinct scenarios, for a collection of eight

processes. This innovative approach of incorporating

randomness into the simulation of process arrival and

execution times serves as a powerful and holistic method

for evaluating the FCFS, RR, and SJF scheduling

algorithms’ performance. By embracing this strategy, we

can simulate a wide spectrum of operational conditions

that closely mirror the complexities and unpredictability

inherent in real-world computing environments.
Furthermore, our use of randomness to model process

timings enables us to challenge the scheduling algorithms

with scenarios that range from typical to extreme,

including the simulation of high-concurrency

environments, variable process loads, and unexpected

spikes in system demand. This approach not only tests the

FCFS, RR, and SJF algorithms’ robustness and

adaptability but also contributes to the development of

more resilient and flexible scheduling solutions capable of

accommodating the dynamic nature of computing

workloads. The provided description outlines two main
components of a program designed to simulate a process

scheduling scenario commonly studied in operating

systems courses. The program consists of a Main Program

flowchart and a generateRandomTimes function

flowchart. The following breaks down each part.

Main Program Flowchart

1. Set numberOfProcesses to 8: Initialize the

numberOfProcesses variable.

2. Generate arrivalTimes:

 Call generateRandomTimes function with

parameters numberOfProcesses, 0 and 20.

 Output of this step is the arrivalTimes array.

3. Generate burstTimes:

 Call generateRandomTimes function with

parameters numberOfProcesses, 1 and 10.

 Output of this step is the burstTimes array.

 End: The end of the Main Program flowchart

generateRandomTimes Function Flowchart

1. Start Function: Indicates the beginning of the

generateRandomTimes function.

2. Initialize Array times: Create an array of

integers with a size equal to the size parameter.
3. Create Random Number Generator:

Instantiate a Random object.

4. Loop from i = 0 to size - 1:

 Inside the loop, generate a random number

between min and max (inclusive).

 Assign this number to times[i].

5. Return times: After completing the loop, return

the times array.

6. End Function: Marks the end of the

generateRandomTimes function

Table shows the process ID, Arrival Time (AT), and

Burst Time (BT) for each process in each scenario.

Scenario 1

 Arrival times: Processes generally arrive at a steady

rate, starting from time 0. There’s a noticeable gap

between the arrival of process 1 and 2

 Burst times: Vary significantly, ranging from 1-10 time

units. Processes 1, 2, 6, and 8 have high burst times

(10 units), suggesting longer processing requirements

Scenario 2

 Arrival times: Processes start arriving later compared

to scenario 1, with the first process arriving at time 8.

The arrival times are more spread out

 Burst times: Shorter on average compared to scenario

1, with most processes requiring less than 5 time units.

This could imply quicker processing for each process

Scenario 3

 Arrival times: Most processes arrive early, within the

first 2 time units, indicating a congested start

 Burst times: More varied, ranging from 1-10 time

units. Some processes require significant processing

time (like processes 1, 2, and 6)

Scenario 4

 Arrival times: Processes start arriving at time 0,

similar to scenario 1. The arrival pattern is more

evenly spread over time

 Burst times: Generally moderate, with no process

exceeding 8-time units. This might lead to a more

balanced processing load

Scenario 5

 Arrival times: Processes have later start times

compared to other scenarios, beginning at time 6. The

arrival times are relatively spread out

 Burst times: Mostly short, with many processes

requiring 2-7 time units. This scenario indicates

quick processing for most processes

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

978

Table 1: Process IDs with arrival (AT) and burst times (BT) across scenarios

Process Scenario 1 (AT, BT) Scenario 2 (AT, BT) Scenario 3 (AT, BT) Scenario 4 (AT, BT) Scenario 5 (AT, BT)

1 AT: 0, BT: 10 AT: 8, BT: 4 AT: 1, BT: 10 AT: 0, BT: 4 AT: 6, BT: 1
2 AT: 3, BT: 10 AT: 10, BT: 4 AT: 1, BT: 10 AT: 2, BT: 8 AT: 8, BT: 6
3 AT: 4, BT: 1 AT: 11, BT: 5 AT: 2, BT: 9 AT: 3, BT: 5 AT: 10, BT: 10
4 AT: 9, BT: 4 AT: 13, BT: 8 AT: 2, BT: 7 AT: 5, BT: 4 AT: 11, BT: 4
5 AT: 12, BT: 4 AT: 14, BT: 1 AT: 10, BT: 2 AT: 6, BT: 5 AT: 14, BT: 2
6 AT: 16, BT: 10 AT: 16, BT: 4 AT: 14, BT: 10 AT: 6, BT: 7 AT: 15, BT: 7
7 AT: 18, BT: 7 AT: 18, BT: 5 AT: 15, BT: 8 AT: 10, BT: 6 AT: 15, BT: 10
8 AT: 18, BT: 10 AT: 20, BT: 2 AT: 16, BT: 1 AT: 15, BT: 4 AT: 17, BT: 2

Table 2: Key differences and similarities in arrival and burst times across scenarios

Scenario Arrival time characteristics Burst time characteristics General observation

1 Steady, starting from time 0 Ranges from 1-10, with Potentially longer waits for

 with a noticeable initial gap and several longer bursts of processing

2 Later starts, spread out arrivals Shorter on average, mostly under 5 units Quicker processing, less initial congestion

3 Early and congested, most arriving Varied, from 1-10, unpredictable delays Early congestion, varied

 within the first 2 units processing times

4 Early like scenario 1, more evenly Moderate, none exceeding 8 units Balanced processing load

 spread over time

5 Later starts like scenario 2, Mostly short, between 2 and 7 units Quick processing, less congestion

 arrivals spread out

Table shows the key differences and similarities among

the five scenarios, focusing on arrival and burst times.

It is important to note here that, in terms of arrival

patterns, scenarios 1 and 4 have earlier arrivals, with

scenario 1 having a more concentrated arrival pattern.

scenarios 2 and 5 have later arrivals. Scenario 3 is unique

for its very early and congested arrival pattern.

Meanwhile, scenario 1 has longer burst times, indicating

potentially longer waits for processing. Scenarios 2 and 5

have shorter burst times, suggesting quicker processing.

Scenario 3 shows the most variance in burst times, which

could lead to unpredictable processing delays. Scenario 4

strikes a balance with moderate burst times.

Materials and Methods

This section outlines the methodology used to

evaluate three CPU scheduling algorithms FCFS, RR,

and SJF using a Java-based simulation designed to

imitate various operational scenarios. It also describes

the technical requirements, such as software and

hardware configurations, process generating

methodologies, algorithm implementation, and

performance measurements, to ensure that the research

is clear and reproducible.

Experimental Design

The primary objective of this research was to assess

and compare the performance of three CPU scheduling

algorithms First-Come, First-Served (FCFS), Round-

Robin (RR) and Shortest-Job-First (SJF) under a

variety of simulated conditions. The study employed a

Java-based simulation to generate dynamic, random

process arrivals and burst times across five distinct

scenarios, representing varying levels of system load

and operational demands.

Simulation Environment

 Programming language: Java

 Software tools: Eclipse IDE for Java developers

 System specifications: The simulation was run on

a computer with an Intel Core i7 processor, 16GB

Ram, and windows 10 operating system

Description of the Simulation

 Process generation: A total of eight processes were

dynamically created for each simulation run. Each

process was characterized by two main attributes:

arrival time and burst time

 Random time generation: A custom function,

generateRandomTimes (intnumberOfProcesses,

int min, int max), was implemented to produce

random values for arrival and burst times within

specified ranges, ensuring variability across

simulation runs

 Scenarios setup: Five scenarios were designed to

reflect different operational environments:

o Scenario 1: High burst times with uniform arrivals

o Scenario 2: Short burst times with staggered arrivals

o Scenario 3: Mixed burst times with clustered

early arrivals

o Scenario 4: Moderate burst times with evenly

spaced arrivals

o Scenario 5: Short burst times with delayed,

spread-out arrivals

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

979

 CPU Scheduling Algorithms Implementation

 FCFS: Processes were managed in a queue based

on their arrival order without preemption

 RR: This algorithm utilized a time quantum; the

quantum size was varied in different simulation

runs (1, 5, and 10 units) to examine its impact on

performance. Processes exceeding their quantum

were re-queued

 SJF: Processes were selected based on the shortest

burst time, prioritizing shorter tasks to reduce

average waiting time

Performance Metrics

The simulation recorded Key Performance Indicators

(KPIs) to evaluate the efficacy of each scheduling algorithm:

 Response time: Time from the moment of arrival

to the first response

 Turnaround time: Total time from arrival to completion

Data Collection and Analysis

Data collection: The output from each simulation run
was automatically logged into a structured format,

capturing detailed timing information for each process

under each scheduling algorithm.

The study's analysis techniques included a detailed

examination of the collected data using descriptive

statistics, calculating the average of key performance

metrics such as response time and turnaround time, and

establishing a baseline understanding of each CPU

scheduling algorithm's performance across different

scenarios. Graphical representations, such as bar charts,

were utilized to visually display the algorithms'

comparative and changeable performance, with an

emphasis on average response and turnaround times under

various operational settings. Furthermore, a comparative

study enabled a direct evaluation of the metrics, revealing

disparities in performance and providing greater insights

into the algorithms' efficiency and efficacy in diverse

simulated scenarios.
By detailing these materials and methods, the study

aims to provide a clear and comprehensive account of

the experimental setup, ensuring that the findings are

reproducible and verifiable by other researchers and

practitioners interested in CPU scheduling

performance analysis.

Results and Discussion

Figure 1 presents a column bar chart comparing the

different CPU scheduling algorithms’ response times

across the five scenarios.

Fig. 1: Average response times of different CPU scheduling

algorithms across five scenarios

In the first scenario, we observe a diverse array of

process burst times. The SJF algorithm excels in this

environment by swiftly completing jobs with shorter

durations, thus achieving a reduced overall average

response time. The FCFS method shows reasonable

effectiveness, as it seldom encounters situations where

short processes are delayed by preceding longer ones,

with the initial sequence being the only exception. On

the other hand, RR scheduling with a quantum of one

unit performs poorly. This inefficiency stems from the

high cost associated with frequent context switching.

In the second scenario, while the processes’ burst

times are again quite varied, their arrival times are more

clustered. This scenario similarly sees the SJF algorithm

outperforming others due to its preference for shorter

tasks. The RR strategy with a quantum of 1 remains

suboptimal. However, when the quantum is increased to 5

or 10 units, the RR approach begins to mirror the

performance of FCFS. This improvement is attributable to

the burst times being relatively short and the arrival times

showing less variation. In the third scenario, processes

arrive in close succession, which inevitably pushes up the

average response time for all scheduling algorithms. Yet,

SJF continues to distinguish itself by efficiently

processing the shorter jobs first.

In the fourth scenario, the trend noticed in previous

scenarios persists, with SJF securing the best average

response time. Conversely, the RR method with a

quantum of 1 exhibits the least desirable performance, a
trend consistent with the reasons previously outlined. The

fifth scenario is characterized by generally shorter burst

times for processes, a condition that is advantageous for

all scheduling algorithms. Nonetheless, SJF maintains a

performance lead by leveraging the shorter process

durations to minimize waiting times.

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

980

To encapsulate the findings, the SJF algorithm
consistently delivers superior performance across various
scenarios. Its strategy of prioritizing shorter processes
significantly cuts down on the average response time. The
effectiveness of the FCFS method is contingent upon the
sequence in which processes arrive; its performance
falters when longer processes precede shorter ones. The
RR algorithm’s efficiency is closely linked to the quantum
size selected. A quantum that is too small leads to excessive
overhead due to context switching, while a quantum that is
too large essentially reduces RR to an FCFS-like operation.
In the scenarios considered, smaller quantum sizes have
typically yielded poorer results when compared to larger
ones due to the high costs of context switching.

In the scenarios presented, the FCFS scheduling method
demonstrates varied performance. In scenarios with a mix
of short and long process burst times (scenarios 1 and 4) or
predominantly short processes (scenario 5), FCFS achieves
moderate to good average response times, due to either a
large initial process setting a consistent pace or minimal
waiting times for most processes. However, its
performance drops significantly in scenarios where
processes with longer burst times arrive early (scenario 3),
as this causes subsequent processes to endure extended
waits, thus inflating the average response time.

The RR scheduling method with a quantum of 1
suffers from high context switching overhead, resulting in
poor performance across all scenarios. However, as the
quantum increases to 5 or 10, RR’s performance begins to
align with that of FCFS, especially when the processes
have shorter burst times (scenarios 2, 4, and 5). This
improvement is due to the reduction in context switching
frequency. Across all scenarios, SJF stands out as the most
efficient algorithm, consistently delivering the best
performance by always executing the shortest available
process, thereby minimizing the wait times for subsequent
processes and, consequently, the average response time.
This efficiency is based on the precondition of known
burst times for all processes.

Figure 2 offers a graphical representation comparing
the average turnaround times of five CPU scheduling
algorithms over five distinct scenarios. The following
paragraphs detail the outcomes for each scenario and
conclude with a comprehensive summary.

In scenario 1, FCFS faces a large process arriving first,
but due to the subsequent arrival of smaller processes, the
average turnaround time remains moderate. Scenario 2 sees
FCFS performing well as the processes are predominantly
short, leading to less variability in waiting times.
Conversely, scenario 3 is where FCFS struggles the most;
early-arriving processes with longer burst times
significantly delay later ones, resulting in the highest
average turnaround time among the scenarios. Scenario 4
presents a balanced mix of process burst times, allowing
FCFS to perform adequately without significant delays. In
scenario 5, the shorter burst times overall benefit FCFS,
resulting in a considerably low average turnaround time.

Fig. 2: Average turnaround time of different CPU scheduling

algorithms across the five scenarios

RR scheduling in scenario 1 with a quantum of 1 leads
to high context-switching overhead and thus the worst
performance, but with a quantum of 10, the performance
matches that of FCFS by minimizing context switches. In

scenario 2, a short quantum again introduces inefficiency;
however, increasing the quantum size makes RR’s
performance equivalent to FCFS thanks to the shorter and
more uniformly sized processes. Scenario 3 demonstrates
that RR with a larger quantum size performs better
because fewer context switches are required for the long
burst processes that arrive early. Scenario 4’s
performance is hindered by a quantum of 1 but improved
with higher quanta due to the shorter nature of processes.
In scenario 5, with mostly short processes, the differences
in quantum size have a less significant impact on the
average response times, with lower overhead and quick

process turnover contributing to lower average turnaround
times across all quanta.

Across all five scenarios, SJF consistently offers the
best performance by prioritizing the execution of the
shortest processes available. This approach significantly
reduces the wait times for other processes, thereby
minimizing the average turnaround time. SJF’s ability to
quickly process shorter jobs and effectively manage the
queue results in the most efficient turnaround times
compared to the other algorithms. This consistent
efficiency underscores SJF’s utility in situations where
process burst times are known and minimizing turnaround

time is the primary objective.
In conclusion, while SJF typically leads in efficiency

due to its preferential treatment of shorter tasks, its real-
world application is limited by the need for accurate burst
time information. FCFS is most effective when processes
have similar burst times, or at least when long processes do
not precede shorter ones. RR’s performance is highly
contingent on the quantum size; a well-chosen quantum can
balance the need for process responsiveness with the
overhead of context switching. The ideal scheduling strategy
thus depends on the specific requirements of the operating
environment, including the nature of the tasks and the desired

balance between fairness, efficiency, and response time.

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

981

Research Novelty and Contribution

To reinforce the conclusions of our study on CPU

scheduling methods, we need to contextualize them within

the larger research environment by comparing them to past

studies. Such comparisons not only highlight the novelty

and significance of our study, but also provide a clearer

picture of the impacts and advances we have made.

In this study, we investigate three primary areas of

innovation: the implementation of dynamic quantum size

adjustments in RR scheduling, the adoption of a scenario-

based evaluation methodology, and a comprehensive

comparative performance analysis of various CPU

scheduling algorithms. Each of these areas introduces new

methodologies and insights that make a substantial

contribution to the field, thereby improving the theoretical

and practical aspects of current scheduling practices.

Dynamic Quantum Size Allocation for Round-

Robin Scheduling

Our research looks on the effects of dynamic quantum

size on the Round-Robin (RR) scheduling algorithm.

Previous research, such as those by Behera et al. (2010);

Datta (2015), investigated fluctuations in quantum size

but did not delve deeply into dynamic adjustment based

on real-time system demands. Our work makes a unique

contribution to this field by empirically demonstrating

how altering quantum sizes can improve both response

time and context switching, especially in high-variability

workload conditions.

Scenario-Based Evaluation Methodology

Our evaluation methodology takes a scenario-based

approach that closely resembles real-world operational

situations, unlike traditional studies that generally model

static or limited environments (Stallings, 2012;

Abdulrahim et al., 2014). This method enables more

rigorous testing of algorithms under a variety of load

scenarios, providing insights that are directly applicable

to practical settings. This is a considerable improvement
over traditional evaluations, offering a more complete

picture of algorithm performance dynamics.

Comparative Performance Analysis

Xiong and Chung (2012); Mogul and Borg (1991)

found that CPU scheduling techniques are often compared

based on a limited set of criteria and fail to consider

complicated system demands. Our study expands on

existing assessments by include a wide range of

performance indicators such as response time, turnaround

time, and context switching. For example, our findings on

the SJF algorithm's improved performance in minimizing

reaction times are consistent with those of Jeyaprakash

and Sambath (2021), but we go into greater detail about

how burst time variability influences this efficiency.

Highlighting Key Findings in Relationship to

Existing Literature

Our findings suggest that FCFS can perform
effectively under conditions of uniform process arrival
times, which is consistent with Van Houdt (2022)
findings. However, our scenario-based findings add to the

knowledge foundation provided by Zhao and Stankovic
(2003) by providing additional insights into how initial
lengthy burst processes have a negative impact on FCFS
performance. In addition, the analysis confirms the
efficiency of Shortest Job First (SJF) in predictable
process environments, aligning with previous research
(Yosuf et al., 2021). However, we uniquely quantify the
impact of prediction accuracy on SJF performance,
providing a critical perspective that supports Helmy et al.
(2015) theoretical model. Moreover, our research
supports Sohrawordi (2019) findings that the Round
Robin (RR) approach allocates CPU time fairly.

However, we contribute to this understanding by
illustrating how ideal quantum sizes can considerably
reduce the overhead associated with frequent context
switching, as proposed by Mohanty et al. (2011).

Conclusion

The results obtained from our exhaustive scenario-
based assessment illustrate the distinct merits and

drawbacks of the CPU scheduling algorithms FCFS, RR,
and SJF. In diverse scenarios, the SJF algorithm
consistently achieved lower average response and
turnover times than FCFS and RR. This demonstrates the
algorithm’s effectiveness in processing environments
where task durations are predetermined and it is possible
to prioritize shorter tasks. Although the FCFS algorithm
is uncomplicated, its performance can vary depending on
the order in which processes arrive. In situations where
lengthier tasks come before shorter ones, it struggles
significantly. The selection of quantum size had a
significant impact on the RR scheduling method’s

performance; under specific conditions, optimal quantum
settings reduced context switching overhead and closely
resembled the efficiency of FCFS. By illustrating the
performance of widely used algorithms under simulated
real-world conditions, this study contributes to the ongoing
discourse on CPU scheduling with empirical data.

Our results indicate that, although no algorithm

performs better than others in every circumstance, the
specific demands of the computing environment the

characteristics of the tasks, and the intended equilibrium
between efficiency, fairness, and response time should

guide the selection of a scheduling strategy. Subsequent
investigations may delve into the amalgamation of machine

learning methodologies to forecast the dynamic quantum
size, as well as the formulation of hybrid scheduling

approaches that leverage the respective merits of FCFS, RR
and SJF to augment the efficiency of CPU scheduling.

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

982

Acknowledgment

The authors would like to express sincere gratitude to

AlMaarefa University, Riyadh, Saudi Arabia, for

supporting this research.

Funding Information

The authors have not received any financial support or

funding to report.

Author’s Contributions

Olaa Hajjar: Conducted the primary research,

designed and executed the experiments, and contributed

extensively to the manuscript written. Implementing the

scenario-based approach, analyzed the results and

revising the manuscript for clarity. Conducted extensive

research to develop the experimental framework.
Escelle Mekhallalati: Designed and executed the

experiments, ensuring the accuracy and reliability of

results. contributed extensively to the manuscript written.
Implemented the scenario-based approach, analyzed the

results, and revised the manuscript for clarity.

Nada Annwty: Analyzed data meticulously,

interpreted findings to draw meaningful conclusions.
Contributed extensively to the manuscript written.

Faisal Alghayadh: Played a central role in drafted the

manuscript, contributed to the introduction, methodology,

results and discussion sections and contributed

extensively to the manuscript written.
Ismail Keshta: Assisted in data collection and

processed, provided technical support throughout the

research contributed to the discussion section contributed

extensively to the manuscript written.

Mohammed Algabri: Oversaw the project, provided

guidance on methodology selection and critically

reviewed and revised the manuscript for intellectual

content and coherence, contributed extensively to the

manuscript written. Played a central role in drafting the

manuscript, and contributed to the introduction,

methodology, results and discussion sections.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of the
other authors have read and approved the manuscript and
no ethical issues involved.

References

Abdul Kareem, E. I., & Hussein, S. A. (2022). Optimal
CPU Jobs Scheduling Method Based on Simulated
Annealing Algorithm. Iraqi Journal of Science,
63(8), 3640–3651.

 https://doi.org/10.24996/ijs.2022.63.8.38

Abdulrahim, A., E. Abdullahi, S., & B. Sahalu, J. (2014).

A New Improved Round Robin (NIRR) CPU

Scheduling Algorithm. International Journal of

Computer Applications, 90(4).

 https://doi.org/10.5120/15563-4277

Abirami, B., & Vasudevan, V. (2023). Modified

multilevel feedback queue scheduling algorithm with

starvation mitigation for reconfigurable computing

systems. Research Square.

 https://doi.org/10.21203/rs.3.rs-2820144/v1

Adamu, I. M., Gital, A. Y., Boukari, S., & Zahraddeen

Yakubu, I. (2019). Performance Evaluation of Hybrid

Round Robin Algorithm and Modified Round Robin

Algorithm in Cloud Computing. International

Journal of Recent Technology and Engineering

(IJRTE), 8(2), 5047–5051.

 https://doi.org/10.35940/ijrte.a9139.078219

Adeleke, I. A. (2022). Comparative Analysis and

Performance Evaluation of Contiguous Memory

Techniques. UNIOSUN Journal of Engineering and

Environmental Sciences, 4(2).

 https://doi.org/10.36108/ujees/2202.40.0270

Altman, N. S. (1992). An Introduction to Kernel and

Nearest-Neighbor Nonparametric Regression. The

American Statistician, 46(3), 175–185.

https://doi.org/10.2307/2685209

Asef, A.-K., Abdullah, R., & Abdul Rash, N. (2009). Job

Type Approach for Deciding Job Scheduling in Grid

Computing Systems. Journal of Computer Science,

5(10), 745–750.

 https://doi.org/10.3844/jcssp.2009.745.750

Avrahami, N., & Azar, Y. (2007). Minimizing Total Flow

Time and Total Completion Time with Immediate

Dispatching. Algorithmica, 47(3), 253–268.

 https://doi.org/10.1007/s00453-006-0193-6

Barroso, L. A., Hölzle, U., & Ranganathan, P. (2019). The

data center as a Computer. Synthesis Lectures on

Computer Architecture, XVIII, 189.

 https://doi.org/10.2200/s00516ed2v01y201306cac024

Behera, H. S., Mohanty, R., & Nayak, D. (2010). A New

Proposed Dynamic Quantum with Re-Adjusted

Round Robin Scheduling Algorithm and Its

Performance Analysis. International Journal of

Computer Applications, 5(5).

 https://doi.org/10.5120/913-1291

Chandiramani, K., Verma, R., & Sivagami, M. (2019). A

Modified Priority Preemptive Algorithm for CPU

Scheduling. Procedia Computer Science, 165, 363-369.

https://doi.org/10.1016/j.procs.2020.01.037

Chhugani, B., & Silvester, M. (2017). Improving Round

Robin Process Scheduling Algorithm. International

Journal of Computer Applications, 166(6).

https://doi.org/10.5120/ijca2017914034

https://doi.org/10.24996/ijs.2022.63.8.38
https://doi.org/10.5120/15563-4277
https://doi.org/10.21203/rs.3.rs-2820144/v1
https://doi.org/10.35940/ijrte.a9139.078219
https://doi.org/10.36108/ujees/2202.40.0270
https://doi.org/10.2307/2685209
https://doi.org/10.3844/jcssp.2009.745.750
https://doi.org/10.1007/s00453-006-0193-6
https://doi.org/10.2200/s00516ed2v01y201306cac024
https://doi.org/10.5120/913-1291
https://doi.org/10.1016/j.procs.2020.01.037
https://doi.org/10.5120/ijca2017914034

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

983

Choi, S., Robinson, J. E., Mulfinger, D. G., & Capozzi, B.

J. (2010). Design of an optimal route structure using

heuristics-based stochastic schedulers. 29th Digital

Avionics Systems Conference, 2.A.5-1-2.A.5-17.

 https://doi.org/10.1109/dasc.2010.5655500

Dash, A. R., Kumar Sahu, S., & Kewal, B. (2019). An

Optimized Disk Scheduling Algorithm with Bad-

Sector Management. International Journal of

Computer Science, Engineering and Applications,

9(3). https://doi.org/10.5121/ijcsea.2019.9301

Dash, A. R., Sahu, S. kumar, & Samantra, S. K. (2015).

An Optimized Round Robin CPU Scheduling

Algorithm with Dynamic Time Quantum.

International Journal of Computer Science,

Engineering and Information Technology, 5(1).

https://doi.org/10.5121/ijcseit.2015.5102

Datta, L. (2015). Efficient Round Robin Scheduling

Algorithm with Dynamic Time Slice. International

Journal of Education and Management Engineering,

5(2), 10–19.

 https://doi.org/10.5815/ijeme.2015.02.02

Elmougy, S., Sarhan, S., & Joundy, M. (2017). A novel

hybrid of Shortest job first and round Robin with

dynamic variable quantum time task scheduling

technique. Journal of Cloud Computing, 6, 12.

https://doi.org/10.1186/s13677-017-0085-0

Faizan, K., Marikal, A., & Anil, K. (2020). A Hybrid

Round Robin Scheduling Mechanism for Process

Management. International Journal of Computer

Applications, 177(36).

 https://doi.org/10.5120/ijca2020919851

Fan, Y., Lan, Z., Rich, P., Allcock, W. E., Papka, M. E.,

Austin, B., & Paul, D. (2019). Scheduling Beyond

CPUs for HPC. Proceedings of the 28th International

Symposium on High-Performance Parallel and

Distributed Computing, 97–108.

 https://doi.org/10.1145/3307681.3325401

Gaikwad, G. D. (2021). Refresh Rate Identification

Strategy for Optimal Page Replacement Algorithms

for Virtual Memory Management. International

Journal for Research in Applied Science and

Engineering Technology, 9(11).

 https://doi.org/10.22214/ijraset.2021.38770

Hasan, T. F. (2014). CPU Scheduling Visualization.

Diyala Journal of Engineering Sciences, 7(1), 16–29.

https://doi.org/10.24237/djes.2014.07102

Hashim Yosuf, R., A. Mokhtar, R., A. Saeed, R.,

Alhumyani, H., & Abdel-Khalek, S. (2022).

Scheduling Algorithm for Grid Computing Using

Shortest Job First with Time Quantum. Intelligent

Automation & Soft Computing, 31(1), 581–590.

https://doi.org/10.32604/iasc.2022.019928

Helmy, T., Al-Azani, S., & Bin-Obaidellah, O. (2015). A

Machine Learning-Based Approach to Estimate the

CPU-Burst Time for Processes in the Computational

Grids. 2015 3rd International Conference on

Artificial Intelligence, Modelling and Simulation

(AIMS), 3–8. https://doi.org/10.1109/aims.2015.11

Hu, Z., & Li, D. (2022). Improved heuristic job

scheduling method to enhance throughput for big

data analytics. Tsinghua Science and Technology,

27(2), 344–357.

 https://doi.org/10.26599/tst.2020.9010047

Jeyaprakash, T., & Sambath, M. (2021). Performance

analysis of CPU scheduling algorithms-A problem

solving approach. International Journal of Science

and Management Studies (IJSMS), 4(4).

 https://doi.org/10.51386/25815946/ijsms-v4i4p138

Karapici, A., Feka, E., Tafa, I., & Allkoci, A. (2015). The

Simulation of Round Robin and Priority Scheduling

Algorithm. 2015 12th International Conference on

Information Technology - New Generations, 758-758.

https://doi.org/10.1109/itng.2015.131

Khatri, J. (2016). An Enhanced Round Robin CPU

Scheduling Algorithm. IOSR Journal of Computer

Engineering, 18(4), 20–24.

 https://doi.org/10.9790/0661-1804022024

Kumar Mishra, M., & Rashid, F. (2014). An Improved

Round Robin CPU Scheduling Algorithm with

Varying Time Quantum. International Journal of

Computer Science, Engineering and Applications,

4(4). https://doi.org/10.5121/ijcsea.2014.4401

Lee, J., & Chung, S. G. (2019). Analysts’ reactions to

firms’ real activities management. Review of

Accounting and Finance, 18(4), 589–612.

 https://doi.org/10.1108/raf-05-2017-0105

Liang, C.-C. (2019). Enjoyable queuing and waiting time.

Time & Society, 28(2), 543–566.

 https://doi.org/10.1177/0961463x17702164

Liu, F., Guo, F., Solihin, Y., Kim, S., & Eker, A. (2008).

Characterizing and modeling the behavior of context

switch misses. Proceedings of the 17th International

Conference on Parallel Architectures and

Compilation Techniques, 91–101.

 https://doi.org/10.1145/1454115.1454130

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin,

J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., &

Lee, S.-I. (2020). From local explanations to global

understanding with explainable AI for trees. Nature

Machine Intelligence, 2, 56–67.

 https://doi.org/10.1038/s42256-019-0138-9

Lenka, K. R., & Ranjan, P. (2012). A 2LFQ Scheduling

with Dynamic Time Quantum using Mean Average.

International Journal of Computer Applications,

47(23). https://doi.org/10.5120/7495-0560

https://doi.org/10.1109/dasc.2010.5655500
https://doi.org/10.5121/ijcsea.2019.9301
https://doi.org/10.5121/ijcseit.2015.5102
https://doi.org/10.5815/ijeme.2015.02.02
https://doi.org/10.1186/s13677-017-0085-0
https://doi.org/10.5120/ijca2020919851
https://doi.org/10.1145/3307681.3325401
https://doi.org/10.22214/ijraset.2021.38770
https://doi.org/10.24237/djes.2014.07102
https://doi.org/10.32604/iasc.2022.019928
https://doi.org/10.1109/aims.2015.11
https://doi.org/10.26599/tst.2020.9010047
https://doi.org/10.51386/25815946/ijsms-v4i4p138
https://doi.org/10.1109/itng.2015.131
https://doi.org/10.9790/0661-1804022024
https://doi.org/10.5121/ijcsea.2014.4401
https://doi.org/10.1108/raf-05-2017-0105
https://doi.org/10.1177/0961463x17702164
https://doi.org/10.1145/1454115.1454130
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.5120/7495-0560

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

984

Mostafa, M. S., & Kusakabe, S. (2015). Effect of Thread

Weight Readjustment Scheduler on Scheduling Criteria.

Information Engineering Express, 1(2), 1-10.

 https://doi.org/10.52731/iee.v1.i2.9

Matarneh, R. J. (2009). Self-Adjustment Time Quantum

in Round Robin Algorithm Depending on Burst Time

of the Now Running Processes. American Journal of

Applied Sciences, 6, 1831–1837.

 https://doi.org/10.3844/ajassp.2009.1831.1837

Mi, N., Casale, G., & Smirni, E. (2012). ASIdE: Using

Autocorrelation-Based Size Estimation for

Scheduling Bursty Workloads. IEEE Transactions on

Network and Service Management, 9(2), 198–212.

https://doi.org/10.1109/tnsm.2012.041712.100073

Mogul, J. C., & Borg, A. (1991). The effect of context

switches on cache performance. ACM SIGPLAN

Notices, 26(4), 75–84.

 https://doi.org/10.1145/106973.106982

Mohanty, R., Behera, H. S., Patwari, K., Dash, M., &

Prasanna, L. (2011). Priority Based Dynamic Round

Robin (PBDRR) Algorithm with Intelligent Time

Slice for Soft Real Time Systems. International

Journal of Advanced Computer Science and

Applications, 2(2).

 https://doi.org/10.14569/ijacsa.2011.020209

Moharana, S. C., Samal, S., Swain, A. R., & Mund, G. B.

(2018). Dynamic CPU scheduling for load balancing

in virtualized environments. Turkish Journal of

Electrical Engineering & Computer Sciences, 26(5),

2512–2524. https://doi.org/10.3906/elk-1709-112

Omar, H. K., Jihad, K. H., & Hussein, S. F. (2021).

Comparative analysis of the essential CPU

scheduling algorithms. Bulletin of Electrical

Engineering and Informatics, 10(5), 2742–2750.

https://doi.org/10.11591/eei.v10i5.2812

Omotehinwa, T., Azeeze, I., & Oyekanmi, E. (2019). An

improved round robin cpuscheduling algorithm for

asymmetrically distributed burst times. Africa Journal

Management Information System, 1(4), 50–68.

Park, J.-W., Kwon, M.-W., & Hong, T. (2022). Queue

congestion prediction for large-scale high

performance computing systems using a hidden

Markov model. The Journal of Supercomputing, 78,

12202–12223. https://doi.org/10.1007/s11227-022-

04356-z

Pon Pushpa, S. E., & Devasigamani, M. (2014).

Utilization Bound Scheduling Analysis for

Nonpreemptive Uniprocessor Architecture Using

UML-RT. Modelling and Simulation in Engineering,

2014, 705929. https://doi.org/10.1155/2014/705929

Putra, T. D., & Purnomo, R. (2022). Simulation of Priority

Round Robin Scheduling Algorithm. Sinkron, 6(4),

2170–2181.

https://doi.org/10.33395/sinkron.v7i4.11665

Raheja, S., Dadhich, R., & Rajpal, S. (2014). 2-Layered

Architecture of Vague Logic Based Multilevel Queue

Scheduler. Applied Computational Intelligence and

Soft Computing, 2014, 341957.
 https://doi.org/10.1155/2014/341957

Sahoo, K. S., Tiwary, M., Sahoo, B., Mishra, B. K.,

RamaSubbaReddy, S., & Luhach, A. Kr. (2020).
RTSM: Response time optimisation during switch

migration in software‐defined wide area network.

IET Wireless Sensor Systems, 10(3), 105–111.

https://doi.org/10.1049/iet-wss.2019.0125
Sambath, M., K. Padmaveni, Joseph, L., Ravi S., J.

Thangakumar, & Aravindhar, J. (2020). Convoy

effect elimination in fcfs scheduling. International
Journal of Engineering and Advanced Technology,

9(3). https://doi.org/10.35940/ijeat.c6092.029320

Senan, S. (2017). A Neural Net-Based Approach for

CPU Utilization. Bilişim Teknolojileri Dergisi,
10(3), 263–272.

 https://doi.org/10.17671/gazibtd.331037

Shafi, U., Shah, M., Wahid, A., Abbasi, K., Javaid, Q.,
Asghar, M., & Haider, M. (2020). A Novel Amended

Dynamic Round Robin Scheduling Algorithm for

Timeshared Systems. The International Arab Journal
of Information Technology, 17(1).

 https://doi.org/10.34028/iajit/17/1/11

Silberschatz, A., Galvin, P. B., & Gagne, G. (2018).

Operating System Concepts.
Sohrawordi, Ali, E., Uddin, P., & Hossain, M. (2019). A

Modified Round Robin CPU Scheduling Algorithm

with Dynamic Time Quantum. International Journal
of Advanced Research, 7(2), 422–429.

 https://doi.org/10.21474/ijar01/8506

Somasundaram, K., & Radhakrishnan, S. (2009). Task

Resource Allocation in Grid using Swift Scheduler.
International Journal of Computers Communications

& Control, 4(2), 158.

 https://doi.org/10.15837/ijccc.2009.2.2423
Stallings, W. (2012). Operating Systems: Internals and

Design Principles.

Süzen, A. A., & Taşdelen, K. (2018). Recovering

Multimedia Files from a Memory Image. Journal of
Polytechnic, 21(3), 731–737.

 https://doi.org/10.2339/politeknik.417767

Tajwar, M. M., Pathan, Md. N., Hussaini, L., & Abubakar,
A. (2017). CPU Scheduling with a Round Robin

Algorithm Based on an Effective Time Slice. Journal

of Information Processing Systems, 13(4), 941–950.
https://doi.org/10.3745/jips.01.0018

Thombare, M., Sukhwani, R., Shah, P., Chaudhari, S., &

Raundale, P. (2016). Efficient implementation of

Multilevel Feedback Queue Scheduling. 2016
International Conference on Wireless

Communications, Signal Processing and Networking

(WiSPNET), 1950–1954.
 https://doi.org/10.1109/wispnet.2016.7566483

https://doi.org/10.52731/iee.v1.i2.9
https://doi.org/10.3844/ajassp.2009.1831.1837
https://doi.org/10.1109/tnsm.2012.041712.100073
https://doi.org/10.1145/106973.106982
https://doi.org/10.14569/ijacsa.2011.020209
https://doi.org/10.3906/elk-1709-112
https://doi.org/10.11591/eei.v10i5.2812
https://doi.org/10.1007/s11227-022-04356-z
https://doi.org/10.1007/s11227-022-04356-z
https://doi.org/10.1155/2014/705929
https://doi.org/10.33395/sinkron.v7i4.11665
https://doi.org/10.1155/2014/341957
https://doi.org/10.1049/iet-wss.2019.0125
https://doi.org/10.35940/ijeat.c6092.029320
https://doi.org/10.17671/gazibtd.331037
https://doi.org/10.34028/iajit/17/1/11
https://doi.org/10.21474/ijar01/8506
https://doi.org/10.15837/ijccc.2009.2.2423
https://doi.org/10.2339/politeknik.417767
https://doi.org/10.3745/jips.01.0018
https://doi.org/10.1109/wispnet.2016.7566483

Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985

DOI: 10.3844/jcssp.2024.972.985

985

Towsley, D., Chandy, K. M., & Browne, J. C. (1978).

Models for parallel processing within programs:

application to CPU: I/O and I/O: I/O overlap.
Communications of the ACM, 21(10), 821–831.

https://doi.org/10.1145/359619.359622

Engström, J., Liu, S.-Y., Dinparastdjadid, A., & Simoiu,

C. (2024). Modeling road user response timing in

naturalistic traffic conflicts: A surprise-based

framework. Accident Analysis & Prevention, 198,

107460. https://doi.org/10.1016/j.aap.2024.107460

Van Houdt, B. (2022). On the Stochastic and Asymptotic

Improvement of First-Come First-Served and Nudge

Scheduling. Proceedings of the ACM on

Measurement and Analysis of Computing Systems,
6(3), 1–22. https://doi.org/10.1145/3570610

Xiong, B., & Chung, C. (2012). Completion Time

Scheduling and the WSRPT Algorithm. In A. R.

Mahjoub, V. Th. Paschos, V. Markakis, & I. Milis

(Eds.), Springer, Berlin, Heidelberg (Lecture Notes

in Computer Science, Vol. 7422, pp. 426–426).

https://doi.org/10.1007/978-3-642-32147-4_37

Xu, Y., Ge, H., Wu, S., & Yang, J. (2024).

TELKOMNIKA (Telecommunication Computing

Electronics and Control). UAD Universitas Ahmad

Dahlan, 22(3).

 https://doi.org/10.12928/telkomnika.v14i3a.4433

Yamada, S., & Kusakabe, S. (2008). Effect of context

aware scheduler on TLB. 2008 IEEE International

Symposium on Parallel and Distributed Processing,

1–8. https://doi.org/10.1109/ipdps.2008.4536361

Younis, M. F. (2021). ESJF Algorithm to Improve Cloud

Environment. Iraqi Journal of Science, 62(11),

4171–4180.

https://doi.org/10.24996/ijs.2021.62.11.35

Zafar Iqbal, S., Gull, H., Saeed, S., Saqib, M., Alqahtani,

M., A. Bamarouf, Y., Krishna, G., & Issa Aldossary,

M. (2022). Relative Time Quantum-based

Enhancements in Round Robin Scheduling.

Computer Systems Science and Engineering, 41(2),

461–477. https://doi.org/10.32604/csse.2022.017003

Zhao, W., & Stankovic, J. A. (2003). Performance

analysis of FCFS and improved FCFS scheduling

algorithms for dynamic real-time computer systems.

[1989] Proceedings. Real-Time Systems Symposium,

156–165. https://doi.org/10.1109/real.1989.63566

Zouaoui, S., Boussaid, L., & Mtibaa, A. (2019). Priority

based round robin (PBRR) CPU scheduling

algorithm. International Journal of Electrical and

Computer Engineering (IJECE), 9(1), 190–202.

https://doi.org/10.11591/ijece.v9i1.pp190-202

https://doi.org/10.1145/359619.359622
https://doi.org/10.1016/j.aap.2024.107460
https://doi.org/10.1145/3570610
https://doi.org/10.1007/978-3-642-32147-4_37
https://doi.org/10.12928/telkomnika.v14i3a.4433
https://doi.org/10.1109/ipdps.2008.4536361
https://doi.org/10.24996/ijs.2021.62.11.35
https://doi.org/10.32604/csse.2022.017003
https://doi.org/10.1109/real.1989.63566
https://doi.org/10.11591/ijece.v9i1.pp190-202

