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Abstract: This study presents an extensive examination of CPU scheduling 

algorithms, focusing on the First-Come, First-Served (FCFS), Round-Robin 

(RR), and Shortest-Job-First (SJF) strategies through a carefully designed 

scenario-based approach. By deploying a Java-based simulation to 

dynamically generate random process arrival and burst times, this study 

simulates a variety of operational conditions to test these scheduling 

algorithms’ adaptability and performance in environments that closely 
resemble real-world computing scenarios. The research aims to explore the 

effects of dynamic quantum size allocation on RR scheduling and assess its 

impact on system performance metrics such as response time and context 

switching overhead. Through a detailed analysis, this study seeks to provide 

new insights into the operational efficiency of the FCFS, RR, and SJF 

scheduling strategies, highlighting their strengths, limitations, and 

applicability across different computing environments. 
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Introduction 

A computer system’s program execution and 

management process comprises various crucial 

components and scheduling algorithms. Upon a user’s 

application request, the system initially verifies whether it 

resides in the RAM. If not, it is recovered from persistent 

storage, such as a hard disk drive. The role of the long-

term scheduler is to determine the selection of programs 

that are loaded into the RAM, while the short-term 

scheduler is responsible for determining the allocation of 

Central Processing Unit (CPU) time to these applications. 

The medium-term scheduler performs process swapping 

in and out of RAM to manage the allocation of resources 

for high-priority tasks when the RAM becomes full. The 

short-term scheduler also referred to as the CPU 

scheduler, plays a crucial role in deciding which software 

will utilize the CPU next (Süzen and Taşdelen, 2018). 
The optimal distribution of RAM is vital for the 

proper operation of the computer system as a whole. 

System performance can be improved by optimizing 

main memory and virtual memory management. This 

results in increased CPU utilization, decreased response 

time, and increased throughput (Gaikwad, 2021). 

Furthermore, evidence suggests that analysts’ 

evaluations of companies’ current activity management 

and their forecasts of the companies’ future operational 
success are correlated with the utilization of particular 

RAM (Omar et al., 2021). 

Many CPU scheduling algorithms play a crucial role 

in determining which processes are authorized access to 

the CPU. The referenced algorithms can optimize the 

computer system’s performance by distributing the 

central processing unit to various duties. These 

algorithms’ essence may be preemptive or non-

preemptive (Adeleke, 2022). In addition, practical 

applications of neural networks within the operating 

system framework have been suggested, specifically in 

predicting delay periods, which could enhance the 
efficacy of CPU utilization (Lee and Chung, 2019). 

A process control block is a data structure utilized by 

an operating system to maintain comprehensive 

information about individual processes. The 

aforementioned components comprise the process ID, 

program counter, process state, priority, inventory of open 

files and devices, stack section, and static and global 

variable information (Yamada and Kusakabe, 2008). The 

collection of data is frequently denoted as the 

“environment” of the procedure. If an operating system 

interrupts an ongoing process and transitions to another, it 
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is imperative to retain the interrupted process’s context to 

facilitate a possible resumption. For this to transpire, the 

CPU must perform “context switching” between tasks 
(Yamada and Kusakabe, 2008). 

Context switching involves saving the context of the 

preempted process and loading the context of the new 

process. It is a fundamental operation in multitasking 

operating systems and is crucial for efficient process 

management. Context switch misses, which occur when 

the required context is not readily available, can impact 

system performance (Liu et al., 2008). Additionally, 

context switches can affect cache performance, as the 

assumption of locality may be violated, leading to 

potential cache misses (Mogul and Borg, 1991). The 
impact of context switches on cache performance is a 

critical consideration for system optimization. 

Multiprogramming has undergone substantial 

development since the inception of batch operating 

systems; contemporary multiprogramming and 

multiprocessing systems are the result. Earlier versions of 

batch operating systems had a single level of 

multiprogramming, which meant that the CPU could 

execute a single task in a non-preemptive fashion 

(Barroso et al., 2019). The requirement that subsequent 

processes await the completion of the present process 

before accessing the CPU led to suboptimal CPU 
utilization. In addition, the CPU undergoes phases of high 

activity during process execution, referred to as CPU 

bursts, which are succeeded by phases of inactivity termed 

I/O bursts. The CPU is rendered dormant as a result of these 

I/O bursts, which wastes CPU time (Towsley et al., 1978). 

Today’s multiprogramming and multiprocessing 

systems have addressed these inefficiencies by allowing 

multiple processes to be executed in parallel, thereby 

increasing CPU utilization and efficiency (Barroso et al., 

2019). In modern systems, the idle time during I/O bursts 

is utilized by other processes, leading to improved CPU 

utilization (Towsley et al., 1978). Furthermore, to 

optimize CPU utilization, the principal aim of an optimal 

system task scheduler is to select processes from the 

available queue (Barroso et al., 2019). 

This research paper is notable for its thorough analysis 

and comparison of three popular CPU scheduling 

algorithms-FCFS, RR, and SJF-with a particular emphasis 

on the impacts of dynamic time quantum allocation.  

This study employs a scenario-based evaluation 

methodology to assess the performance of the FCFS, 

RR, and SJF scheduling algorithms. This tactic has 

undergone extensive planning and development. This 

methodology provides a strong framework for study and 

emulates dynamic computer environments, which are 
similar to real-world conditions. It uses a broad range of 

load attributes to analyze algorithms’ performance in 

various scenarios, which sets it apart from standard 

evaluation methodologies. 

The paper’s main goal is to investigate the effects of 

dynamic quantum size allocation in RR scheduling on 

reaction time and context switching overhead on system 
performance. This study methodically examines how 

varying quantum sizes impact the trade-off between 

decreasing context switching time and satisfying the 

expectations of a variety of system workloads. The paper 

offers a thorough analysis of quantum size optimization 

along with theoretical and empirical insights into reaching 

the best scheduling efficiency. 

This study combines analytical viewpoints with 

empirical data from well-planned studies to provide new 

insights into how the FCFS, RR, and SJF algorithms 

operate. This dual strategy reinforces the study’s 
conclusions and establishes a solid basis for the suggested 

CPU scheduling techniques. 

Through this structured exploration, our paper seeks to 

contribute valuable knowledge to the field of CPU 

scheduling, offering a scenario-based assessment that 

enhances our understanding of algorithmic performance 

in dynamic computing environments. 

CPU Scheduling Criteria 

The utilization of CPU scheduling criteria is critical to 

maximize the efficiency of computer systems. CPU 

utilization, a crucial metric for assessing system 

performance, quantifies the duration during which the 

CPU is engaged in task processing (Xiong and Chung, 

2012). Throughput, which refers to the number of 

processes completed in the time allotted, is an additional 

critical factor that influences the system’s overall efficacy 

(Avrahami and Azar, 2007). The duration required to 

complete a specific procedure, known as turnaround time, 

is a critical metric for evaluating a system’s performance 

and responsiveness (Xiong and Chung, 2012). The 

duration that a process remains in the ready queue directly 

impacts the system’s overall efficacy and its users’ 

experience (Liang, 2019). Moreover, completion time, 

denoting the moment a process concludes its execution, is 

an essential parameter in CPU scheduling that impacts the 

system’s efficacy and performance (Xiong and Chung, 

2012; Avrahami and Azar, 2007). In addition, CPU 

allocation fairness is emphasized, as it guarantees that 

every process is allocated the CPU equitably and prevents 

depletion (Khatri, 2016). 
In CPU scheduling, response time is the duration 

required for an application to respond to a specified 

input or request. The metric is of utmost importance 

when assessing the effectiveness and efficacy of 

scheduling algorithms. The importance of response time 

in time-sensitive and real-time applications is 

underscored by the strong correlation between response 

time and scenario urgency (Engström et al., 2024). 

Furthermore, in software-defined wide-area networks, 
response time optimization strategies, such as those designed 
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to reduce the delay in processing control messages during 

switch migration, illustrate response time’s significance for 

system performance (Sahoo et al., 2020). 

Literature 

The First Come, First Served (FCFS) scheduling 

algorithm, although widely recognized for its simplicity, 

has several shortcomings. These include prolonged 

waiting times, decreased throughput, and inefficient 

resource distribution. On the other hand, recent research 

has shown that the application of algorithms such as 

Nudge can improve FCFS stochastically, particularly for 

light-tailed work size distributions (Van Houdt, 2022). An 
improvement on the original FCFS method of Zhao and 

Stankovic (2003) called FCFSI, increases the likelihood that 

a new job will be added to the available queue (Choi et al., 

2010). Additionally, Choi et al. (2010) showed that the 

scheduling results from a Mixed-Integer Linear 

Programming (MILP) scheduling method were better than 

those from a traditional FCFS scheduler. 

Furthermore, in an attempt to increase processing 

speed and efficiency, the vast majority of research 

literature has been devoted to CPU scheduling algorithm 

optimization. Dash et al. (2019), for instance, emphasized 
the importance of refining disk scheduling techniques to 

increase computational efficiency and performance. 

Furthermore, to improve scheduling performance in 

High-Performance Computing (HPC) systems, (Fan et al., 

2019) stressed the importance of actively optimizing 

numerous resources in addition to CPUs. 

Multilevel queue algorithms are inflexible because 

processes cannot switch between different accessible queues. 

Asef et al. (2009) suggested Thombare et al. (2016) three-

level Multilevel Feedback Queue (MLFQ) technique as a 

remedy for this issue. Any operations in the first queue 

that take longer than 10 ms are routed to the second queue, 
where they are sorted using the SJF algorithm before 

being handled by the RR algorithm, which has a variable 

time quantum. Should the time quantum be exceeded 

again, the processes are moved to the third queue, where 

they are subjected to a similar SJF-RR procedure. Using 

this approach results in a considerable reduction of the 

mean waiting time and turnover time when compared to 

the same configuration using a static time quantum. 

The proposed MLFQ algorithm aligns with the 

findings of Lenka and Ranjan (2012), highlighting the 

suboptimal performance of traditional algorithms like RR 

in terms of turnaround time. Additionally, Abirami and 

Vasudevan (2023) introduced an improved version of 

MLFQ that uses a modified version of the RR algorithm 

called Shortest Remaining Burst Round-Robin (SRBRR) to 

mitigate depletion in reconfigurable computing systems.  

Raheja et al. (2014) also proposed a multilevel hybrid 

scheduling technique to maximize processor usage in grid 

situations. We compare our approach to the idea of 

multilevel feedback queues. Additionally, Park et al. 

(2022) emphasized how difficult it is to predict queue 

waiting times due to job features and the scheduling 
algorithm that was used. This emphasizes how important 

it is to have dynamic and flexible scheduling procedures. 

Shafi et al. (2020) used a neural network to determine 

the best time quantum for the RR algorithm. The authors 

gathered a body of information by running multiple 

algorithms with different static time quanta and saving the 

time quanta that resulted in the quickest turnaround times. 

When a new program was encountered, the knowledge 

base was used to predict the time quantum, provided that 

a similar program was found; if not, the program was 

given a different time quantum, and the knowledge base 
was updated accordingly. The authors showed that for 

time quantum algorithms, dynamic time slice allocation 

leads to better performance than static time slice 

implementation of the RR method. 

Furthermore, compared to the traditional RR 

algorithm, Sohrawordi's (2019) experimental results 

confirm the effectiveness of a dynamic time quantum 

iteration of the RR CPU scheduling algorithm in solving 

the fixed time quantum problem and reducing the mean 

delay time and turnaround time. Furthermore, 

experimental analysis carried out by Datta (2015) 

demonstrated that, compared to previous algorithms, their 
effective RR scheduling algorithm-which included a 

dynamic time produced better average turnaround and 

waiting times as well as fewer context transitions. 

The RR method is a widely used CPU scheduling 

mechanism in multitasking operating systems 

(Sohrawordi, 2019). A measure of central tendency from 

the previous set of processes, such as the median or 

arithmetic mean, is used by several implementations of 

the RR algorithm to calculate the current process’s time 

quantum (Zafar Iqbal et al., 2022; Kumar Mishra and 

Rashid, 2014). However, this assumes that the selected 

processes have an even distribution of time quanta, which 

isn’t always the case (Faizan et al., 2020). Omotehinwa et al. 

(2019) presented a method for figuring out the temporal 

quantum of RR when the burst timings have an 

asymmetric distribution. According to Faizan et al. 

(2020), this version of the RR algorithm showed reduced 

average turnaround and waiting periods compared to 

alternative iterations, such as NIRR, IRRVQ, and DABRR. 

This emphasizes how crucial it is to include the burst time 

distribution in the RR algorithm to increase its effectiveness. 

In addition, many improvements and changes have 

been made to the RR algorithm, such as priority-based 

versions (Mohanty et al., 2011), dynamic time quantum 

adjustments (Kumar Mishra and Rashid, 2014), and 

hybrid techniques (Elmougy et al., 2017; Adamu et al., 

2019). By reducing the average turnaround, waiting, and 

response times, these changes aim to improve the RR 

algorithm’s effectiveness and efficiency. Experimental 
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investigations show that the suggested algorithms perform 

better than existing algorithms in terms of average 

turnaround time, average waiting time, and number of 
context switches (Datta, 2015; Abdulrahim et al., 2014). 

When it comes to accurately calculating the CPU burst 

time of processes that are in the available queue, the SJF 

algorithm has a challenge (Altman, 1992). To address this 

problem, Helmy et al. (2015) presented a machine-

learning approximation solution for the CPU surge time 

in SJF. A variety of procedures were selected, each with 

a unique set of characteristics. Additionally, a target 

variable and a feature vector were given. The processes 

were divided into distinct training and test sets and the 

feature vector was a filtered list of process properties. 
Models were created by applying a variety of machine 

learning methods, such as K-nearest neighbors and 

decision trees, using the training dataset. The models’ 

effectiveness was evaluated by comparing the generated 

models to the test set using measures like the correlation 

coefficient. The best models were then used to anticipate 

CPU surge times for new processes and the SJF method 

was implemented based on these predictions. This 

approach is in line with the growing body of research 

that emphasizes nonparametric methods, particularly in 

the fields of computer science and machine learning 

(Altman, 1992). The application of machine learning 
techniques, such as decision trees and K-nearest 

neighbors, indicates the increasing trend of using these 

methods to address computational challenges (Altman, 

1992; Lundberg et al., 2020). 

One widely used CPU scheduling approach is Priority 

Scheduling (PS). It distributes CPU access to processes in 

the available queue based on their priority level (Xu et al., 

2024). However, one major worry of PS is that low-

priority operations could be stuck in the available queue 

forever; this is known as “starvation” (Xu et al., 2024). 

Chandiramani et al. (2019) proposed a redesigned version 

of PS that included RR scheduling to address this 

problem. Their research showed that, in contrast to the 

original PS, this hybrid technique reduces the impacts of 

famine and improves mean turnaround and waiting 

periods (Xu et al., 2024). CPU scheduling is essential to 

multiprogramming operating systems because it allows 

for the effective distribution of CPU resources among 

competing programs (Hasan, 2014). Algorithms for CPU 

scheduling are widely used in operating systems and 

communication networks, where they greatly increase 

system efficiency (Hasan, 2014). In addition, CPU 

scheduling includes deciding in which order to assign 

processes from the queue to the CPU (Omar et al., 2021). 

The literature discusses numerous scheduling policies, 

including PS; last-come, first-served scheduling; FCFS 

scheduling; and shortest-job-first scheduling (Senan, 
2017). According to Sohrawordi (2019), RR is the most 

common CPU scheduling technique used in multitasking 

operating systems. Furthermore, studies have compared 

pre-runtime scheduling to PS (Karapici et al., 2015). 

A modified version of simple RR scheduling is created 
by combining PS with RR design. This effectively 

addresses the issue of low-priority processes being denied 

resources and improves system performance in general 

(Putra and Purnomo, 2022). Furthermore, Moharana et al. 

(2018) highlighted the ineffectiveness of scheduling 

techniques due to the random allocation of virtual CPUs 

to real CPU cores when context switching occurs. 

In the field of CPU scheduling, Generalized Processor 

Sharing (GPS) is an idealized scheduling approach. It 

achieves perfect fairness and is used as a standard for 

evaluating the fairness of other scheduling algorithms 
(Mostafa and Kusakabe, 2015). In addition, the literature has 

reviewed the Priority-Based Round-Robin (PBRR) CPU 

scheduling algorithm, concentrating on the presumptions 

made during CPU scheduling (Zouaoui et al., 2019). 

CPU Scheduling Algorithms 

First Come, First Served (FCFS) 

FCFS is the scheduling mechanism utilized by 
operating systems’ central processing units. The 

execution of the procedures within this non-preemptive 

scheduling algorithm is based on the order of arrival. As 

a result, the CPU is allocated to the first process that 

arrives, with subsequent processes not receiving the CPU 

until the earlier processes have finished executing. FCFS 

is regarded as one of the most basic and uncomplicated 

scheduling algorithms; furthermore, it is remarkably easy 

to understand and implement (Sambath et al., 2020). 

However, this may also lead to the convoy effect, wherein 

shorter processes are forced to wait for longer processes, 
which can result in delays, inefficiencies in CPU 

utilization, and resource scarcity (Sambath et al., 2020; 

Stallings, 2012). However, FCFS could be a viable and 

straightforward alternative when processes have similar 

durations or the system necessitates a transparent, 

equitable method that does not involve prioritization 

(Stallings, 2012). Crucially, FCFS, as with banking 

clients, operates under the fundamental principle of 

serving processes in the order in which they enter the 

available queue. Due to the algorithm’s inherently non-

preemptive nature, a process that initiates execution 

remains in the queue until it completes (Silberschatz et al., 
2018). FCFS is frequently implemented using a First In, 

First Out (FIFO) queue in which processes are released 

according to their arrival time (Stallings, 2012). When 

discussing CPU scheduling, FCFS is occasionally 

contrasted with PS, RR, and SJF, among others. Despite 

its user-friendly interface and straightforwardness, FCFS 

may not consistently generate the most optimal or 

efficient schedule, specifically regarding average waiting 

times and turnover times (Abdul Kareem and Hussein, 

2022). FCFS and other scheduling algorithms are 
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extensively utilized in practical applications, specifically 

in the contexts of grid and cloud computing 

(Somasundaram and Radhakrishnan, 2009). 

Round Robin (RR) 

Operating systems commonly employ the RR CPU 

scheduling method for job management. It is well known 

for allocating CPU time to programs in an equitable and 

uncomplicated manner. The RR method assigns a set time 

unit, known as a time quantum, to each process in a 

circular queue. When a process is scheduled, the CPU is 

allocated to it for a single time quantum. If the process has 

not completed its execution, it is placed at the end of the 
queue to await its next turn (Tajwar et al., 2017). This 

approach is suitable for time-sharing systems since it 

ensures that every activity is allocated an equitable 

amount of CPU time and prevents any single process from 

monopolizing the entire CPU (Abdulrahim et al., 2014). 

Crucially, in RRCPU scheduling when a process 

arrives, it is appended to the end of a circular queue. The 

CPU scheduler selects the initial process from the queue, 

establishes a timer to interrupt once the time slice elapses, 

and allows the process to execute. When the process is 

completed before its allocated time slice elapses, it is taken 
out of the queue and the CPU proceeds to the subsequent 

process. If the allocated time slice elapses before completion, 

the process is preempted and returned to the end of the queue, 

while the CPU transitions to the subsequent process in the 

queue (Tanenbaum and Bos, 2014). 

RR offers a notable benefit in terms of fairness, as it 

ensures that each process receives an equitable allocation 

of the CPU. Nevertheless, the effectiveness of RR 

scheduling heavily relies on the duration of the time 

quantum. A brief time quantum results in frequent context 

shifts and reduces CPU efficiency, but an extended time 

quantum transforms RR scheduling into FCFS 
scheduling, resulting in longer reaction times for shorter 

operations (Stallings, 2012). 

Notwithstanding these limitations, RR continues to 

be a favored option for time-sharing systems because of 

its straightforwardness and impartiality in allocating 

CPU resources among activities. It guarantees that all 

processes receive regular CPU access without 

experiencing endless delays, which is vital in interactive 

systems where a responsive user experience is essential 

(Silberschatz et al., 2018). 

The RR scheduling approach is particularly effective 

when the duration of the CPU burst for each task is not 

predetermined. Implementing a time quantum restriction 

on each activity prevents shorter processes from being 

deprived of resources by longer-running processes 

(Matarneh, 2009). However, importantly, the RR 

algorithm may not be suitable for real-time operating 

systems because it tends to result in extended wait, 

response, and turnaround times, as well as reduced 

throughput (Zouaoui et al., 2019). In addition, one of the 

traditional RR scheduling algorithm’s significant 

limitations is the overhead caused by context switching. 
Context switching refers to the process of saving one 

process’s state and loading another’s, which consumes 

system resources and time (Tajwar et al., 2017). 

To address the limitations of the traditional RR 

algorithm and enhance its effectiveness, numerous 

researchers have proposed enhancements and 

modifications. Soft real-time systems incorporate 

priority-based scheduling, intelligent time slice 

allocation, and dynamic time quantum allocation to 

handle their requirements (Behera et al., 2010; Dash et al., 

2015; Mohanty et al., 2011). In addition, attempts have 
been made to enhance the system’s overall performance 

by optimizing the RR algorithm by adjusting time slices 

according to the remaining CPU bursts of active processes 

(Chhugani and Silvester, 2017). 

Shortest Job First (SJF) 

The SJF scheduling technique prioritizes the pending 

process with the shortest execution time (Jeyaprakash and 

Sambath, 2021). This method has received considerable 

recognition as being the most efficient for decreasing the 
average duration needed to accomplish a task (Hu and Li, 

2022). SJF aims to enhance throughput by reducing 

process waiting times by selecting the shortest available 

assignment for execution (Pon Pushpa and Devasigamani, 

2014). According to Jeyaprakash and Sambath (2021), the 

algorithm operates by prioritizing the execution of the 

process with the shortest duration, regardless of the order 

in which the processes were received. 

One significant advantage of SJF is its ability to decrease 

waiting time by prioritizing shorter activities, leading to 

faster completion of processes (Hashim Yosuf et al., 2022). 

SJF’s effectiveness is particularly evident in scenarios 

where the primary goal is to reduce assignment 

completion time, as highlighted by Jeyaprakash and 

Sambath (2021). Furthermore, its simplicity and ease of 

implementation make SJF an attractive option for various 

computer systems (Abdul Kareem and Hussein, 2022). 

However, SJF does have some disadvantages. A 

significant constraint is the potential for starvation, as 

lengthier processes may be compelled to wait indefinitely 

for the arrival of shorter processes (Younis, 2021). This 
issue has the potential to create a power asymmetry 

throughout the execution of procedures, as shorter 

activities are regularly given higher priority than longer 

ones (Younis, 2021). In addition, it is imperative to 

guarantee the accuracy of project length estimations, as 

inaccurate estimates might result in inefficient scheduling 

decisions (Mi et al., 2012). Therefore, to effectively 

utilize the SJF algorithm in various computer contexts, it 

is crucial to possess a thorough understanding of its 

characteristics and implications. 
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Experimental Setup 

We developed a Java-based simulation designed to 

dynamically produce random arrival and burst times, 

tailored to five distinct scenarios, for a collection of eight 

processes. This innovative approach of incorporating 

randomness into the simulation of process arrival and 

execution times serves as a powerful and holistic method 

for evaluating the FCFS, RR, and SJF scheduling 

algorithms’ performance. By embracing this strategy, we 

can simulate a wide spectrum of operational conditions 

that closely mirror the complexities and unpredictability 

inherent in real-world computing environments. 
Furthermore, our use of randomness to model process 

timings enables us to challenge the scheduling algorithms 

with scenarios that range from typical to extreme, 

including the simulation of high-concurrency 

environments, variable process loads, and unexpected 

spikes in system demand. This approach not only tests the 

FCFS, RR, and SJF algorithms’ robustness and 

adaptability but also contributes to the development of 

more resilient and flexible scheduling solutions capable of 

accommodating the dynamic nature of computing 

workloads. The provided description outlines two main 
components of a program designed to simulate a process 

scheduling scenario commonly studied in operating 

systems courses. The program consists of a Main Program 

flowchart and a generateRandomTimes function 

flowchart. The following breaks down each part. 

 

Main Program Flowchart 

1. Set numberOfProcesses to 8: Initialize the 

numberOfProcesses variable. 

2. Generate arrivalTimes: 

 

 Call generateRandomTimes function with 

parameters numberOfProcesses, 0 and 20. 

 Output of this step is the arrivalTimes array. 

 

3. Generate burstTimes: 

 

 Call generateRandomTimes function with 

parameters numberOfProcesses, 1 and 10. 

 Output of this step is the burstTimes array. 

 

 End: The end of the Main Program flowchart 

 

generateRandomTimes Function Flowchart 

1. Start Function: Indicates the beginning of the 

generateRandomTimes function. 

2. Initialize Array times: Create an array of 

integers with a size equal to the size parameter. 
3. Create Random Number Generator: 

Instantiate a Random object. 

4. Loop from i = 0 to size - 1: 

 Inside the loop, generate a random number 

between min and max (inclusive). 

 Assign this number to times[i]. 
 

5. Return times: After completing the loop, return 

the times array. 

6. End Function: Marks the end of the 

generateRandomTimes function 

 

Table shows the process ID, Arrival Time (AT), and 

Burst Time (BT) for each process in each scenario. 

Scenario 1 
 
 Arrival times: Processes generally arrive at a steady 

rate, starting from time 0. There’s a noticeable gap 

between the arrival of process 1 and 2 

 Burst times: Vary significantly, ranging from 1-10 time 

units. Processes 1, 2, 6, and 8 have high burst times 

(10 units), suggesting longer processing requirements 
 

Scenario 2 
 
 Arrival times: Processes start arriving later compared 

to scenario 1, with the first process arriving at time 8. 

The arrival times are more spread out 

 Burst times: Shorter on average compared to scenario 

1, with most processes requiring less than 5 time units. 

This could imply quicker processing for each process 
 

Scenario 3 
 

 Arrival times: Most processes arrive early, within the 

first 2 time units, indicating a congested start 

 Burst times: More varied, ranging from 1-10 time 

units. Some processes require significant processing 

time (like processes 1, 2, and 6) 
 

Scenario 4 
 

 Arrival times: Processes start arriving at time 0, 

similar to scenario 1. The arrival pattern is more 

evenly spread over time 

 Burst times: Generally moderate, with no process 

exceeding 8-time units. This might lead to a more 

balanced processing load 

 

Scenario 5 
 

 Arrival times: Processes have later start times 

compared to other scenarios, beginning at time 6. The 

arrival times are relatively spread out 

 Burst times: Mostly short, with many processes 

requiring 2-7 time units. This scenario indicates 

quick processing for most processes 
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Table 1: Process IDs with arrival (AT) and burst times (BT) across scenarios 

Process Scenario 1 (AT, BT) Scenario 2 (AT, BT) Scenario 3 (AT, BT) Scenario 4 (AT, BT) Scenario 5 (AT, BT) 

1 AT: 0, BT: 10 AT: 8, BT: 4 AT: 1, BT: 10 AT: 0, BT: 4 AT: 6, BT: 1 
2 AT: 3, BT: 10 AT: 10, BT: 4 AT: 1, BT: 10 AT: 2, BT: 8 AT: 8, BT: 6 
3 AT: 4, BT: 1 AT: 11, BT: 5 AT: 2, BT: 9 AT: 3, BT: 5 AT: 10, BT: 10 
4 AT: 9, BT: 4 AT: 13, BT: 8 AT: 2, BT: 7 AT: 5, BT: 4 AT: 11, BT: 4 
5 AT: 12, BT: 4 AT: 14, BT: 1 AT: 10, BT: 2 AT: 6, BT: 5 AT: 14, BT: 2 
6 AT: 16, BT: 10 AT: 16, BT: 4 AT: 14, BT: 10 AT: 6, BT: 7 AT: 15, BT: 7 
7 AT: 18, BT: 7 AT: 18, BT: 5 AT: 15, BT: 8 AT: 10, BT: 6 AT: 15, BT: 10 
8 AT: 18, BT: 10 AT: 20, BT: 2 AT: 16, BT: 1 AT: 15, BT: 4 AT: 17, BT: 2 

 
Table 2: Key differences and similarities in arrival and burst times across scenarios 

Scenario Arrival time characteristics Burst time characteristics General observation 

1 Steady, starting from time 0  Ranges from 1-10, with Potentially longer waits for 

 with a noticeable initial gap and several longer bursts of processing 

2 Later starts, spread out arrivals Shorter on average, mostly under 5 units Quicker processing, less initial congestion 

3 Early and congested, most arriving  Varied, from 1-10, unpredictable delays Early congestion, varied 

 within the first 2 units  processing times 

4 Early like scenario 1, more evenly  Moderate, none exceeding 8 units Balanced processing load 

 spread over time   

5 Later starts like scenario 2,  Mostly short, between 2 and 7 units Quick processing, less congestion 

 arrivals spread out   

 

Table shows the key differences and similarities among 

the five scenarios, focusing on arrival and burst times. 

It is important to note here that, in terms of arrival 

patterns, scenarios 1 and 4 have earlier arrivals, with 

scenario 1 having a more concentrated arrival pattern. 

scenarios 2 and 5 have later arrivals. Scenario 3 is unique 

for its very early and congested arrival pattern. 

Meanwhile, scenario 1 has longer burst times, indicating 

potentially longer waits for processing. Scenarios 2 and 5 

have shorter burst times, suggesting quicker processing. 

Scenario 3 shows the most variance in burst times, which 

could lead to unpredictable processing delays. Scenario 4 

strikes a balance with moderate burst times. 

Materials and Methods 

This section outlines the methodology used to 

evaluate three CPU scheduling algorithms FCFS, RR, 

and SJF using a Java-based simulation designed to 

imitate various operational scenarios. It also describes 

the technical requirements, such as software and 

hardware configurations, process generating 

methodologies, algorithm implementation, and 

performance measurements, to ensure that the research 

is clear and reproducible. 

Experimental Design 

The primary objective of this research was to assess 

and compare the performance of three CPU scheduling 

algorithms First-Come, First-Served (FCFS), Round-

Robin (RR) and Shortest-Job-First (SJF) under a 

variety of simulated conditions. The study employed a 

Java-based simulation to generate dynamic, random 

process arrivals and burst times across five distinct 

scenarios, representing varying levels of system load 

and operational demands. 

Simulation Environment 

 
 Programming language: Java 

 Software tools: Eclipse IDE for Java developers 

 System specifications: The simulation was run on 

a computer with an Intel Core i7 processor, 16GB 

Ram, and windows 10 operating system 

 

Description of the Simulation 
 
 Process generation: A total of eight processes were 

dynamically created for each simulation run. Each 

process was characterized by two main attributes: 

arrival time and burst time 

 Random time generation: A custom function, 

generateRandomTimes (intnumberOfProcesses, 

int min, int max), was implemented to produce 

random values for arrival and burst times within 

specified ranges, ensuring variability across 

simulation runs 

 Scenarios setup: Five scenarios were designed to 

reflect different operational environments: 
 

o Scenario 1: High burst times with uniform arrivals 

o Scenario 2: Short burst times with staggered arrivals 

o Scenario 3: Mixed burst times with clustered 

early arrivals 

o Scenario 4: Moderate burst times with evenly 

spaced arrivals 

o Scenario 5: Short burst times with delayed, 

spread-out arrivals 
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 CPU Scheduling Algorithms Implementation 

 
 FCFS: Processes were managed in a queue based 

on their arrival order without preemption 

 RR: This algorithm utilized a time quantum; the 

quantum size was varied in different simulation 

runs (1, 5, and 10 units) to examine its impact on 

performance. Processes exceeding their quantum 

were re-queued 

 SJF: Processes were selected based on the shortest 

burst time, prioritizing shorter tasks to reduce 

average waiting time 

 

Performance Metrics 

The simulation recorded Key Performance Indicators 

(KPIs) to evaluate the efficacy of each scheduling algorithm: 

 

 Response time: Time from the moment of arrival 

to the first response 

 Turnaround time: Total time from arrival to completion 

 

Data Collection and Analysis 

Data collection: The output from each simulation run 
was automatically logged into a structured format, 

capturing detailed timing information for each process 

under each scheduling algorithm. 

The study's analysis techniques included a detailed 

examination of the collected data using descriptive 

statistics, calculating the average of key performance 

metrics such as response time and turnaround time, and 

establishing a baseline understanding of each CPU 

scheduling algorithm's performance across different 

scenarios. Graphical representations, such as bar charts, 

were utilized to visually display the algorithms' 

comparative and changeable performance, with an 

emphasis on average response and turnaround times under 

various operational settings. Furthermore, a comparative 

study enabled a direct evaluation of the metrics, revealing 

disparities in performance and providing greater insights 

into the algorithms' efficiency and efficacy in diverse 

simulated scenarios. 
By detailing these materials and methods, the study 

aims to provide a clear and comprehensive account of 

the experimental setup, ensuring that the findings are 

reproducible and verifiable by other researchers and 

practitioners interested in CPU scheduling 

performance analysis. 

Results and Discussion 

Figure 1 presents a column bar chart comparing the 

different CPU scheduling algorithms’ response times 

across the five scenarios. 

 
 
Fig. 1: Average response times of different CPU scheduling 

algorithms across five scenarios 

 

In the first scenario, we observe a diverse array of 

process burst times. The SJF algorithm excels in this 

environment by swiftly completing jobs with shorter 

durations, thus achieving a reduced overall average 

response time. The FCFS method shows reasonable 

effectiveness, as it seldom encounters situations where 

short processes are delayed by preceding longer ones, 

with the initial sequence being the only exception. On 

the other hand, RR scheduling with a quantum of one 

unit performs poorly. This inefficiency stems from the 

high cost associated with frequent context switching. 

In the second scenario, while the processes’ burst 

times are again quite varied, their arrival times are more 

clustered. This scenario similarly sees the SJF algorithm 

outperforming others due to its preference for shorter 

tasks. The RR strategy with a quantum of 1 remains 

suboptimal. However, when the quantum is increased to 5 

or 10 units, the RR approach begins to mirror the 

performance of FCFS. This improvement is attributable to 

the burst times being relatively short and the arrival times 

showing less variation. In the third scenario, processes 

arrive in close succession, which inevitably pushes up the 

average response time for all scheduling algorithms. Yet, 

SJF continues to distinguish itself by efficiently 

processing the shorter jobs first. 

In the fourth scenario, the trend noticed in previous 

scenarios persists, with SJF securing the best average 

response time. Conversely, the RR method with a 

quantum of 1 exhibits the least desirable performance, a 
trend consistent with the reasons previously outlined. The 

fifth scenario is characterized by generally shorter burst 

times for processes, a condition that is advantageous for 

all scheduling algorithms. Nonetheless, SJF maintains a 

performance lead by leveraging the shorter process 

durations to minimize waiting times. 



Olaa Hajjar et al. / Journal of Computer Science 2024, 20 (9): 972.985 

DOI: 10.3844/jcssp.2024.972.985 

 

980 

To encapsulate the findings, the SJF algorithm 
consistently delivers superior performance across various 
scenarios. Its strategy of prioritizing shorter processes 
significantly cuts down on the average response time. The 
effectiveness of the FCFS method is contingent upon the 
sequence in which processes arrive; its performance 
falters when longer processes precede shorter ones. The 
RR algorithm’s efficiency is closely linked to the quantum 
size selected. A quantum that is too small leads to excessive 
overhead due to context switching, while a quantum that is 
too large essentially reduces RR to an FCFS-like operation. 
In the scenarios considered, smaller quantum sizes have 
typically yielded poorer results when compared to larger 
ones due to the high costs of context switching. 

In the scenarios presented, the FCFS scheduling method 
demonstrates varied performance. In scenarios with a mix 
of short and long process burst times (scenarios 1 and 4) or 
predominantly short processes (scenario 5), FCFS achieves 
moderate to good average response times, due to either a 
large initial process setting a consistent pace or minimal 
waiting times for most processes. However, its 
performance drops significantly in scenarios where 
processes with longer burst times arrive early (scenario 3), 
as this causes subsequent processes to endure extended 
waits, thus inflating the average response time. 

The RR scheduling method with a quantum of 1 
suffers from high context switching overhead, resulting in 
poor performance across all scenarios. However, as the 
quantum increases to 5 or 10, RR’s performance begins to 
align with that of FCFS, especially when the processes 
have shorter burst times (scenarios 2, 4, and 5). This 
improvement is due to the reduction in context switching 
frequency. Across all scenarios, SJF stands out as the most 
efficient algorithm, consistently delivering the best 
performance by always executing the shortest available 
process, thereby minimizing the wait times for subsequent 
processes and, consequently, the average response time. 
This efficiency is based on the precondition of known 
burst times for all processes. 

Figure 2 offers a graphical representation comparing 
the average turnaround times of five CPU scheduling 
algorithms over five distinct scenarios. The following 
paragraphs detail the outcomes for each scenario and 
conclude with a comprehensive summary. 

In scenario 1, FCFS faces a large process arriving first, 
but due to the subsequent arrival of smaller processes, the 
average turnaround time remains moderate. Scenario 2 sees 
FCFS performing well as the processes are predominantly 
short, leading to less variability in waiting times. 
Conversely, scenario 3 is where FCFS struggles the most; 
early-arriving processes with longer burst times 
significantly delay later ones, resulting in the highest 
average turnaround time among the scenarios. Scenario 4 
presents a balanced mix of process burst times, allowing 
FCFS to perform adequately without significant delays. In 
scenario 5, the shorter burst times overall benefit FCFS, 
resulting in a considerably low average turnaround time. 

 
 
Fig. 2: Average turnaround time of different CPU scheduling 

algorithms across the five scenarios 
 

RR scheduling in scenario 1 with a quantum of 1 leads 
to high context-switching overhead and thus the worst 
performance, but with a quantum of 10, the performance 
matches that of FCFS by minimizing context switches. In 

scenario 2, a short quantum again introduces inefficiency; 
however, increasing the quantum size makes RR’s 
performance equivalent to FCFS thanks to the shorter and 
more uniformly sized processes. Scenario 3 demonstrates 
that RR with a larger quantum size performs better 
because fewer context switches are required for the long 
burst processes that arrive early. Scenario 4’s 
performance is hindered by a quantum of 1 but improved 
with higher quanta due to the shorter nature of processes. 
In scenario 5, with mostly short processes, the differences 
in quantum size have a less significant impact on the 
average response times, with lower overhead and quick 

process turnover contributing to lower average turnaround 
times across all quanta. 

Across all five scenarios, SJF consistently offers the 
best performance by prioritizing the execution of the 
shortest processes available. This approach significantly 
reduces the wait times for other processes, thereby 
minimizing the average turnaround time. SJF’s ability to 
quickly process shorter jobs and effectively manage the 
queue results in the most efficient turnaround times 
compared to the other algorithms. This consistent 
efficiency underscores SJF’s utility in situations where 
process burst times are known and minimizing turnaround 

time is the primary objective. 
In conclusion, while SJF typically leads in efficiency 

due to its preferential treatment of shorter tasks, its real-
world application is limited by the need for accurate burst 
time information. FCFS is most effective when processes 
have similar burst times, or at least when long processes do 
not precede shorter ones. RR’s performance is highly 
contingent on the quantum size; a well-chosen quantum can 
balance the need for process responsiveness with the 
overhead of context switching. The ideal scheduling strategy 
thus depends on the specific requirements of the operating 
environment, including the nature of the tasks and the desired 

balance between fairness, efficiency, and response time. 
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Research Novelty and Contribution 

To reinforce the conclusions of our study on CPU 

scheduling methods, we need to contextualize them within 

the larger research environment by comparing them to past 

studies. Such comparisons not only highlight the novelty 

and significance of our study, but also provide a clearer 

picture of the impacts and advances we have made. 

In this study, we investigate three primary areas of 

innovation: the implementation of dynamic quantum size 

adjustments in RR scheduling, the adoption of a scenario-

based evaluation methodology, and a comprehensive 

comparative performance analysis of various CPU 

scheduling algorithms. Each of these areas introduces new 

methodologies and insights that make a substantial 

contribution to the field, thereby improving the theoretical 

and practical aspects of current scheduling practices. 

Dynamic Quantum Size Allocation for Round-

Robin Scheduling 

Our research looks on the effects of dynamic quantum 

size on the Round-Robin (RR) scheduling algorithm. 

Previous research, such as those by Behera et al. (2010); 

Datta (2015), investigated fluctuations in quantum size 

but did not delve deeply into dynamic adjustment based 

on real-time system demands. Our work makes a unique 

contribution to this field by empirically demonstrating 

how altering quantum sizes can improve both response 

time and context switching, especially in high-variability 

workload conditions. 

Scenario-Based Evaluation Methodology 

Our evaluation methodology takes a scenario-based 

approach that closely resembles real-world operational 

situations, unlike traditional studies that generally model 

static or limited environments (Stallings, 2012; 

Abdulrahim et al., 2014). This method enables more 

rigorous testing of algorithms under a variety of load 

scenarios, providing insights that are directly applicable 

to practical settings. This is a considerable improvement 
over traditional evaluations, offering a more complete 

picture of algorithm performance dynamics. 

Comparative Performance Analysis 

Xiong and Chung (2012); Mogul and Borg (1991) 

found that CPU scheduling techniques are often compared 

based on a limited set of criteria and fail to consider 

complicated system demands. Our study expands on 

existing assessments by include a wide range of 

performance indicators such as response time, turnaround 

time, and context switching. For example, our findings on 

the SJF algorithm's improved performance in minimizing 

reaction times are consistent with those of Jeyaprakash 

and Sambath (2021), but we go into greater detail about 

how burst time variability influences this efficiency. 

Highlighting Key Findings in Relationship to 

Existing Literature 

Our findings suggest that FCFS can perform 
effectively under conditions of uniform process arrival 
times, which is consistent with Van Houdt (2022) 
findings. However, our scenario-based findings add to the 

knowledge foundation provided by Zhao and Stankovic 
(2003) by providing additional insights into how initial 
lengthy burst processes have a negative impact on FCFS 
performance. In addition, the analysis confirms the 
efficiency of Shortest Job First (SJF) in predictable 
process environments, aligning with previous research 
(Yosuf et al., 2021). However, we uniquely quantify the 
impact of prediction accuracy on SJF performance, 
providing a critical perspective that supports Helmy et al. 
(2015) theoretical model. Moreover, our research 
supports Sohrawordi (2019) findings that the Round 
Robin (RR) approach allocates CPU time fairly. 

However, we contribute to this understanding by 
illustrating how ideal quantum sizes can considerably 
reduce the overhead associated with frequent context 
switching, as proposed by Mohanty et al. (2011). 

Conclusion 

The results obtained from our exhaustive scenario-
based assessment illustrate the distinct merits and 

drawbacks of the CPU scheduling algorithms FCFS, RR, 
and SJF. In diverse scenarios, the SJF algorithm 
consistently achieved lower average response and 
turnover times than FCFS and RR. This demonstrates the 
algorithm’s effectiveness in processing environments 
where task durations are predetermined and it is possible 
to prioritize shorter tasks. Although the FCFS algorithm 
is uncomplicated, its performance can vary depending on 
the order in which processes arrive. In situations where 
lengthier tasks come before shorter ones, it struggles 
significantly. The selection of quantum size had a 
significant impact on the RR scheduling method’s 

performance; under specific conditions, optimal quantum 
settings reduced context switching overhead and closely 
resembled the efficiency of FCFS. By illustrating the 
performance of widely used algorithms under simulated 
real-world conditions, this study contributes to the ongoing 
discourse on CPU scheduling with empirical data. 

Our results indicate that, although no algorithm 

performs better than others in every circumstance, the 
specific demands of the computing environment the 

characteristics of the tasks, and the intended equilibrium 
between efficiency, fairness, and response time should 

guide the selection of a scheduling strategy. Subsequent 
investigations may delve into the amalgamation of machine 

learning methodologies to forecast the dynamic quantum 
size, as well as the formulation of hybrid scheduling 

approaches that leverage the respective merits of FCFS, RR 
and SJF to augment the efficiency of CPU scheduling. 
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