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Abstract: Forests play a vital role in maintaining ecological balance,
regulating the climate, and conserving biodiversity. However, India’s forest
landscape has witnessed significant changes between 1980 and 2024 due to
deforestation, afforestation, and evolving conservation strategies. To address
the challenges associated with forest monitoring, we proposed a model based
on Sound Event Detection using a dataset comprising four classes: chainsaw
sounds, handsaw sounds, axe-cutting sounds (synthetic), and negative
environmental sounds (e.g., birds, animals, wind). The dataset was
constructed from publicly available resources, except for the axe-cutting
sound class, which was prepared synthetically. The model employed six
feature extraction techniques Mel-Spectrogram, Mel-Frequency Cepstral
Coefficients (MFCC), Chroma, Spectral Contrast, Tonnetz, and Spectral
Bandwidth to capture critical audio characteristics. These features enabled
the efficient representation of harmonic content, temporal patterns, and
timbre, which were essential for distinguishing between classes. The
proposed approach was executed using various deep learning models,
including Customized 1D Convolutional Neural Networks (CNN), Bi-
directional Convolutional Recurrent Neural Networks (Bi-CRNN), Bi-
directional Gated Recurrent Unit-based CRNNSs (Bi-GRU-CRNN), AlexNet,
and ResNet. The Customized-CNN, implemented using Keras, demonstrated
superior performance with an accuracy of 98%. The model’s effectiveness
was further validated as accuracy increased progressively from 95 to 98%
when transitioning from two to six feature extraction clusters.

Keywords: Forest Monitoring, Sound Event Detection, CNN, Feature
Extraction, Audio Classification, Deep Learning

Introduction

Forests play a crucial role in sustaining life on Earth
by maintaining ecological balance, regulating the climate,
conserving biodiversity, and providing resources for
millions of people. The loss of forests due to deforestation
has extreme consequences, including the exacerbation of
climate change, loss of biodiversity, disruption of water
cycles, and increased soil erosion (Mondal and
Southworth, 2010). Deforestation also directly impacts
the livelihoods of communities that depend on forests for
their sustenance and cultural practices. However, forests
in many parts of the world, particularly in India, face
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severe threats from deforestation driven by expanding
agricultural activities, illegal logging, urbanization, and
the growing demand for land and timber (Haq et al., 2022;
Tewari et al., 2014). Technological advancement in the
current generation, the forest authorities have
implemented various monitoring systems. The Forest
Survey of India (2023), under the Ministry of
Environment, Forest, and Climate Change, conducted
biennial assessments of forest cover using remote sensing
technology, which is vital for informed decision making
in forest conservation (Singha et al., 2024). On the other
hand, by using drone technology implementation,
governments focused on real-time localized monitoring,
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assessing forest damage, and tracking wildlife, while loT
devices provide continuous data on forest conditions,
assisting in the detection of illegal activities and
environmental changes (Buchelt et al., 2024; Zhao et al.,
2019). Additional technologies such as forest fire alert
systems, Al, and blockchain are used in forest
management. The integration of research, like Machine
Learning (ML) and neural networks, provides an
innovative solution for forest conservation (Khan and
Khan, 2022; Supriya and Gadekallu, 2023). Sound event
detection with advanced feature extraction techniques are
essential for proper sound classification. By analyzing
audio data from forest environments leads to detect
sounds of illegal activities such as tree cutting and logging
vehicle movement. These feature extraction techniques
enhance the precision of deforestation detection.
Conducting the research based on this scenario requires a
proper dataset and suitable feature extraction techniques
(Luo et al., 2023; Purwins et al., 2019). Acoustic datasets
related to forests, environments, and mountains provides
resources for studying biodiversity, environmental health,
and ecological dynamics. The datasets such as Rainforest
Connection (RFCx) and Soundscapes to Landscapes
(S2L) provide audio data captured from rainforests and
various natural habitats (Latha et al., 2022; Quinn et al.,
2022). These datasets are primarily used to monitor
wildlife, identify species based on sound, and study the
impacts of climate change. The Australian Acoustic
Observatory also contributes recordings from ecosystems
such as forests and wetlands, aiding in conservation and
ecological studies (Roe et al., 2021).

Additionally, general acoustic datasets like DCASE
and FreeSound contain various environmental sounds,
including forests and outdoors, implemented with
machine learning and sound classification practices
(Serizel et al., 2020). The datasets like the AMMOD
contain mountainous environmental sounds such as wind
and water sounds in high-altitude regions (Wégele et al.,
2022). These datasets are well-suited for research in
various fields, including forest and landscape ecology.
They also play an important role in supporting ecological
research and environmental monitoring.

Sound event feature extraction is essential for
converting the direct audio signals into a numerical
representation that can be used for classification. One
common approach involved time-domain features, which
are directly derived from the raw waveform of the sound
signal (Wang et al., 2024). Features like Zero-Crossing
Rate (ZCR), Root Mean Square (RMS), and energy are
widely used to capture basic characteristics such as
intensity and periodicity (Ritts et al., 2024). However,
many sound events have unique frequency components,
which makes frequency-domain features particularly
important. Using the STFT the audio signal is converted
into its frequency representation, from which features like

spectral centroid, spectral roll-off, and MFCCs can be
derived. MFCCs, in particular, are extensively used in
sound event and speech recognition due to their ability to
represent the timbral aspects of sound (Folliot et al., 2022).

Most of the recent research combining the time and
frequency  information  through  time-frequency
representations like spectrograms and wavelet transforms.
Spectrograms provide a visual representation of the
signal's frequency over time, and their compressed
versions, such as log-mel spectrograms, are often used to
project the relevant features. The wavelet transform is
another powerful method, as it decomposes the signal into
multiple resolutions, capturing details across different
frequency bands (Serrurier et al., 2024; Ayoub Shaikh et al.,
2022). In recent years, deep learning-based feature
extraction methods have become popular. The CNNs and
RNNs can automatically learn complex features from raw
or pre-processed audio data spectrograms. Pre-trained
models like VGG or OpenL3 are also used to generate
robust audio features for sound event detections (Panwar
et al., 2022; Thepade and Chaudhari, 2021). In particular,
neural network models excel at recognizing complex
sound patterns, making them ideal for forest sound
analysis. For instance, the distinctive sound of chainsaws
used in tree cutting or the engine noise of logging vehicles
can be identified and classified by Al models trained on
sound event datasets (Kentsch et al., 2020; Singh et al.,
2023). These systems rely on feature extraction
techniques to isolate relevant acoustic features such as
frequency, amplitude, and duration, which are then
processed through neural networks to differentiate
between natural and human-caused events in the forest.
Machine learning algorithms continuously improve
detection accuracy by learning from labeled and
unlabeled data, enabling the system to adapt to new
patterns of illegal activity. Sound Event Detection
becomes an important element in the fight against
deforestation, providing  forest rangers and
conservationists with real-time data on illegal logging
activities. These detection models are for quicker response
times and more effective enforcement of forest protection.
This research explores the use of ML, and neural networks
for preventing deforestation in the Indian landscape.

By focusing on sound event detection, specifically
tree-cutting sounds and logging vehicle detection, this
study demonstrates how advanced techniques can be
applied to monitor forest and human activities. Using real-
time audio analysis, detection of tree-cutting sounds
becomes best solution to protect India's forests, preserve
biodiversity, and ensure the long-term sustainability of
these ecosystems.

Motivation

India’s forest landscape has undergone significant
changes from 1980 to 2024, driven by deforestation,
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afforestation efforts, and evolving conservation strategies.
During the 1980s, forest cover in India was estimated at
around 19% of the total geographical area, with minimal
differentiation between dense, moderate, and open forest
categories. This period was marked by large-scale
deforestation, primarily due to agricultural expansion,
infrastructure development, and industrial activities. As a
result, dense forests were reduced, and open and degraded
lands expanded. Scrublands, often representing degraded
forests or sparsely vegetated areas, constituted a small
portion of the forest landscape. In the 1990s and early
2000s, India began focusing on forest conservation and
afforestation initiatives. The India State of Forest Report
(ISFR) 1997 provided more granular data, identifying
approximately 10% of India’s land area as moderately
dense forests, covering 337,600 sq. km. Very dense
forests, though sparse, were recorded at about 1.7% of the
geographical area. The increasing deforestation trends of
the 1980s were countered by government programs such
as Joint Forest Management (JFM), aimed at increasing
tree cover in degraded areas. During this period, open
forests covered 7-8% of India’s land, while non-forest
land remained high at around 75-80% (Forest Survey of
India, 2023).

As India moved into the 2010s, forest conservation
efforts began to show results. By 2011, moderately dense
forests covered 307,000 sq. km, although this number saw
a slight decline to 306,890 sq. km by 2021. Dense forest
cover, however, showed a significant improvement,
reaching 99,779 sq. km (about 3% of the land area). Open
forests also saw an increase during this time, reaching
9.34% of the total land by 2021, reflecting the success of
afforestation campaigns and conservation measures. The
scrubland ratio remained fairly constant throughout this
period, hovering between 1.4-1.5%, indicating a
consistent but relatively small portion of degraded lands.
Non-forest areas stabilized at approximately 76-77%
during the same time. By 2022 and 2023, the forest
landscape in India reflected a steady trend. Moderately
dense forests continued to cover 9.33% of the country’s
geographical area, while very dense forests remained at
3% of the total area. Open forests accounted for 9.34% of
the land, showing minimal change from 2021. Scrublands
persisted at around 1.42%, with non-forest areas still
constituting about 76.87% of the total land area. The
results are showing that while forest cover has seen
modest improvements, particularly in dense and open
forests, challenges such as deforestation in northeastern
and tribal regions persist, leading to localized declines in
forest cover. Figure 1 shows the VDF, MDF, OF, Scrub
and Non-Forest area of coverage in various years in the
India. Table 1 illustrates the Year-wise MDF, OF, Scrub,
VDF and non-forest coverage percentage in India from
2001 to 2021. Figure 2 presents the Very Dense Forest
growth and reduction of Moderately Dense Forest

reduction comparatively with Open Forest from 2001 to
2021. Figure 3 illustrates the Comparison of Non-Forest
land area with Forest Coverage land area in India from
2001 to 2021. Table 1 presents the forest coverage in the
India from 2001 to 2021 (Forest Survey of India, 2023).
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Fig. 1: VDF, MDF, OF, Scrub and Non-Forest area of coverage
in various years in the India
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Fig. 2: (a) Very Dense Forest growth ratio from 2001 to 2021
and (b) Reduction of Moderately Dense Forest reduction
comparatively with Open Forest from 2001 to 2021
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Table 1: Forest Coverage area from 2001 to 2021 in India
Non-

Year Forest MDF OF Scrub  VDF
2001 79.45 12.68 7.87 - -
2003 78.13 10.32 8.76 1.23 1.56
2005 78.23 10.12 8.82 1.17 1.66
2007 77.72 9.71 8.77 1.26 2.24
2009 77.67 9.76 8.75 1.28 2.54
2011 77.51 9.7 8.99 1.28 2.54
2015 77.4 9.59 9.14 1.26 2.61
2017 77.06 9.38 9.18 1.4 2.99
2019 76.92 9.39 9.26 1.41 3.02
2021 76.87 9.03 9.34 1.42 3.04
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Fig. 3: Comparison of Non-Forest land area with Forest
Coverage land area in India from 2001 to 2021

The Indian government has implemented several
initiatives to protect and restore forest cover. Key among
these is the Green India Mission (GIM), which focuses on
afforestation and reforestation activities to enhance forest
and tree cover across the country. Over the last five years,
approximately 7,552.8 million has been allocated to
support afforestation efforts under GIM. Additionally, the
Compensatory Afforestation Fund (CAMPA) has been
instrumental in financing compensatory afforestation
projects, with 553,941.6 million released to state and
union territory forest departments over the past five years.
The government has also launched the Nagar Van Yojana,
aiming to create 600 urban forests and 400 urban gardens
by 2024-25 to improve green cover in urban areas. This
initiative is funded by CAMPA and has seen the approval
of 270 projects with a total cost of 2,386.4 million.

From 2010 to 2015, the Ministry of Environment, Forest
and Climate Change (MoEFCC) primarily focused on forest
conservation through schemes such as the National
Afforestation Programme (NAP), CAMPA, and the Green
India Mission. In the fiscal year 2014-15, the MoEFCC
allocated 20,430 million for forestry and wildlife, with an
emphasis on afforestation, forest management, and wildlife
conservation. From 2015 to 2020, the government continued
to enhance forest management efforts, with the Green India
Mission receiving 3,670 million in 2017-18. CAMPA funds

were systematically utilized for compensatory afforestation,
and by 2020, government allocations increased to address
climate change and manage forests, aligning with
international commitments such as the Paris Agreement. For
2018-19, the MoEFCC budget stood at 26,750 million,
supplemented by additional CAMPA funds. In the 2020—
2025 period, despite the pandemic, environmental protection
remained a priority. For 2020-21, the MoEFCC received
28,700 million, emphasizing afforestation and forest
conservation. Projections for 2021-2025 show continued
investment in forest management, with 25,200 million
allocated in 2021-22, driven by commitments made at
COP26 and the global push for sustainable development.
Budget allocations for key schemes such as the National
Afforestation and Eco-Development Board, and the
Integrated Development of Wildlife Habitats, also saw
incremental increases. Historically, the budget for forest
development has grown significantly. From 2001 to 2010,
allocations rose from 8,000 million in 2001 to 21,000 million
by 2009-10. Between 2010 and 2020, funding increased
steadily, except for a slight dip in 2014-15 due to budget
restructuring. By 2019-20, the budget had reached 31,00
million, driven by climate change priorities and the
utilization of CAMPA funds. Looking ahead to 20202025,
budget projections estimate a steady rise, reaching around
27,000 million by 2024-25, in line with India’s international
climate commitments.

Key components influencing these budget allocations
include the NAP, CAMPA, the Green India Mission, and
international agreements like the Paris Agreement and
COP26. Budget allocation for forest protection is spread
across various schemes and initiatives, highlighting the
government’s commitment to this cause. However, the
implementation and effectiveness of these initiatives remain
a challenge, especially in the face of ongoing deforestation
due to developmental activities. Figure 4 illustrates the
Union Budget allocation in India from 2001 to 2024 for
conservation of forest trees.

Budget allocation for the Forest development

M InCrores

Fig. 4: Union Budget allocation in India from 2001 to 2024 for
conservation of forest trees
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Technological advancements are also being influenced
to monitor and protect forests. The Forest, and Climate
Change, conducts biennial assessments of forest cover
using remote sensing technology, which is vital for
informed  decision-making in forest conservation
(Chavhan et al., 2024). India and several other countries
are interested in using technologies to enhance forest
conservation and monitor deforestation effectively
(Sethuraman et al., 2022). Key innovations include
remote sensing and satellite imagery, which utilize
satellites like Sentinel-2 and Landsat to provide high-
resolution images that track changes in forest cover. The
Forest Survey of India (2023) uses these images for its
biennial State of Forest Report, while geo-spatial
technology integrates GIS with satellite data to map forest
health and identify threats. On the other hand, Drones
complemented these efforts by offering real-time,
localized monitoring, assessing forest damage, and
tracking wildlife, while loT devices provide continuous
data on forest conditions, aiding in the detection of illegal
activities and environmental changes. Additional
technologies such as forest fire alert systems, Al, and
blockchain further boosting for forest management. Al
algorithms predict fire-prone areas and analyze large
datasets for deforestation patterns, while block-chain
ensures transparent supply chains by certifying the legal
origins of timber. Cloud-based platforms like Global Forest
Watch enable the real-time tracking of deforestation and
forest fires, supporting collaborative conservation efforts.
Together, these technologies address challenges such as
illegal logging, forest fires, and climate change, contributing
to the long-term sustainability and resilience of forests.

Contributions

This research addresses the challenge by proposing a
robust sound event detection model for forest monitoring.

A comprehensive dataset was prepared, comprising four
classes of sounds: chainsaw sounds, handsaw sounds,
synthetic axe-cutting sounds, and negative environmental
sounds. The dataset was analyzed using six advanced audio
feature extraction techniques Mel-Spectrogram, MFCC,
Chroma, Spectral Contrast, Tonnetz, and Spectral
Bandwidth to capture crucial characteristics for sound
classification. Multiple state-of-the-art deep learning models,
including a Customized 1D CNN. This work demonstrates
the potential of sound-based monitoring systems to detect
deforestation activities effectively, providing a scalable
solution to support forest conservation initiatives. Key
contributions are:

e Prepared a dataset with four distinct sound classes,
including synthetic axe-cutting sounds recorded in
Mulugu district, Telangana, India

e Applied six audio feature extraction techniques (Mel-
Spectrogram, MFCC, Chroma, Spectral Contrast,

Tonnetz, and Spectral Bandwidth) to capture key
audio characteristics

e Evaluated the dataset using various deep learning
models using with six different feature combinations.
Apart from that Custom-CNN model achieved the
98% accuracy

Literature Review

Akbal (2020) classified environmental sounds using
suitable feature extraction techniques in three stages that
are feature generation, selection, and classification. One-
dimensional Local Binary Pattern (1DLBP), Ternary
Pattern (1D-TP), and statistical methods were used for
feature extraction, while Neighborhood Component
Analysis (NCA) selects features. They implemented SVM
and gained 90.25% accuracy on the ESC-10 dataset.
(Permana et al., 2022) developed a bio-inspired early
warning system for forest fires using bird sounds. Five
hundred eighty bird samples were collected through
microphones, sounds were preprocessed with STFT, and
black-and-white spectrograms were used for faster
classification. A CNN classified the sounds into normal
and threatened conditions, securing 96.45% precision
with data from Indonesian birds.

Khare et al. (2020) proposed a hybrid model using
Optimum Allocation Sampling (OAS) to select samples,
which are converted into spectrograms via STFT and fed
into pre-trained AlexNet and VGG-16 networks. Deep
features were extracted and classified using various
techniques, including decision trees and support vector
machines. Tested on the ESC-10 dataset, the model
achieved accuracies between 87.9 and 95.8%,
outperforming existing methods and offered a robust
solution for automatic environmental sound classification.

Jiang et al. (2023) high-resolution UAV imagery was
employed to map six tree species, standing dead trees, and
canopy gaps within a subtropical montane forest in
eastern China. The researchers focused on a specific time
when leaf color differences were prominent, utilizing four
classification methods—KNN, CART, SVM, and RF to
identify the tree species. The results revealed that UAV
imagery captured during distinct leaf periods can
effectively map tree species in complex mountainous
terrains. In this research, KNN achieved the highest
accuracy at 83%.

Vinod et al. (2023) employed a convolutional neural
network for TOF mapping in Bengaluru, India, using HRS
images. A semi-automated process was developed for
generating labeled training samples via Object-Based
Image Analysis (OBIA), reducing data preparation time.
A U-Net deep learning model was then used for TOF
classification, achieving 89.65% accuracy and a 93.03%
F1 score, outperforming OBIA (80.73% accuracy, 86.44%
F1 score). This methodology for assessing TOF in urban
areas can also be applied to agriculture-dominated regions.
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Lohit (2021) focused on using drones for reforestation,
developing a working prototype to address various
challenges. Drone reforestation is 9 times faster than
manual planting, covering larger areas efficiently by
staying airborne. The future scope includes integrating
deep learning techniques for drones to track deforested
land and accurately sow seeds by hovering over specific
locations or dropping seeds mid-air. Behera et al. (2023)
presented LW-AerialSegNet, a lightweight CNN design
for segmenting images by adding more layers to capture
important features while using techniques to reduce the
number of parameters, making it suitable for devices that
operate on the Internet of Things (IoT). Tested on the
NITRDrone and Urban Drone datasets, it achieved 82%
and 71% intersection over union (loU), outperforming
other methods. LW-AerialSegNet can be used on drones
to identify objects like plants and road lines, helping with
mapping urban and agricultural areas.

Rathod et al. (2023) presented a UAV designed for
rescue and safety in forests, featuring a durable F450
quadcopter frame, four 1000 KV brushless motors, and a
KK2.1 Flight Control Board for 90 minutes of flight. They
included a Raspberry Pi camera for real-time video, a
GSM module for contactless communication, and a
motorized lid for quick aid delivery from a first aid kit.
The Neo-6 M GPS module provides accurate positioning
(2.5 m accuracy) and collects temperature and humidity
data with a DHT 11 sensor. Using deep learning models
like ANN and GANSs, the UAV predicts forest fires with
90.7% accuracy. Kasyap et al. (2022) proposed cost-
effective deep learning techniques for predicting forest
fires using a mixed approach that combines YOLOvV4 tiny
and LiDAR methods. Unmanned Aerial Vehicles (UAVS)
are used to patrol forest areas. The model deployed on the
UAYV achieved a classification time of 1.24 seconds, with
91% accuracy and an F1 score of 0.91.

Das et al. (2022) presented an edge-enabled drone
network integrated with mobile edge computing and
machine learning models to predict bird species.
Experiments conducted in two geographic regions
achieved 98.2 and 96.9% accuracy using a random forest
classifier, with log loss values of 0.07 and 0.4. The edge
device utilized only 1.4% of CPU and 329.14 MB of
buffer memory, with an execution time of 45
milliseconds. Anees et al. (2024) investigated the
relationship between Landsat-9 remote sensing data and
topographical features for monitoring Above-Ground
Biomass (AGB). It employed machine learning
algorithms, including Random Forest (RF), XGBoost, and
Support Vector Regression (SVR), to identify optimal
predictor combinations. The RF model, using Landsat-9
OLI and Shuttle Radar Topography Mission Digital
Elevation Model (SRTM DEM) predictors, achieved a
relative mean absolute error (RMAE) of 14.33%, relative

Root Mean Square Error (RRMSE) of 22.23%, and an R?
of 0.81, making it the most effective model.

Singha et al. (2024) combined GIS, remote sensing,
and machine learning to find and assess areas at risk of
forest fires in the STR and their vulnerability to climate
change. They used a dataset of 44 factors, such as
topography and climate data, with ten machine learning
models, including neural networks and Random Forest,
along with optimization methods. The study found high
fire risk in the northern and southern parts, with the neural
net and RF-PSO models showing risk percentages of
12.44 and 12.89%. Low-risk zones had scores around
23.41 and 18.57%.

Qadeer et al. (2024) looked at using machine learning
to model Above-Ground Biomass (AGB) in Pakistan’s
Diamir district using free Sentinel-1 and Sentinel-2
satellite data, along with 171 field-measured points.
Several algorithms, including Random Forest and
XGBoost, were tested and improved. While Sentinel-2
data performed better than Sentinel-1, combining both
gave the best results (R2 greater than 0.7, RMSE = 105.64
Mg/ha, MAE = 85.34 Mg/ha). da Silva et al. (2023) used
images from UAVs and machine learning algorithms to
identify the invasive species Hovenia dulcis in a
conservation area in southern Brazil. Field data were
collected through a floristic survey, and UAVs captured
RGB images, which were processed to create
orthomosaics. The classification involved four categories:
H. dulcis, similar species, shade, and other species, using
Pixel-Based (PB) and Object-Based Image Analysis
(OBIA) with Random Forest and SVM. The RF algorithm
in the PB approach performed best, achieving a Kappa
index of 0.87 and Overall Accuracy (OA) of 91.5% in
training, with 90.91% success in validation.

Ahmad and Singh (2022) proposed an approach that
utilized MFCCs and Spectral Centroid for feature
extraction for effective classification of environmental
sounds. They used Machine learning techniques such as
K-means clustering, GMM, and PCA to improve
detection accuracy. Where PCA achieved 92% accuracy,
and K-means clustering achieved 83% accuracy. Mporas
et al. (2020) used chainsaw recordings and environmental
noises from online repositories, down sampled to 8 kHz
with 16-bit resolution. The MFCCs, harmonics-to-noise
ratio, voicing probability and dominant frequency are
used for extract the feature. On the other hand, the
classification model, SVM with an RBF kernel improved
accuracy by 2%, reaching 94.42% for an SNR of 20 dB.
Qurthobi et al. (2025) examined the effectiveness of
various pre-trained deep learning models, including
MobileNet, GoogleNet, and ResNet, in classifying forest
sound recordings from the FSC22 dataset, which
comprises 2,025 audio samples across 27 categories. To
enhance classification performance, a hybrid approach is
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proposed by integrating a CNN with a Bidirectional Long
Short-Term Memory (BiLSTM) layer. They used MFCC
through the Pareto-Mordukhovich method to improve
audio feature representation. The proposed BiLSTM layer
into GoogleNet, along with data augmentation, reduced
the loss to 0.7209 and increased the classification
accuracy to 0.7852.

Dataset

In this research, the Dataset was prepared with four
distinct classes. Apart from that, three classes were
collected from Google Audio, and one class named axe
cutting, synthetically prepared in a nearby forest of
Mulugu district, Telangana state, India. All sound samples
of axe cutting were recorded using a Samsung Galaxy F34
smartphone, which features a built-in high-quality
microphone. Recordings were saved in WAV format at a
sampling rate of 44.1 kHz to ensure high-fidelity audio
suitable for signal processing and analysis. The recordings
were made by placing the mobile phone at distances
ranging from 5 to 150 meters from the sound source.
Recordings were conducted in a controlled outdoor forest
environment with environmental condition, temperature
ranged between 25 to 40°C. The axe-cutting sounds were
recorded in a controlled manner and selected specific trees
for recording, ensuring that no tree was felled. Each tree
was struck for no more than 2 minutes, with the cut
limited to 2-3 inches, and no plant was harmed and
activity conducted under the observation of forest
security. The chainsaw sound class, Handsaw sounds and
negative class sound were collected from Google
AudioSet. The audio samples collected for each class
were around three hours long and were sampled down to
10-second samples. Initially, 1200 samples were prepared
for each class. These samples were augmented with
sample down the frequency and increase the frequency for
the existing samples, representing the near and far-off
effect from microphones when being recorded. The
augmentation process increased the number of samples to
greater than 2400 number of samples per each class. The
chainsaw class provides a comprehensive assortment of
recordings featuring various chainsaw types, intensities,
and environments. The axe-cutting class encompasses a
wide spectrum of axe-cutting techniques, including
chopping, splitting, and shaping wood. The handsaw class
covers a range of saw types, from fine-toothed models for
intricate cuts to coarse-toothed saws for rougher work.
The negative sound class presents an array of avian
vocalizations as melodic birds, animals and other forest
sounds. Figure 5 represents the number of audio files from
each class after performing the above-described
operations. According to Figure 5, the number of samples
in the handsaw class is a bit higher than the rest of the
classes because the frequency in this class not have a
uniform distribution over the period of 10 seconds and

also not reach the threshold set by the algorithm to
augment the audio data. The audio waveform
representation is the depiction of the audio format in terms
of frequency and time domain. Figure 6 representing the
patterns of sound waves marked when there is a
significant spike which represents the unique trait of that
class. For example, the chainsaw spikes are the longest
when compared to the rest of the classes, and the axe-
cutting spikes are the shortest ones when compared to all
others. This research implemented k-fold cross-validation
used to evaluate how well the model generalizes to unseen
data by splitting the dataset into k parts (folds) here k =5,
training on k-1 parts, and testing on the remaining part.
This process is repeated k times, and the results are
averaged to get a more reliable estimate of the proposed
CNN model performance. The k-fold cross-validation (k
= 5) was performed to assess the proposed Custom CNN
model generalization ability, yielding an average
accuracy of 99.27% with a low standard deviation of
0.0012.

Number of Samples in each Class [4-Classes]
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W & &
vﬂg}‘ F S
Classes

Fig. 5: Number of samples in four classes of dataset

Pre-Processing

The recorded Audio file data O consists of four classes
determined as 0 = {0,, 0,, 05, 0,}. This dataset is first
pre-processed, and the audio files are presented in sorted
order according to the classes so that the audio files
belonging to the same class are together. By using the
Librosa library, audio samples are scaled down, and the
frequency domain of the samples is analyzed by using
various parameters such as sampling rate, channels, and
length of the file. The recorded audio files were split into
10-second samples for each class. The split dataset M =
{M,,M,, M5, M,}.The steps of the procedure explained in
Algorithm 1.
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Recorded Axecutting Sound Representation

(a) Axe Cutting Sound

Recorded Handsaw Sound Representation

Time

(¢) Handsaw Sound

Amplitude

Recorded Chainsaw Sound

4 15 3 45 6
Time

(b) Chainsaw Sound
Negative Sound

(d) Forest Sound

Fig. 6: Sample Sound wave of each dataset class

Algorithm 1: Audio file Pre — Processing

input: 0 = {0;,0,,05,0,},i = 1,j = 0,audio file f;,t =

0

fori=1to4do

forj=0tondo

Obtain audio file f; from O;

resample frequency: y = 22050

t= 10 Seconds

chunks = Split(f, t)

for k, chunk in enumerate(chunks) do
chunk_Name = 'f; + {k}.wav

chunk. export()

end for

end for

end for

Output: Final dataset O, renamed the O to M

Augmentation

An amplitude-based data augmentation technique was
applied to increase the diversity of the dataset. Each
original audio file was processed to create two additional
versions: one by reducing the volume (dividing the
amplitude by two) and another by normalization (scaling
based on the maximum amplitude if the scaling factor was
less than or equal to 1.1). This method simulates
variations in recording conditions such as lower volume
and consistent loudness. It helps improve the model's
robustness to real-world audio variations. The
augmentation process was implemented using Librosa and

Soundfile

libraries. The output

augmented dataset
representing, A = {A4;,4,,45,A,}. Algorithm 2 illustrated
the process of augmentation on the selected dataset.

Algorithm 2: Data Augmentation

Inputs: M = {M;,M,, M3, M,}

M: Root Directory

M;: Sub Directory

F;: Audio File within Sub Directoty
A: Augmented Directory

y = Audio data

sr: Sampling Rate

k = index for naming augmented files
fori=1to4do

if F; € M; then

Create directiry 4;/M;

for each F; in M; do

load(y),sr = 22050

Exporty to A;/M;/M;_k.wav

fork = 1to 1200 do

//Volume Reduction Augmentation

_Y

yi=7

Export ylto A;/M;/M;_k.wav
k=k+1
//Normalization Augmentation

. 1
Scaling factor m = p——

if m < 1.1 then

y2=yXm

Export y2 to A;/M;/M;_k.wav
k=k+1
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end if

end for

end for

end if

end for

Output: Augmented Audio data A

Methodology

In this research, our main goal is to prevent
deforestation. This research focused on finding tree-
cutting sounds in the forest area of the Indian
environment. As the initial process, we prepared the
dataset of four classes. According to the Sound Event

Pre- Processing:
Samples divided

Total samples
4800.

=

Augmentation.
! Total samples
> to 10sec
inf
— § STFT, —> after
augmentation
10029

Detection to classify the sounds using ML and NN
algorithms, the feature extraction process is more
important. In this model feature extraction with
multiple feature clusters, the compiled dataset is
forwarded to a feature extraction algorithm, which
extracts multiple features simultaneously. These
extracted features are provided in numerical data
format. The extracted feature data is inputted into
multiple deep-learning models to test the accuracy of
each class in real time. Figure 7 shows the flow of the
classification system required to analyze the compiled
dataset. The accuracy of each class is tested using all
classification metrics, and the best feature cluster will
be decided based on these metrics.

Model Training and

Feature Extraction Classifcation
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Fig. 7: Flow chart of the proposed model

The proposed feature cluster was selected based on
the popularity of the feature extraction techniques used
for audio classification and the most suitable for our
implementation. The prepared 6 feature extraction
techniques are Mel-Spectrogram, MFCCs, Chroma,
Spectral Contrast, Tonnetz and Spectral Bandwidth.
The Mel spectrogram is used for visual representation
of the spectrum of frequencies in an audio signal
obtained by converting the linear frequency scale to a
logarithmic scale using the Mel scale, which closely
resembles human auditory perception. MFCCs are a
widely used feature extraction method in audio signal
processing. They capture the short-term power

spectrum of a sound signal. This process involved
computing the Mel spectrogram, taking the logarithm
of the powers, applying a discrete cosine transform, and
retaining a subset of the resulting coefficients. Chroma
representation of the energy distribution of pitch
classes in an audio signal is particularly useful for
harmonic content tasks, like music genre classification,
chord recognition, and melody analysis. Spectral
contrast measures the difference in amplitude between
peaks and valleys in the spectral envelope of an audio
signal. It helps capture the perceptual attribute of
timbre, which is crucial in tasks like instrument
recognition and genre classification. Tonnetz features
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a representation of the harmonic content of an audio
signal. Tonnetz is derived from the tonal centroids and
is related to the harmonic relationship between
different frequencies. Spectral bandwidth measures the
width of the frequency range over which most of the
signal’s energy is concentrated. It provides information
about the spread of frequencies in the spectrum,
indicating whether a sound is narrow or broad in its
frequency content. Figure 8 represents the clustering of
features used to convert the audio data to numerical

Feature Clustars

data. Figure 9 illustrates the flowchart of feature cluster
selection followed by classification output. Figure 10
shows the Various Feature Extraction Spectrograms of
Axe Cutting Sound sample. Figure 11 presents the
Various Feature Extraction Spectrograms of Chainsaw
Sound sample. Figure 12 presents the various Feature
Extraction Spectrograms of Handsaw Sound sample.
Followed by Figure 13 which represents the various
Feature Extraction Spectrograms of Forest other Sound
sample.

o
2 W y Mel Specirogram
MFCC
Mel Spectrogram
3 * MFCC
Chroma
Mel Spectrogram
MFCC
4 * Chiroma
Contrast
Mel Spectrogram
i MFCC
3 = Contrast Mel Spectrogram
” Tonnaiz Eﬁ:cr_‘
Spectral Bandwidth Contrast
Fa Chroma
-y > Tonnetz
~ Speciral Bandwidth
j S
Fig. 8: Feature extraction clusters of the proposed model
Feature Clusters
Dataset Accuracy Tor Each Class
> B S
1 1
3 ——
2 2
_ = 4 —
3 3
5 —
4 4

Fig. 9: Flow chart of sound classification based on the features clusters
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The augmented dataset is used to train the model and
evaluate the accuracy of the classes using classification
metrics. To train the model, the data needs to be in
numerical format, which can be achieved using feature
extraction. Algorithm 3 provided the procedure of feature
extraction from augmented data samples.

Algorithm 3: Feature Extraction

Input: A ={A;,4,,45,4,}

repeat

repeat

repeat

Obtain audio file from 4;

Extract + [; Features

Calculate Mean of + I; Features
Store the mean Value of + /; Features
Until: +/; (> 2&& < 6)

Until: All Files in 4;

Until: All Classes A = {4,4,,43,A,4}
Output: ~A = +/ Feature Clusters
(Where+ ] = 2&& < 6)

The augmented dataset is used to train the model.
Various sound features are extracted from the augmented
data. The algorithm demonstrates the steps in feature
extraction, and the process of these extracted features is
further split into training and testing data for training the
model. In the above algorithm, the augmented A data is
converted to numerical ~A data by performing the feature
extraction operations. The = Ij Features means the
number of features in a feature cluster. The I represents
the feature cluster number, and j represents the number of
feature cluster numbers. For instance, in the two Feature
cluster, there are two features to be extracted I represent
the number ‘2’ whereas the j represents the remaining
number of features that are needed to be extracted for this
feature cluster, like ‘1’ and ‘2’. The (> 2&& < 6)
represents the number of feature clusters from ‘2’ to 6.
The output of the above algorithm is the feature clusters,
which are extracted from the audio files represented by
~A.

Implementation

In our research, we divided the dataset for training and
testing with ratio of 70:30. The deep learning models used
for the classification are Customized Convolutional
Neural Network (CNN), Bi-directional Convolutional
Recurrent Neural Network (BIiCRNN), Bidirectional

Gated Recurrent Unit Convolutional Recurrent Neural
Network (Bi-GRU-CRNN), AlexNet and ResNet.

The Customized 1D Convolutional Neural Network
defined using Keras’ Sequential API. The model begins
with a Convl1D layer that accepts input data with 194
features (input shape of (194, 1)) and applies 64 filters
with a kernel size of 3, using ReLU activation to
introduce non-linearity. A second ConvlD layer
follows, also with 64 filters and the same kernel size,
again using ReL U activation to extract further patterns
from the data. After these two convolutional layers, a
MaxPooling1D layer with a pool size of 3 is introduced,
reducing the spatial dimensions of the feature maps to
simplify the representation while retaining important
information. The output of the pooling layer is then
flattened, converting the 3D tensor into a 1D vector so it
can be passed through fully connected (dense) layers.
The model included a sequence of four dense layers with
100, 50, 25, and 10 neurons, progressively reducing the
dimensionality. Finally, the output layer has 4 neurons,
corresponding to 4 output classes, and used SoftMax
activation for multi-class classification. In our proposed
model, we implemented the RMSprop optimizer to
enhance training stability and accelerate convergence.
Since our research involved with multi-class
classification using the categorical cross-entropy loss
function, which is crucial to optimize weight updates
effectively. RMSprop plays a key role in this process by
adaptively adjusting learning rates for each parameter,
preventing drastic weight changes, and ensuring stable
training. RMSprop mitigates large fluctuations in weight
updates, reducing oscillations and improving overall
model performance. RMSprop offers better handling of
vanishing gradients and ensures faster convergence,
making the model to suitable for training on noisy
datasets. The batch size of the model training is 5 to
process the five samples at a time before update the
weights. The learning rate to controls the weights during
the training is 0.001 for ensuring stable training and high
accuracy. The model run for 10 epochs for training and
testing. Figure 14 shows the Architecture of Proposed
Custom-CNN model and Algorithm 4 illustrates
procedure of model training on featured data.

The extracted features in both the training and testing
data are provided to a model to be trained. Augmented
feature extracted data are considered ~A’ for the training
dataset and ~A” for the validation dataset. Then, the
convolutional matrix will be considered W’and W'’ as the
weights initially. Then, the updated weights of the model
will be considered GW'or GW'for training and
validation data, respectively. The algorithm for training
the model using convolutional layers is given below. The
weight matrices for the training and validation defined as
below equations:
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Fig. 14: Architecture of Proposed Custom-CNN model

Algorithm 4: Model Training Set up initial weights W;and biases b; for dense layers .
Input: ~A' = {~A"},~A'y,~A's,~A",} or ~A" B=W,, b; < RandomlInitialization()
={~A",~A",,~A"3,~A"} D, < o(Xfiattenea» W1, b1)

A:Input Data, Y}, : True labels fori = 1downto 4 do

r = 10029 //number of rows from the extracted feature Diyq < o(D;,B)

foreachiinr do end for

Initialize the convolutional kernal matrices L =1loss (D;, Yirue)

W; with random values fori = 4 downto 1 do

H; = frery(Conv1D(4, Wy, k1)) //Backward pass to calculate gradients:

Hy = freLy(ConviD(Hy, Wy, kq)) AW; « Backprop(D;, Yy rye)

P = MaxPooling(H,, p) Ab; « Backprop(D;, Yirye)

Aftattenea = Flatten(4) W; « Update_Weight(W; — nAW;,)

Compute loss: loss = Z( Apigrtencas Yirue) b; < Update_Biase(b; — nAb,)

aL
BeB—n%

Initializing the weight matrices randomly for

the dense layers
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I :—;represents the collection of all gradients for weights and

biases.
end for
until: loss; = loss;_jand t > max_iterations=10
Ensure: Trained Model R and Updated weight B
Repeat:
Obtain a single row from the extracted feature of
~A'or ~A"

Apply convolutional operation (f, k), (f ", k")

Apply Max pooling operation(p) Update the W ‘and W "mat

Until: All rows in ~A4 or ~A"

GWmnl = (~4 x k)[m,n] = Z .Zkk'[j, J~ATm — j,n — k]
]
GW”Im,n] = (~A” x k")[m,n] = Z _Zkk"[j, K~A[m — j,n — k]
]

In the above equations, GW’ determines the weight
matrices of the training data whereas GW'’ determines
the weight matrices of validation data that is provided
to the dense network for classification. The other
parameters such as [m,n] determine the numerical
range in a feature cluster to which the convolutional
and pooling operations are applied to get the feature
map matrices where, ~A’, ~A"" are the feature rows and
the k', k” are the initial kernel matrices. After
obtaining the weight matrices by applying the
convolutional and pooling operations on each row and
column the matrices are fed to the dense layer which
performs the classification of cancer for lungs. In the
next step, the extracted features are fed to the dense
neural network which comprises of neurons which help
in classifying the audio data according to the classes
specified. Let us consider the initial input to the dense
layers as the transformed version ~GW' flattened
values from the matrix which are considered as the
input neurons of the dense layer, the dense layer
consists of weights which are randomly initialized and
updated accordingly by forward and backward
propagation in numerous iterations, let us consider this
randomly initialized weights as B’. These weights are
forwarded to next dense layer and updated. Finally, the
weights determine the probability of each class from
where the maximum probability of class is chosen to
classify that image. Algorithm 5 illustrates the
procedure of Classification with Dense Layers.

Algorithm 5: Classification with dense layers

Input: Pre — trained weights GW'or GW" Input Matrix :
X, Yire
Xfiattenea = Flatten(X)
/ weights W;and biases b; for dense layers

B={W;, b;} < Randomlnitialization()
repeat

fori=1to4do

H; < Dense;(X, W;, b;)

end for

fori = 4 downto 1 do

//Backward pass to calculate gradients:

AW;, Ab; < Backprop(H;, YVirye)

W; « Update_Weight(W; — nAW;,)

b; < Update_Biase(b; —nAb;)

B' « Update(B)

end for
until: loss, = loss,_, and t = max_iterations=10

Output: Trained Model R and Updated weight B’

Algorithm 5 works for training data which gets
transformed into input layer for the dense layers and the
training process occurs accordingly, the validation set of
values is used to validate the training of the model by
classifying the values in that iteration. The output of the
above algorithm will give the completely trained model R
and the final updated weights B’. These weights
determine the probability of each class when an input
Audio is given which is forwarded to the model after
feature extraction.

Results and Analysis

The results of the trained models are being
discussed in this section for each feature cluster group.
And this section also provides detailed explanation of
how models are performing for 10 epochs in each of the
feature cluster.

Two Features Cluster

In 2-Features cluster, the models while training
have a significant rise in the accuracy from 2nd
iteration. The model providing the best accuracy is the
Bi-GRU-CRNN Custom model, the ResNet pre-
defined model provided less accurate classification
when compared to all the other models. Similarly, the
ResNet whose accuracy and loss keeps fluctuating over
the period of 10 iterations. The ROC curve and
Precision vs Recall curve depicts the area created by all
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the models and shows the minute difference between
them all. The 2-Feature cluster provided a valuable
insight on how models work and train if these features
are chosen for classifying the audio data. Table 2
presents the performance metric results for two features
cluster. Figure 15 illustrates the Two Feature Cluster
result analysis.

Three features Cluster

In 3-Features cluster, the models while training have a
significant rise in the accuracy from 2" iteration. The
model providing the best accuracy for Custom model, the

Table 2: Performance Metric results for two features cluster

ResNet pre-defined model provided less accurate
classification when compared to all the other models.
Similarly, the validation accuracy and loss curves depict
that the most unstable for ResNet and AlexNet whose
accuracy and loss keeps fluctuating over the period of 10
iterations. The ROC curve and Precision vs Recall curve
depicted the area created by all the models and shows the
major difference between them all, the ResNet curve’s
area collapses in-terms of specificity and precision for
classifying the data. Table 3 presents the performance
metric results for three features cluster. Figure 16 presents
the Three Features Cluster result analysis.

Model Precision Recall F1-Score Accuracy Loss
Training
AlexNet 0.91 0.91 0.87 0.90 0.27
Bi-CRNN 0.93 0.92 0.93 0.93 0.12
BiGRU-CRNN 0.95 0.93 0.94 0.93 0.10
Custom CNN 0.95 0.94 0.94 0.95 0.09
ResNet 0.71 0.73 0.69 0.70 0.13
Validation
AlexNet 0.89 0.90 0.90 0.90 0.75
Bi-CRNN 0.93 0.92 0.94 0.94 0.10
BiGRU-CRNN 0.92 0.91 0.96 0.96 0.09
Custom CNN 0.94 0.93 0.95 0.97 0.04
ResNet 0.72 0.72 0.69 0.70 0.16
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Fig. 16: Three Features Cluster result analysis

Table 3: Model Performance Metrics for Three Features Cluster

Model Precision Recall F1-Score Accuracy Loss
Training
AlexNet 0.89 0.89 0.91 0.90 0.12
Bi-CRNN 0.92 0.93 0.93 0.93 0.09
BiGRU-CRNN 0.93 0.95 0.95 0.95 0.07
Custom CNN 0.94 0.96 0.96 0.96 0.04
ResNet 0.74 0.76 0.68 0.75 1.39
Validation
AlexNet 0.90 0.89 0.89 0.90 0.58
Bi-CRNN 0.91 0.92 0.93 0.92 0.19
BiGRU-CRNN 0.94 0.95 0.95 0.95 0.09
Custom CNN 0.95 0.95 0.96 0.96 0.15
ResNet 0.78 0.75 0.74 0.73 1.64
Table 4: Model Performance Metrics for Four Features Cluster
Model Precision Recall F1-Score Accuracy Loss
Training
AlexNet 0.91 0.91 0.91 0.89 0.12
Bi-CRNN 0.92 0.92 0.93 0.93 0.15
BiGRU-CRNN 0.96 0.95 0.95 0.96 0.09
Custom CNN 0.95 0.97 0.96 0.96 0.05
ResNet 0.81 0.82 0.80 0.82 3.09
Validation
AlexNet 0.98 0.94 0.95 0.91 0.41
Bi-CRNN 0.92 0.90 0.95 0.95 0.17
BiGRU-CRNN 0.96 0.96 0.97 0.97 0.14
Custom CNN 0.93 0.99 0.96 0.97 0.11
ResNet 0.87 0.82 0.80 0.82 2.92

Four Features Cluster

In 4-Features cluster, the models while training have a
significant rise in the accuracy from 3rd iteration. The
model providing the best accuracy for Custom-CNN
model and Bi-GRU-CRNN, the ResNet predefined model
provides less accurate classification when compared to all
the other models. Similarly, the validation accuracy and
loss curves depict that the most unstable model is ResNet
and AlexNet whose accuracy and loss keeps fluctuating

over the period of 10 iterations. The ROC curve and
Precision vs Recall curve depicts the area created by all
the models and shows a great difference between them all,
the ResNet curve’s area collapses in-terms of specificity
and precision for classifying the data and the area between
the curves of all other models is quite observable which
suggests that the specificity of this feature cluster is not
stable. Table 4 shows the performance metric results for
four features cluster. Figure 17 illustrates the four Feature
Cluster result analysis.
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Fig. 17: Four Features Cluster result analysis

Five Features Cluster

In 5-Features cluster, the models while training have a
significant rise in the accuracy from 2nd iteration. The
model providing the best accuracy for Custom model and
Bi-GRU-CRNN, the ResNet pre-defined model provided
less accurate classification when compared to all the other
models. The ResNet and AlexNet whose accuracy and

loss keeps fluctuating over the period of 10 iterations. The
ROC curve and Precision vs Recall curve depicts the area
created by all the models and shows a really minor
difference between them all, there is hardly any instability
in terms of precision and recall in these models. Table 5
shows the performance metric results for five features
cluster. Figure 18 illustrates the five Feature Cluster result
analysis.
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Table 5: Model Performance Metrics for Five Features Cluster

Model precision Recall F1-Score Accuracy Loss
Training

AlexNet 0.90 0.91 0.87 0.92 0.19
Bi-CRNN 0.95 0.95 0.94 0.96 0.08
BiGRU-CRNN 0.96 0.95 0.94 0.97 0.06
Custom CNN 0.95 0.97 0.97 0.98 0.05
ResNet 0.88 0.86 0.87 0.92 0.63
Validation

AlexNet 0.92 0.93 0.92 0.94 0.43
Bi-CRNN 0.98 0.93 0.94 0.95 0.06
BiGRU-CRNN 0.95 0.98 0.97 0.97 0.04
Custom CNN 0.93 0.98 0.98 0.97 0.02
ResNet 0.89 0.85 0.87 0.91 1.03
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Fig. 18: Five Features Cluster result analysis

Table 6: Model Performance Metrics for six features cluster

Model Precision Recall F1-Score Accuracy Loss
Training

AlexNet 0.96 0.96 0.94 0.95 0.13
Bi-CRNN 0.94 0.94 0.98 0.96 0.06
BiGRU-CRNN 0.96 0.96 0.98 0.97 0.04
Custom CNN 0.98 0.98 0.98 0.99 0.02
ResNet 0.94 0.89 0.92 0.92 0.14
Validation

AlexNet 0.94 0.96 0.92 0.94 0.22
Bi-CRNN 0.96 0.96 0.97 0.96 0.07
BiGRU-CRNN 0.98 0.96 0.97 0.97 0.05
Custom CNN 0.97 0.98 0.97 0.98 0.04
ResNet 0.92 0.92 0.92 0.92 0.26

Six Features Cluster

The 6-Feature Cluster models have a significantrise in
the accuracy from 2nd iteration while training. The model
providing the best accuracy is Custom-CNN model, the
ResNet pre-defined model provides less accurate
classification when compared to all the other models.
Similarly, the validation accuracy and loss curves depict
that the most unstable model is ResNet and AlexNet

fraining Accuracy of All Models [6-Features]
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whose accuracy and loss keeps fluctuating over the period
of 10 iterations. The best model is Custom-CNN when
compared to all other models in all aspects. The ROC
curve and Precision vs Recall curve depicts the area
created by all the models and shows a really no difference
between them all, there is hardly any instability in terms of
precision and recall in these models. Table 6 shows the
performance metric results for six features cluster. Figure 19
illustrates the six Feature Cluster result analysis.
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Fig. 19: Six Features Cluster result analysis

By comparing all the above metrics of different
feature clusters that are for 2-Feature, 3-Feature, 4-
Feature, 5-Feature, and 6-Feature concluded that the
audio data when converted to numerical data can be
classified effectively with multiple features such that it
becomes more effective while classifying the audio files
in real-time. While investigating the above result
analysis, our research concluded that the most dependent
feature clusters are the 5-Feature clusters and 6-Feature
clusters since, they have good stability in most of the
models when compared to rest of the feature clusters.
The pre-defined models AlexNet and ResNet do not
provide a stable and accurate classification measure to
classify the data in any feature cluster this may be due
the fact that they were trained on images to extract
features from them and classify them accordingly. The
custom-built models provide an accurate and stable
measure to classify the audio data accordingly to their
classes. The most accurate model in majority of the
feature clusters are Custom-CNN and BiGRU-CNN.
The Custom-CNN model provided 98.2% of accuracy
and BiGRU-CNN provided the 97.9% of accuracy.

Potential Limitations

The confusion matrix provides a clear understanding
of the classification model’s performance in identifying
different sound classes: axe-cutting (Class 0), chainsaw
(Class 1), handsaw (Class 2), and negative sounds such
as birds, animals, rain, and vehicles (Class 3). A high
number of correct classifications, including true
positives and true negatives, indicate that the model
effectively distinguishes between deforestation-related
and irrelevant sounds. Accurate identification of tree-
cutting sounds ensures the model’s reliability in
detecting deforestation activities.

However, Figure 20 shows that the misclassification
rates for false positives where non-deforestation sounds
are incorrectly classified as tree-cutting sounds and false
negatives where tree-cutting sounds are misclassified as
non-deforestation sounds are significantly lower than the
true positive and true negative values. This analysis
suggests that our proposed model performs well in
minimizing misclassifications. However, handling
misclassification remains a challenge in research.
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Fig. 20: Confusion matrices for the training, validation, and testing phases of the proposed model

Table 7: Comparison of the Proposed Method with State-of-the-Art Models

Reference Dataset Features Classification Result Environment
models
Ahmad and Singh,  www.sounddog.com and ~ Spectral K Means 92% Tree cutting sound
2022 www.freesound.org. Centroid, MFCC Clustering classification
Mporas et al., Synthetic data MFCC SVM 94.42% Chainsaw sound
2020 classification in the
forest
Qurthobi et al., FSC22 MFCC Custom CNN 94.4% Forest sound
2025 classification
Andreadis et al., ESC-50 Mel-Spectrogram, Custom-CNN 85% Tree Cutting
2021 MFCC
Bandara et al., FSC22 MFCC, Mel- Custom-CNN 92.59% Forest Sound
2023 Spectrogram Classification
Paranayapa et al., FSC22 MFCC, Mel- MobileNetv3 87.95% Forest Sound
2024 Spectrogram, Classification
Chroma features
Proposed Audioset and Synthetic Mel-Spectrogram, Custom-CNN 98.2% Tree cutting sound
data MFCC, Chroma, BiGRU-CNN 97.9% classification
Spectral Contrast,
Tonnetz and
Spectral Bandwidth
Several factors contribute to misclassification, ANOVA test to analyze the mean performance of the

including sound similarity, where environmental noises
such as breaking branches, strong winds, or animal calls
share frequency patterns with tree-cutting sounds, making
differentiation difficult. Feature overlap is another
challenge, as extracted sound features like MFCC and
Mel Spectrogram may not be entirely distinct across
classes. Additionally, dataset imbalance can affect
classification accuracy, especially if certain classes have
fewer training samples, limiting the model’s ability to
learn diverse variations. Table 7 presents a comparative
analysis of the proposed model against existing research
models related to forest environment studies.

Performance of Proposed Customized CNN

In this research, the adopted Customized CNN model
yielded better results than all the other baseline models
that were used in the research. To effectively support the
evaluation and subsequent validation of this improved
performance, however, a systematic method of data
analysis was used. This also involved the use of an

CNN model to other existing baseline methods and to
determine whether there are indeed statistically
significant differences in the results. Moreover, a
calibration test was carried out to check various aspects of
the model to show that the probability estimated by the
model was accurate to the output confidence of the
system. Lastly, we applied radar chart plotting analysis to
represent the performance comparison of multiple features
in order to identify the superiority and inferiority of the
proposed Customized CNN model. This multiple strategy
has made it possible to give strong support to the model’s
general performance and ability to manage large data.

ANOVA Test

The Analysis of Variance (ANOVA) test helps in
assessing whether the observed variances among group
means are due to chance or if there are actual differences
among them. This test provided the two concluded results
that are F-statistics and P-value. In our research the F-
value of 3.7 suggests that the variance among the group
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means significantly larger than the variance within the
groups. This indicates that there is a reasonable amount of
difference among the groups being compared. The P-
value of 0.0204 is less than the conventional significance
level of 0.05. This means that the proposed model can
reject the null hypothesis, suggesting that there are
statistically significant differences among the group
means. Figure 21 demonstrates the ANOVA test analysis
of proposed model performance.

ANOVA Test Results: Model Accuracy

0.80 1 F-statistic: 3.71

0.75 1 P-value: 0.0204

v v v - '
Custom_CNN AlexNet BICRNN BIGRU_CRNN ResNet

Mode|

Fig. 21: ANOVA Test result of proposed and pre-trained
models

Calibration Curve Analysis

Calibration curve for a multi-class classification
model, showing calibration results for each class.
Calibration curves are used to measure the accuracy of a
model’s predicted probabilities by comparing them to the
actual outcomes. According to the diagram each class has
two lines: One for the CNN model and one for the
Baseline models. The classes are labeled as Class 0, Class
1, Class 2, and Class 3. Mean Predicted Probability on X-
axis represents the model’s predicted probability for each
class, averaged over multiple samples. This value ranges
from O (low confidence) to 1 (high confidence). Fraction
of Positives on Y-axis shows the fraction of actual
positives for each predicted probability bin. A value of 1
means all samples with a particular predicted probability
belong to the positive class, while 0 means none of them
do. Perfect Calibration Line (Black Dashed Line)
represents perfect calibration. If the model’s predictions
are perfectly calibrated, the model’s predicted
probabilities will match the observed fraction of positives,
and the lines for each class will align with this dashed line.
When a model’s line follows the perfect calibration line
closely, it indicates that the model is well-calibrated for
that class. Deviations from this line suggest that the model
is either overconfident (above the line) or under confident
(below the line) in its predictions for that class. In our
resultant Figure 22 shows that each class has lines for both
the CNN and Baseline models, allowing us to compare the
calibration of these two models. The proposed customized

CNN model’s lines for each class are close to the diagonal
line, the model is well-calibrated. This means that the
model’s predicted probabilities match the observed
fraction of positives, indicating reliable probability
estimates. The CNN model’s calibration curve for Class 0
shows some deviation, especially at lower probability
levels, but it aligns better with the diagonal line at higher
probabilities. The CNN line for Class 1 appears relatively
close to the perfect calibration line, suggesting reasonably
good calibration for this class. Small deviations are
common, but overall alignment is favorable.

Classes 2 and 3 show more fluctuations, indicating
potential issues with calibration. These deviations suggest
that the CNN model may not be as well-calibrated for
these classes.

Calibration Curve for Each Class
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Fig. 22: Calibration Curve of each dataset class for Proposed
CNN and Baseline models

Radar Chart Analysis

A radar chart is a graphical method used to display
multivariate data in a way that compares different variables
across various categories. Here’s a breakdown of how to
interpret this radar chart: Each axis represents a variable or
feature being compared. In this chart, it looks like five
different models are being compared: CNN, Bi-CRNN,
BiGRU-CRNN, AlexNet, and ResNet. The circular grid
represents scales of measurement, allowing a visual
assessment of how each model performs relative to the
others. Each line plotted on the radar chart represents one
model, color-coded for easy identification as shown in the
legend. Each axis on the radar chart represents a different
performance metric (e.g., precision, recall, accuracy). The
customized CNN model and baseline models are plotted on
the same chart, with each model forming a polygon. A larger
polygon area indicates better performance across those
metrics. The closer the plotted line is to the outer edge of the
chart, the better the performance of the model in terms of
precision. Figure 22 illustrates the performance analysis of
Custom-CNN model using Radar Chart.
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Fig. 22: Performance Analysis of Custom-CNN model using Radar Chart

Bland-Altman Test

The Bland-Altman test also known as the Bland-Altman
plot is useful in detecting any systematic bias (consistent
differences) and in determining the range within which
most of the differences between the models fall. The
resultant plotted figure of Bland-Altman test has x-axis that
represents the mean of the two predispositions. The y-axis
represents the difference between the predictions of
Custom CNN and the comparison model. Mean Difference
(Red Line) represents the difference between Custom CNN
and the comparison model. If the mean difference is close
to zero, it indicates that both models are predicting
similarly. Upper and Lower Limits (Green Lines) lines
represent the 95% confidence interval (x1.96 standard
deviations from the mean). They indicate the range within
which 95% of the differences between the models are
expected to lie. If the mean difference line (red) is
significantly above or below zero, it indicates a consistent
bias, where one model overestimates or underestimates
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relative to the other. According to the results the mean
difference between Custom CNN and AlexNet is close to
zero or slightly positive, it means that Custom CNN is
performing slightly better or similarly to AlexNet.

Custom CNN has a slightly positive mean difference
compared to BiCRNN, this suggests that Custom CNN is
performing slightly better on average. The mean difference
between BIGRU CRNN and Custom CNN is close to zero
and slightly positive. In this case the Custom CNN
performed comparably better than BIGRU CRNN. ResNet
shows more significant differences, especially when
compared with the Custom CNN model. The mean
difference higher and this conclude that Custom CNN
consistently performed better than ResNet. Thus, based on
the Bland-Altman test, Custom CNN better than ResNet, and
performs similarly or slightly better than the other models
AlexNet, BICRNN, BiGRU CRNN. Figure 23 presents the
Bland-Altman test based performance analysis of the
proposed CNN model with implemented baseline models.
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Bland-Altman: Custom_CNN vs BiGRU_CRNN
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Fig. 23: Bland-Altman Test result of Custom-CNN model with baseline models
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Challenges

Sound classification is a solution for Illegal logging
in forests, but faces challenges such as hardware
limitations, environmental noise, and misclassification
risks. This section discussed the key challenges and
mitigation strategies, especially for urban-adjacent
forests where false positives are a significant
consideration.

Environmental Noise and Misclassification Risks

Natural sound overlap challenges distinguishing tree-
cutting sounds from other environmental noises, such as
wind, rain, and animal calls, which may share similar
frequency patterns. Human activity interference further
challenge for detection, as sounds from construction,
farming, and road maintenance near forests can be miss
classified as illegal logging. Echo and reverberation in
dense forests can effect on sound waves, that leads to
reduce the accuracy of classification models and
increasing the risk of misidentification.

Data and Model Challenges

Dataset imbalance can result in biased predictions, as
insufficient samples for certain sound classes prevent the
model from learning adequate variations. Feature
extractions impact classification performance. The
methods such as MFCC and Mel Spectrogram may not
capture differences between similar sounds. The
performance issues arise when models trained in one
forest environment fail to perform well in others due to
variations in acoustic conditions.

False Positives in Urban-Adjacent Forests

Urban-adjacent forest environments are become
challenge due to human-created sounds that lead to false
positives in illegal logging. Construction activities,
agricultural machinery, road maintenance, and industrial
operations may produce sounds similar to tree-cutting,
causing misclassification. These false alerts reduce system
reliability and divert attention from illegal logging.

Hardware Challenges

Microphones and computing units used in forest
monitoring systems maintain durability to harsh weather
conditions such as humidity, heavy rainfall, dust, and
temperature fluctuations. Ensuring a continuous power
supply is another challenge, as remote forest areas often
lack access to electricity. Solar-powered systems need
long-lasting battery capacity. Microphone sensitivity
plays an important role in capturing tree-cutting sounds.
Proper placement and the use of directional microphones
can minimize background noise and improve detection
efficiency.

Conclusion

In this research, we proposed a robust sound event
detection model for forest monitoring by implementing
deep learning techniques to classify and analyze forest-
related sounds. By constructing a comprehensive dataset
with various sound classes and applying advanced feature
extraction methods, we effectively captured key audio
features crucial for distinguishing between different
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environmental sounds. The evaluation was trained with
multiple deep learning models, including a Customized
1D Convolutional Neural Network, Bi-directional
Convolutional Recurrent Neural Networks, and pre-
trained models like AlexNet and ResNet. Apart from that
the Customized CNN achieved 98% accuracy. The results
concluded that sound-based monitoring systems are a
scalable and efficient solution for detecting deforestation,
which can significantly contribute to forest conservation
systems.

Future work should focus on enhancing hardware
durability —with  weather-resistant materials and
optimizing solar-powered solutions for sustained
operation. Advanced noise filtering techniques, such as
deep learning-based denoising and adaptive filtering,
can improve classification accuracy. Expanding datasets
with real-world recordings and utilizing transfer learning
will enhance model generalization across different
environments. To reduce false positives in urban-
adjacent forests, integrating geospatial data, motion
detection, and confidence-based alerts can improve
detection precision. Additionally, incorporating
human-in-the-loop verification will refine system
reliability. These improvements will strengthen the
effectiveness of sound-based illegal logging detection
systems, ensuring more accurate and scalable forest
monitoring solutions.
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