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Abstract: This study explores the integration of Machine Learning (ML) and 

Autonomous Optimization Agents (AOAs) in the management and 

optimization of Radio Access Networks (RAN). The research addresses the 

growing challenges posed by the need for skilled network experts capable of 

managing and analyzing large-scale network data, including Key 

Performance Indicators (KPIs) and thousands of network configuration 

parameters. To overcome these challenges, the study proposes ML-based 

AOAs that autonomously monitor, manage, and optimize network 

performance, thereby reducing reliance on human expertise. Specifically, the 

study utilizes Deep Reinforcement Learning (DRL) to analyze network data 

and optimize key network parameters. Focusing on 4G LTE networks in a 

region of Indonesia, managed by a well-known operator, the study 

demonstrates the potential of AOAs in improving network efficiency, 

managing information overload, and optimizing critical KPIs. The findings 

highlight the significant impact of ML and AOAs on telecommunication 

network management, offering a more sustainable, efficient, and effective 

solution for RAN optimization. 
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Introduction 

In the era of rapidly evolving digital communication, 

telecommunication networks have become the backbone 

of modern society, not only facilitating communication 

and data exchange but also advancing into an era of 

unprecedented connectivity speeds, supporting a wide 

range of applications and services (6G Use Cases and 

Analysis, 2022; D1.2 - Expanded 6G vision, use cases and 

societal values, 2021). This evolution has been pivotal in 

constructing interconnected digital networks, where every 

bite of data exchanged, whether in global communication 

or various applications and services, moves through 

increasingly complex telecommunication networks 

(Kunzmann et al., 2022; Qualcomm Technologies, 2015). 

Particularly in the field of Radio Access Network 

(RAN) optimization, the demand for highly skilled 

experts has become increasingly crucial. These experts, 

often scarce, are required to manage and analyze vast 

amounts of network data, including Key Performance 

Indicators (KPIs), alarms, and thousands of network 

configuration parameters. Additionally, they must take 

actionable steps to maintain optimal network 

performance, ensuring smooth communication and data 

transmission across the network. 

Despite the development of automated systems for 

network optimization, such as Self-Organizing Networks 

(SON), challenges persist. SON, codified since 3GPP 

Release 8 (3GPP TS 36.413, 2011; TSGS, 2022), has 

limitations in addressing every issue faced by networks, 

where each problem encountered necessitates the 

development of new algorithms, such as the Cell Outage 

Detection (COD) algorithm (De-La-Bandera et al., 2015). 

This approach, while beneficial in some contexts, may not be 

entirely efficient, especially considering the dynamic and 

complex nature of modern telecommunication networks. 

The current network management approach, heavily 

reliant on manual intervention and continuous algorithm 

development, often fails to achieve optimal network 

performance. This inefficiency is exacerbated by the 

"information overflow" generated from the vast and ever-

growing network data, posing a challenge to manage and 
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analyze effectively and timely. 

Given the challenges mentioned above, the transition 

from relying on "Network Experts" to implementing 

"Autonomous Optimization Agents (AOA)" based on 

Machine Learning (ML) is seen as a crucial forward step. 

These AOAs are designed to navigate "information 

overflow" by autonomously learning from past 

experiences (self-learning) and enhancing the efficiency 

of network performance optimization (RAN Automation 

| Reduce Effort on Radio Network Optimization, 2019). 

By employing ML-based agents, the system can analyze, 

learn from, and act upon various data, ensuring that the 

network is not only maintained in an optimal state but also 

adaptively evolves in response to changing demands and 

conditions. This approach aims to reduce the challenges 

faced by human experts and traditional systems, offering 

a more sustainable, efficient, and effective solution for 

RAN optimization. 

The paper aims to enhance Radio Access Network 

(RAN) optimization by applying AI/ML techniques, 

including machine learning and deep reinforcement 

Learning: 
 

 Implement Autonomous Optimization Agents (AOAs) 

using Deep Reinforcement Learning (DRL) with Deep 

Q-Network (DQN) to enhance RAN performance: 

AOAs utilize DRL, where an agent learns to make 

decisions based on rewards or penalties. Specifically, 

Deep Q-Network (DQN) is used, which employs a 

neural network to approximate the Q-function and 

optimize multiple Key Performance Indicators (KPIs) 

such as Session Setup Success Rate (SSSR), Session 

Abnormal Release Rate (SARR), Channel Quality 

Indicator (CQI), Handover Success Rate (HOSR) and 

Downlink Spectral Efficiency (DL SE). The approach 

involves tuning parameters like dlRsBoost to 

autonomously manage and improve RAN performance 

 Evaluate the performance of the above approaches 

using a restricted telecommunication network simulated 

by a random forest model with historical datasets from 

4G/LTE networks in Indonesia: This objective focuses 

on assessing the effectiveness of the AOAs and DRL 

techniques in a controlled environment. The simulation, 

using a random forest model and historical data, allows 

for thorough testing and refinement of the optimization 

methods, helping to avoid potential risks related to 

revenue loss, security issues, and user experience 

impacts that could occur if the methods were 

implemented directly in live networks 
 

Literature Review 

The continuous evolution of telecommunication 

networks, especially in the domain of Radio Access 

Networks (RAN), has necessitated advanced optimization 

techniques to manage the increasing complexity and 

performance demands. The integration of machine 

learning (ML) and data-driven approaches has become a 

focal point in enhancing the efficiency and adaptability of 

these networks. Machine Learning (ML) has emerged as 

a powerful tool in network management, offering the 

ability to analyze large datasets and make predictive 

decisions (RAN Automation | Reduce Effort on Radio 

Network Optimization, 2019). ML algorithms can 

autonomously learn from data, identify patterns, and 

make optimization decisions without human intervention. 

This capability is particularly beneficial in managing the 

"information overflow" in telecommunication networks, 

where traditional methods fall short. 

Optimization Challenges in Machine Learning 

The integration of machine learning in network 

optimization introduces several challenges, particularly 

concerning the scalability and efficiency of algorithms. A 

comprehensive review has systematically examined 

optimization methods used in machine learning, focusing 

on their application in increasingly complex and data-rich 

environments. This review explored common 

optimization challenges, such as the exponential growth 

of data and model complexity, and proposed various 

methods to address these issues. This study is essential for 

understanding the underlying challenges of applying 

machine learning to network optimization and lays the 

groundwork for further research in developing more robust 

and efficient optimization techniques (Sun et al., 2020). 

While supervised learning has been extensively 

utilized in networking research, there is also a growing 

trend toward employing unsupervised learning techniques 

to improve network performance (Usama et al., 2019). 

Additionally, Reinforcement Learning (RL) is gaining 

momentum due to its ability to make decisions in dynamic 

and complex environments by learning optimal strategies 

through trial and error. RL is particularly valuable in 

scenarios where traditional supervised and unsupervised 

methods fall short, as it can continuously adapt to 

changing network conditions and optimize performance 

without requiring labeled data (Sun et al., 2020). 
Recent advancements in both machine learning and 

reinforcement learning have led to several significant 

implementations in network optimization. 

Recent studies on coverage and capacity optimization 

in wireless networks have developed and compared 

advanced optimization methods, including Deep 

Deterministic Policy Gradient (DDPG) and Multi-

objective Bayesian Optimization (BO). These studies 

underscore the effectiveness of machine learning 

approaches in enhancing the self-optimization 

capabilities of wireless networks, which is crucial for 

advancing autonomous network management systems 

(Dreifuerst et al., 2021). While these studies highlight the 
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significant evaluation requirements of DDPG, our paper 

introduces autonomous optimization agents using Deep 

Reinforcement Learning (DRL). This approach offers a 

comprehensive view of how autonomous systems can 

optimize network parameters with potentially different 

learning strategies and agent architectures, providing 

new insights into how these agents might outperform or 

complement existing methods. 

Mobility Robustness Optimization (MRO) in 

Dynamic Small-Cell Networks, the MRO algorithm 

operates in two stages: Topology adaptation, where it 

gains prior knowledge to estimate optimal handover 

parameters, and mobility adaptation, where it refines 

these parameters using reinforcement learning based on 

real-time data. The study demonstrated that this approach 

significantly reduces adaptation time and enhances user 

satisfaction compared to traditional methods, highlighting 

the need for adaptive algorithms in managing the 

complexities of modern small-cell networks (Nguyen and 

Kwon, 2021). At the same time, the studies mentioned 

focus on optimizing a single KPI-handover performance 

approach can be designed to optimize a range of KPIs 

simultaneously. By defining a reward function that 

incorporates multiple KPIs (e.g., Session Setup Success 

Rate, Session Abnormal Release Rate, Handover Success 

Rate, Channel Quality Indicator, Downlink Spectral 

Efficiency), a DRL agent can learn policies that 

effectively balance these metrics. 

Machine Learning in Self-Organizing Networks 

(SON), A comprehensive survey conducted and reviewed 

the application of machine learning algorithms in SON 

over the past fifteen years. The survey provided a detailed 

analysis of various machine learning techniques used in 

SON, categorizing them based on their learning solutions 

and self-organizing use cases. It also offered practical 

guidelines for selecting the appropriate machine learning 

algorithms depending on specific SON metrics. The 

survey emphasized the growing necessity of integrating 

more intelligent algorithms into SON to cope with the 

increasing complexity of modern cellular networks, 

especially as the industry moves towards 5G and beyond. 

The findings from this survey highlight the critical role of 

machine learning in enabling fully autonomous and 

flexible network management (Klaine et al., 2017). 

Building on these insights, this study will explore how 

Deep Reinforcement Learning (DRL) as an Autonomous 

Optimization Agent (AOA) supports such fully 

autonomous and adaptive network management. 

Auto encoder-based frameworks for self-organizing 

networks, in the development of more intelligent and 

autonomous networks, auto-encoder-based machine 

learning frameworks have shown promise, particularly in 

Self-Organizing Networks (SON). A study introduced an 

Auto Encoder (AE)--based framework for cell outage 

detection, demonstrating superior accuracy over 

traditional machine learning approaches. This framework 

enhances the self-optimization, self-configuration, and 

self-healing capabilities of SON, making auto encoders a 

critical component in the evolution of intelligent network 

management systems (Asghar et al., 2019). Although 

auto-encoder-based approaches are promising for 

intelligent and autonomous networks, leveraging Deep 

Reinforcement Learning (DRL) can further enhance SON 

by providing more autonomous, adaptive, and optimized 

network management. 

Resource management in Heterogeneous Networks 

(HetNets), and Heterogeneous Networks (HetNets) are 

crucial for boosting the capacity of 5G networks but 

introduce complexities due to interference between small 

cells and macrocells. A survey reviewed the application 

of deep reinforcement learning (DRL) in resource 

management for 5G HetNets, covering areas such as 

energy harvesting, network slicing, and coordinated 

multipoint transmission. The study provided a 

comparative analysis of various DRL-based resource 

management schemes and identified research gaps and 

future directions. This highlights the importance of DRL 

in managing resources in complex multi-tier network 

environments (Lee and Qin, 2019; Shi et al., 2020). 
In Adaptive Resource Management in Radio Access 

Networks, the variability in traffic within Radio Access 

Networks (RAN) makes fixed network configurations 

inadequate for achieving optimal performance. A recent 

study explored the use of Deep Reinforcement Learning 

(DRL) to create an intelligent controller that does not 

require extensive domain knowledge of the RAN. This 

controller was tested in a lab environment with real 

eNodeB hardware and smartphones, demonstrating that 

DRL can significantly improve network performance. 

The study highlights the potential of DRL in enabling self-

organizing, adaptive network management that operates 

autonomously around the clock, addressing the 

limitations of traditional rule-based and offline tuning 

approaches (Chen et al., 2021). 

Toward Intelligent Network Optimization in Wireless 

Communication, the reviewed literature highlights the 

growing role of machine learning in addressing the 

challenges of modern telecommunication networks. The 

integration of machine learning techniques such as 

reinforcement learning and neural networks into network 

management processes demonstrates significant potential 

for enhancing network performance and efficiency. These 

advancements are particularly relevant for the 

development of Autonomous Optimization Agents 

(AOA), which aim to replace traditional network 

management approaches with more intelligent, machine-

driven solutions (Zhang et al., 2019). 

An overview of deep reinforcement learning for 

spectrum sensing in cognitive radio networks. This literature 

highlights the Recent advancements in Deep Reinforcement 
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Learning (DRL) that have shown promising results in 

optimizing resource management in telecommunication 

networks, particularly in Cognitive Radio Networks (CRNs). 

Techniques like Deep Q-Learning (DQN) have been used to 

improve spectrum sensing by enabling efficient detection of 

available spectrum, even in noisy environments. These 

methods leverage models like Markov Decision Processes 

(MDPs) to handle uncertainty and improve decision-making. 

Building on this foundation, our research integrates DQN 

with Autonomous Optimization Agents (AOAs) to optimize 

Radio Access Networks (RANs), providing a novel 

approach to enhance Key Performance Indicators (KPIs) in 

4G LTE networks (Obite et al., 2021). 

Deep Reinforcement Learning based Dynamic 

Reputation Policy in 5G based vehicular communication 

networks: The study on Deep Reinforcement Learning 

(DRL) based Dynamic Reputation Policy in 5G Vehicular 

Communication Networks demonstrates the potential of 

DRL in optimizing network operations and decision-

making processes in real-time. While it primarily focuses 

on vehicular communication, the approach highlights how 

DRL, particularly the Deep Q-Network (DQN) algorithm, 

can effectively manage complex and dynamic 

environments. Traditional machine learning methods face 

challenges in such scenarios, but DRL’s ability to learn 

optimal policies through trial and error has proven successful 

in optimizing network performance (Gyawali et al., 2021). 

Building on these findings, our study applies the DQN 

algorithm within Autonomous Optimization Agents 

(AOA) to optimize the Radio Access Network (RAN) 

performance, providing a novel approach to dynamic 

parameter adjustment in telecommunications networks. 

Deep Reinforcement Learning based Wireless 

Network Optimization: A Comparative Study; The 

comparative study on Deep Reinforcement Learning 

(DRL) methods for wireless network optimization 

highlights the effectiveness of various DRL algorithms, 

such as Deep Deterministic Policy Gradient (DDPG), 

Neural Episodic Control (NEC) and Variance Based 

Control (VBC), in handling dynamic network 

environments. These algorithms are shown to optimize 

network operations like power control, resource 

management, and KPI improvements. DDPG, in particular, 

excels in continuous action spaces, making it a strong 

candidate for optimizing wireless network parameters. NEC, 

while offering fast convergence, struggles with large action 

spaces and VBC demonstrates promise in distributed multi-

agent environments (Yang et al., 2020b). Our study 

leverages these insights by implementing Deep Q-

Network (DQN) within Autonomous Optimization 

Agents (AOA) to optimize Radio Access Network (RAN) 

performance dynamically. Building on the success of 

DRL techniques in wireless networking, our approach 

addresses the unique challenges of real-time parameter 

tuning and performance optimization in RAN systems. 

Deep Reinforcement Learning Based Energy-Efficient 

Resource Management for Social and Cognitive Internet 

of Things: Deep reinforcement learning (DRL) has been 

widely adopted to optimize resource management in 

dynamic wireless environments, including the Internet of 

Things (IoT). A notable study by Yang et al. (2020a) 

introduces a coordinated multi-agent DRL approach to 

manage resources in social and cognitive IoT networks. 

This study formulates resource management as a multi-

agent reinforcement learning problem, where each device 

intelligently optimizes its Radio Block (RB) assignment 

and power control strategy. Key techniques such as 

Prioritized Experience Replay (PER) and coordinated 

learning are used to improve learning efficiency and 

network performance. The proposed DRL-based method 

demonstrates significant improvements in energy 

efficiency and Quality of Service (QoS) compared to 

traditional methods. These techniques align with our 

research, where DRL and Autonomous Optimization 

Agents (AOA) are leveraged for dynamic RAN 

optimization, providing insights into how DRL can be 

adapted to manage complex network parameters and 

improve system performance under varying conditions. 

Deep reinforcement learning-based service-oriented 

resource allocation in smart grids. This study has applied 

Deep Reinforcement Learning (DRL) to optimize 

resource allocation in dynamic environments. A study by 

(Xi et al., 2021) proposed a service-oriented resource 

management framework using DRL to optimize 

communication, computing, and caching resources in 

smart grids, focusing on meeting diverse delay 

requirements. The DRL-based algorithm utilizes a polling 

mechanism to adapt resource scheduling based on service 

needs, achieving significant improvements in cache hit 

rates and reducing delays. This approach highlights the 

potential of DRL in managing complex resource 

allocation problems, providing valuable insights for its 

application in optimizing network performance in various 

domains, including telecommunications. 

A study by Tang et al. (2020) explores deep 

reinforcement learning (DRL) for dynamic 

uplink/downlink resource allocation in high mobility 5G 

Heterogeneous Networks (HetNet), focusing on users like 

vehicles and UAVs. The proposed method leverages DRL 

and deep neural networks to predict traffic and channel 

conditions, allowing adaptive changes to Time Division 

Duplex (TDD) configurations. This approach 

significantly improves network throughput and reduces 

packet loss rates compared to traditional and shallow Q-

learning methods. The research highlights the 

effectiveness of DRL in optimizing resource allocation in 

complex, high-mobility environments, which is closely 

aligned with our focus on intelligent resource 

management in dynamic networks. 
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Path planning of coastal ships based on optimized 

DQN reward function: This study applies Deep 

Reinforcement Learning (DRL) to optimize navigation in 

dynamic coastal environments. The research, proposed by 

(Guo et al., 2021), focuses on enhancing traditional path 

planning algorithms using an optimized Deep Q-Network 

(DQN), improving the convergence speed and safety of 

coastal ship navigation. Key improvements include the 

introduction of potential function rewards, reward areas 

near target points, and penalty areas near obstacles, which 

guide the ship toward its destination while avoiding 

obstacles efficiently. This approach significantly reduces 

path planning time, increases stability, and ensures 

compliance with maritime safety regulations. The 

study underscores the potential of DRL in handling 

real-time decision-making in dynamic, uncertain 

environments, aligning with our journal's focus on 

intelligent decision-making systems and optimization 

techniques in complex scenarios. 

Autonomous Navigation of Robots: Optimization with 

DQN: This study by Escobar-Naranjo et al. (2023) 

explores the use of the Deep Q-Network (DQN) algorithm 

to improve the autonomous navigation of mobile robots. 

This research focuses on enabling robots to make optimal 

path-planning decisions in real time, utilizing 

reinforcement learning to avoid obstacles and reconfigure 

routes dynamically. By integrating neural networks with 

sensory inputs and the Robot Operating System (ROS), 

the system learns from its environment and optimizes 

navigation efficiency. The study demonstrates the DQN 

algorithm's potential in various applications, such as 

manufacturing, logistics, and search and rescue 

operations, emphasizing its effectiveness in complex 

environments. These findings align with our journal’s 

focus on intelligent decision-making systems and 

resource management, as the application of DQN in 

robotics highlights its ability to optimize processes and 

enhance system performance in real-time scenarios. 

A study titled "Comparison of On-Policy Deep 

Reinforcement Learning A2C with Off-Policy DQN in 

Irrigation Optimization" (Alibabaei et al., 2022) applied 

reinforcement learning to optimize irrigation scheduling 

for a tomato crop in Portugal. The research compared two 

approaches: The off-policy Deep Q-Network (DQN) and 

the on-policy Advantage Actor-Critic (A2C). Both 

models showed a significant reduction in water 

consumption compared to traditional threshold-based 

irrigation methods, with slight variations in net yield. This 

study demonstrates how reinforcement learning can adapt 

irrigation practices based on environmental changes, such 

as rainfall variability, allowing for more efficient water 

management without compromising crop productivity. 

The insights from this study are valuable to our journal as 

they showcase how reinforcement learning can be utilized 

for intelligent decision-making in real-time, dynamic 

environments, which is applicable not only in agriculture 

but also in broader resource management scenarios. 

The literature review above highlights the significant 

role of Machine Learning (ML) and Autonomous 

Optimization Agents (AOAs) in advancing Radio Access 

Networks (RAN). It underscores the challenges and 

opportunities associated with integrating ML, particularly 

Reinforcement Learning (RL) and Deep Reinforcement 

Learning (DRL), into network optimization. Recent 

studies demonstrate that DRL can effectively manage 

complex scenarios such as coverage, capacity, mobility 

robustness, and resource allocation in heterogeneous 

networks. While autoencoder-based frameworks have 

shown promise in self-optimization and network 

management, DRL offers enhanced adaptability and 

performance. The review identifies gaps and future 

research directions, emphasizing the need for intelligent, 

autonomous solutions to address the increasing 

complexity of modern telecommunication networks. 

Problem Formulation 

The growing complexity of Radio Access Network 

(RAN) optimization in modern telecommunication 

systems presents significant challenges due to the scarcity 

of skilled experts capable of managing and analyzing vast 

and intricate datasets. With the proliferation of Key 

Performance Indicators (KPIs), alarms, and a myriad of 

network parameters, the issue of "information overflow" 

has become increasingly prominent. To address these 

challenges, this study proposes the replacement of 

traditional "Network Experts" with Machine Learning 

(ML)-based Autonomous Optimization Agents (AOAs). 

These agents are designed to manage and optimize 

network parameters more efficiently by leveraging self-

learning capabilities from past experiences with advanced 

AI/ML techniques. 
In this study, the simulation environment is designed to 

model a telecommunication network without directly 

interacting with a live system. Instead of real-world 

implementation, a Random Forest model is employed to 

simulate the network’s behavior, allowing for safe and 

controlled testing of optimization strategies without 

compromising network integrity. By combining the Deep Q-

Network (DQN) algorithm with the Random Forest model, 

the study establishes a robust and adaptable simulation 

environment. The DQN algorithm is chosen for its capability 

to manage complex decision-making and adapt over time, 

while the Random Forest model is selected for its accuracy 

and stability in predicting network performance. These 

choices ensure a reliable and effective simulation of 

telecommunication network management, enabling safe and 

insightful testing of optimization strategies. 

About the Datasets 

The dataset for this study is derived from a 
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telecommunication network in one region of Indonesia, 

managed by a well-known operator. This region was 

selected due to the wide variation in Key Performance 

Indicators (KPIs) it displays, providing a strategic 

advantage for analyzing different network behaviors under 

diverse conditions. The data, specifically related to 4G 

(LTE) network technology, was collected over a three-

month period from July 1, 2023, to September 30, 2023. 

Dataset Overview: The dataset includes: 

 

 Key Performance Indicators (KPIs): These are 

metrics used to evaluate the performance aspects of 

the telecommunication network. The KPIs are 

Session Success Setup Rate (SSSR), Session 

Abnormal Release Rate (SARR), Handover Success 

Rate (HOSR), Channel Quality Indicator (CQI), and 

Downlink (DL) spectral efficiency 

 Database Parameters: Specific to this study are 

dlRsBoost, which are frequently adjusted parameters 

for Radio Access Network (RAN) optimization 

 

Data Analysis: The statistical summary of the dataset 

presented in Table (1), which includes dlRsBoost, SSSR, 

SARR, CQI, HOSR, and DLSE, provides insights into 

the performance metrics after normalization and outlier 

removal. The dlRsBoost values are normalized by 

dividing by the maximum value of 1600, resulting in a 

mean of 0.70, with a range from 0.44 to 1 and a standard 

deviation of 0.09. For SSSR and SARR, the metrics are 

highly stable with means of 0.990 and 0.998 

respectively, indicating consistent performance with low 

standard deviations (0.02 and 0.01). The CQI, 

normalized by dividing by 15, has a mean of 0.65, 

indicating good channel quality, with values ranging 

from 0.09 to 0.99 and a standard deviation of 0.10. 

HOSR shows a mean of 0.98 and a maximum of 1, 

reflecting high handover success rates with minimal 

variation. DLSE, normalized by dividing by 10, has a 

mean of 0.19 and a standard deviation of 0.07, with 

values ranging from 0 to 1.37, illustrating variable 

downlink efficiency. 

 

Table 1: Statistical summary of Key Performance Indicators 

(KPIs) and parameter 

 
dlRs

Boost 
SSSR 

SAR

R 
CQI 

HOS

R 

DLS

E 

count 4,277,353 

mean 0.70 0.990 0.990 0.650 0.980 0.190 

std 0.09 0.020 0.010 0.100 0.050 0.070 

Min 0.44 0.000 0.000 0.090 0.000 0.000 

25% 0.63 0.990 0.998 0.591 0.984 0.139 

50% 0.63 0.995 0.999 0.657 0.994 0.182 

75% 0.81 0.997 0.999 0.720 0.996 0.228 

max 1.00 1.000 1.000 0.990 1.000 1.370 

These datasets will be utilized as follows: 
 
 A Random Forest model will serve as a representation 

of the telecommunication network, instead of directly 

connecting to the network. This model will use 80% of 

the data for training and 20% for testing and will be 

employed to predict Key Performance Indicators (KPIs) 

 The top 20 cells with the worst performance on the last 

day will be selected and fed into a Deep Reinforcement 

Learning (DRL) model for further testing 
 

In this study, we chose to use daily data for regular 

optimization instead of focusing exclusively on peak-hour 

conditions for several reasons: 
 
 Regular optimization focus: The primary goal of the 

study is to develop and test optimization strategies 

that can be applied consistently across various times 

and conditions throughout the day. Using daily data 

ensures that the optimization model can address a 

wide range of network scenarios, not just those 

experienced during peak hours 

 Comprehensive Evaluation: Daily data provides a 

more comprehensive view of network performance 

across different times and conditions, rather than 

concentrating solely on peak hours. This approach 

allows for a broader evaluation of how optimization 

strategies perform under typical operational 

conditions, which is crucial for developing robust 

and adaptable solutions 

 Realistic Network Management: Network 

management often involves dealing with a variety of 

conditions throughout the day, not just during peak 

traffic hours. By using daily data, the study reflects 

the real-world challenges faced by network operators 

who must optimize performance across all hours, 

including both peak and off-peak times 

 Avoiding peak-specific bias: Focusing exclusively on 

peak-hour conditions could lead to optimization 

strategies that are overly tailored to high-stress 

scenarios, potentially neglecting the needs of the 

network during other times. Using daily data helps 

ensure that the optimization strategies are balanced 

and effective across all conditions 
 
Conceptual Framework 

Figure (1) Shown block diagram of an autonomous 

agent when the Autonomous Optimization Agent (AOA) 

uses a Deep Q-Network (DQN) algorithm as a decision-

making process and epsilon-greedy policy as a component 

that defines the behavior of an agent by specifying the 

action to be taken in each state. For the Environment, 

instead of directly interfacing with the live 

telecommunication network, a Machine Learning (ML) 

model, specifically Random Forest, is utilized to predict 

critical KPIs such as Session Success Setup Rate (SSSR), 
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Session Abnormal Release Rate (SARR), Handover 

Success Rate (HOSR), Channel Quality Indicator (CQI) 

and Downlink (DL) Spectral Efficiency based on input 

parameters like Band and dlRsBoost. This approach 

allows for a controlled and secure environment for testing 

and refining the optimization strategies without risking 

network integrity. The study by (Breiman, 2001) 

highlights the effectiveness of Random Forests as a tool 

for prediction, emphasizing that they do not overfit due to 

the Law of Large Numbers. The study notes that the 

randomness injected into the model contributes to its 

accuracy as a classifier and regressor, providing insight 

into the model's predictive capabilities through the 

strength of individual predictors and their correlations. 

The primary objective of this study is to improve the 

overall Quality of Service by fine-tuning the dlRsBoost 

parameter, thereby enhancing key KPIs. The ultimate goal 

is to ensure that more sessions are successfully established 

(higher SSSR), session attempts are managed more 

efficiently (lower SARR), handovers occur seamlessly 

(higher HOSR), users experience better channel quality 

(higher CQI) and the network's spectral efficiency is 

maximized, leading to better utilization of available 

bandwidth and resources. 

Markov Decision Processes (MDP) 

In Fig. (1), the interaction between the agent and the 

environment, including actions, states, and rewards, is 

structured within the MDP framework, a key component of 

reinforcement learning. MDP is defined by a set of states (𝑆), 

a set of actions (𝐴), a transition function (𝑇), and a reward 

function (𝑅). The transition function 𝑇(𝑠, 𝑎, 𝑠′) represents 

the probability of moving from state 𝑠 to state 𝑠′ after taking 

action 𝑎 , and the reward function 𝑅(𝑠, 𝑎, 𝑠′) provides the 

reward received after transitioning. The goal of an MDP is to 

find a policy 𝜋(𝑠), which tells the agent the best action to 

take in each state to maximize cumulative rewards over time 

(Gridin, 2021; Vanneschi and Castelli, 2018). 

State: In this study, the observed states are key 

performance indicators (KPIs) of the telecommunication 

network, including SSSR, SARR, HOSR, CQI, and DL 

Spectral Efficiency, which are predicted using a Random 

Forest model. 

 

 
 
Fig. 1: Block diagram of autonomous optimization agent 

Action: The action in this study involves setting or 

adjusting the dlRsBoost value. The Random Forest 

model, representing the telecommunication network, 

predicts the KPIs based on the selected dlRsBoost value. 

The dlRsBoost parameter can take one of six possible 

values: [700, 1000, 1177, 1300, 1477, 1600], providing 

the agent with six distinct actions to choose from. 

Reward: For each action taken, if a KPI meets or 

exceeds its target optimization value, the agent receives a 

reward of +1; otherwise, the reward is -1. 

Here is the MDP algorithm for agent-environment 

interaction, outlining actions, states, and rewards: 

 

state_target = [SSSR_tgt, SARR_tgt, HOSR_tgt, CQI_tgt, 

DLSE_tgt] 

 

function step(action, state_target):  

reward = 0 

done = False 

done_reason = None 

 

dlRsBoost = [700, 1000, 1177, 1300, 1477, 1600] 

state =  

get_kpi_prediction_from_random_forest_ml(dlRsBoost[acti

on]) 

 

for i in range(len(['SSSR', 'SARR', 'HOSR', 'CQI', 

'DLSE'])):  

if state[i] > state_target[i]:  

reward += 1 

Else:  

reward -= 1 

 

if reward==5:  

done = True 

done_reason = "All KPIs >= previous" 

 

if all_action_already_taken() and reward<5:  

done = True 

done_reason = "All steps complete!" 

state = the_best_solution() 

 

return (state, reward, done, info={done_reason, 

cummulative_reward, steps}) 

 

Deep Q-Network 

The reinforcement learning algorithm used in this 

study is Deep Q-Network (DQN) (Mnih et al., 2015), an 

extension of the classical Q-learning algorithm (Khenak, 

2010), that utilizes neural networks to approximate the 

action-value function. Developed by Google's 

DeepMind in 2013, DQN effectively bridges the gap 

between reinforcement learning and deep learning, 

enabling the practical solution of complex problems in 

various environments.  

State and Action Representation: In DQN, the 

environment is modeled as an MDP where the agent interacts 
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with it by observing States ( s ), selecting Actions ( a ), 
receiving Rewards (r), and transitioning to new States (s′). 

Q-Function: The Q-function 𝑄(𝑠, 𝑎), which estimates 

the expected cumulative reward of taking action in state 𝑠 

and following the optimal policy thereafter, is central to 

DQN. The Q-function is learned through experiences 

and approximated using a neural network in DQN 

(Vanneschi and Castelli, 2018). 

In Fig. (2), the neural network models the 𝑄(𝑠, 𝑎) 

function by taking the input state 𝑠 and outputting a vector 

𝑎 , where each value corresponds to the Q-value of an 

action 𝑎𝑖 for that state. This approach is the foundation of 

the Deep Q-Network (DQN), which uses a neural network 

to determine the optimal actions for the agent. 

Bellman Equation 

The Bellman equation is used to iteratively update the 

Q-values based on the observed rewards and transitions. 

This is where the MDP comes into play: The Q-value is 

updated according to the expected future rewards, which 

are determined by the transition and reward functions of 

the MDP (Vanneschi and Castelli, 2018): 

 
𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) +  𝛼[𝑟 +  𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] 

 

This equation updates the Q-value 𝑄(𝑠, 𝑎) for a state-

action pair by adjusting it based on the immediate reward 

𝑟, the discounted estimate 𝛾 of the optimal future reward 

𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′), and the learning rate 𝛼 to improve the 

agent's decision-making over time. 

Replay Buffer 

As the agent explores the environment, it stores 

experiences (𝑠, 𝑎, 𝑟, 𝑠’)  in a replay buffer. These 

experiences represent the transitions defined by the MDP 

and are used to train the Q-network. The Replay Buffer 

serves an important role by allowing the agent to store and 

later revisit these past experiences during training. This 

process, called "experience replay," involves sampling 

random batches of these stored experiences to train the 

neural network. 

 

 

 

Fig. 2: Neural network as the Q(s, a) function 

By doing so, the agent can learn from a diverse set of past 

experiences rather than relying solely on the most recent 

interactions. This helps break the temporal correlations 

between consecutive experiences, leading to more stable 

and efficient learning. The randomness in selecting 

batches from the Replay Buffer ensures that the agent 

generalizes better and prevents overfitting to recent 

experiences (Gridin, 2021. 

In Fig. (3), the samples collected during exploration 

are stored in the Replay Buffer, which later provides 

random batches of these (𝑠, 𝑎, 𝑟, 𝑠′) samples for neural 

network training. 

Epsilon-Greedy Policy 

This study employs the Epsilon-Greedy Policy in 

reinforcement learning to balance exploration (trying new 

actions) and exploitation (using known information to 

maximize rewards). Initially, the agent explores the 

environment by trying different actions. After this 

exploration phase, the agent switches to exploitation 

mode, where it selects the action that yields the highest 

reward during exploration, assuming it remains the best 

choice. The "epsilon" in the Epsilon-Greedy Policy 

represents a small probability that the agent will continue 

to explore during exploitation, ensuring it doesn't 

overlook potentially better options (Gridin, 2021). 

The Epsilon-Greedy Policy is defined with the 

following mathematical formula (Gridin, 2021; 

Vanneschi and Castelli, 2018): 

 

 With probability 𝜖 

Choose a random action 𝑎 ∈ 𝐴 

where 𝐴 is the set of all possible actions 

 With probability 1 − 𝜖 

𝑎 = arg 𝑚𝑎𝑥𝑎′ 𝑄(𝑠, 𝑎) 

where 𝑄(𝑠, 𝑎) is the estimated value of taking action 

𝑎 in state 𝑠 

 

 
 

Fig. 3: Replay buffer 
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Here, 𝜖 is a parameter between 0-1 that controls the 

trade-off between exploration (choosing a random action) 

and exploitation (choosing the best-known action). 

Random Forest Regressor as Network 

Telecommunication 

In Fig. (1), the "environment" denotes a 

telecommunication network. Although direct connectivity 

to this network is technically feasible, the need to preserve 

network integrity compels the substitution of direct 

interactions with a Random Forest model. This model is 

utilized to simulate the network’s behavior by predicting 

all relevant Key Performance Indicators (KPIs). The 

choice of the Random Forest approach is grounded in its 

proven effectiveness as a predictive tool, as extensively 

documented in studies by Breiman (2001). Employing 

this method ensures the maintenance of network stability 

and security, while also enabling the testing and 

refinement of optimization strategies. 

The methodology of this study involves 

implementing a Random Forest model to predict KPIs 

and using a deep reinforcement learning approach to 

optimize network parameters. The approach aims to 

address the following objectives: 

 

 Prediction: The Random Forest model predicts key 

performance indicators (KPIs) such as SSSR, 

SARR, HOSR, CQI, and DL SE based on input 

parameters like Band and dlRsBoost. This model 

will be trained and tested on historical network data 

to provide reliable KPI forecasts 

 Optimization: Using the Deep Q-Network (DQN) 

algorithm, the study will optimize the dlRsBoost 

parameter to enhance KPI values. The DQN will be 

trained to maximize rewards based on the KPI 

predictions from the Random Forest model. The 

learning process involves adjusting dlRsBoost values 

and observing their impact on the KPIs to determine 

the optimal setting 

 

Deep Reinforcement Learning Algorithm 

Here is the algorithm to train the Deep Reinforcement 

Learning (DRL) model, bringing together all the key 

concepts discussed above: 

 

def drl_train(episodes, epsilon):  

replay_buffer_init() 

evaluation_init() # exploratoin, exploitation, scores, steps 

 

for episode in range(episodes):  

state = state_init() 

done = False 

While not done:  

if rand() < epsilon:  

action = random(action_space) 

 exploration += 1 

Else:  

q_values = model.predict() 

action = q_values[0] 

exploitation += 1 

 

next_state, reward, done, info = step(action) 

replay_buffer_append(state, action, reward, next_state) 

state = next_state 

evaluation_update() 

 

train_dqn_model_with_label_from_bellman_equation() 

 

Materials and Methods 

Simulation Environment 

The study focuses on modeling a telecommunication 

network in a controlled simulation environment to avoid 

potential risks associated with direct interactions with a 

live system. The simulation incorporates a Random Forest 

model to represent the telecommunication network’s 

behavior. This model ensures a stable and accurate 

depiction of network dynamics by predicting Key 

Performance Indicators (KPIs) such as Session Success 

Setup Rate (SSSR), Session Abnormal Release Rate 

(SARR), and Downlink Spectral Efficiency (DLSE). The 

Random Forest model was selected for its robustness and 

ability to handle complex, high-dimensional data, 

ensuring accurate and reliable predictions. 

To enhance decision-making and adaptability within 

the simulation, the Deep Q-Network (DQN) algorithm 

was integrated. DQN is particularly well-suited for 

managing complex, dynamic systems such as 

telecommunication networks due to its capacity for 

continuous learning and adaptation in real-time scenarios. 

Deep Q-Network (DQN) Implementation 

The Deep Q-Network (DQN) was implemented using 

TensorFlow and Keras libraries. The neural network 

architecture is designed to map the state space to the 

action space, enabling efficient decision-making. Key 

architectural features include: 
 

 Input Layer: Configured to match the dimensions of 

the state space 

 Hidden Layers: Two fully connected layers, each 

with 24 neurons, using the ReLU (Rectified Linear 

Unit) activation function to introduce non-linearity 

and improve learning 

 Output Layer: The output layer corresponds to the 

action space, with a linear activation function to 

predict the Q-values for each action 
 

The DQN was trained with the following 

hyperparameters: 
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 Optimizer: Adam optimizer with a learning rate of 0.001 

 Loss Function: Mean Squared Error (MSE), used to 

minimize the difference between predicted and target 

Q-values 

 

Performance Evaluation 

The performance of the trained DQN agent was 

assessed using metrics such as episode rewards and the 

number of steps required to achieve the goal. Episode 

rewards measured the agent’s cumulative performance, 

while the number of steps provided insight into the agent's 

efficiency in achieving its objective. A dataset of 100 

simulation episodes was generated, with each episode 

capturing performance metrics to evaluate the agent’s 

effectiveness in optimizing network parameters. 

Statistical Analysis 

Statistical analysis was conducted using Python’s 

SciPy library to determine the significance of 

performance improvements achieved by the DQN-based 

optimization strategy. Metrics were compared across 

episodes to quantify improvements in decision-making 

and network optimization. 

Results 

In Fig. (4), the results of a 100-episode experiment are 

presented. The performance of the Deep Reinforcement 

Learning (DRL) model trained using the Deep Q-Network 

(DQN) algorithm is analyzed based on the following 

metrics: Episode scores and steps. In the initial episode, 

the Deep Reinforcement Learning (DRL) model trained 

using the Deep Q-Network (DQN) algorithm 

demonstrates its capability to meet the performance Key 

Performance Indicators (KPIs). Despite potentially 

starting with minimal prior knowledge, the DRL agent 

quickly learns and adapts to the environment, achieving a 

satisfactory performance level from the outset. 

Furthermore, the subsequent episodes show consistent 

or improved performance, indicating that the initial 

success of the DRL DQN model is not merely a fluke. 

Instead, it demonstrates the model's ability to generalize 

learned knowledge and strategies across different 

scenarios. This rapid learning and consistent performance 

bode well for the model's future iterations and 

applications, suggesting that it has the potential to achieve 

even higher levels of performance with further training 

and optimization. 

In Fig. (5), The provided data represents the utilization 

of the epsilon-greedy policy by the Deep Q-Network 

(DQN) algorithm, specifically in terms of exploration and 

exploitation actions taken during each episode of training. 

In the early episodes, there is a higher frequency of 

exploratory actions, this shows that the model initially 

prioritizes exploration to gather information about the 

environment. As training progresses, there is a gradual 

shift towards exploitation, with an increase in exploitative 

actions and a corresponding decrease in exploratory 

actions. This transition indicates that the model leverages 

learned knowledge to maximize rewards, demonstrating 

its ability to adapt its strategy based on experience. The 

balance between exploration and exploitation observed in 

the data reflects the model's dynamic learning process and 

its capacity to refine decision-making strategies over time. 

 

 

 

Fig. 4: DLR learning curve based on scores and steps 
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Fig. 5: DLR epsilon-greedy policy (exploration vs exploitation) 

 
Model Performance: The data provided showcases the 

performance of a Deep Reinforcement Learning (DRL) 

model trained with the Deep Q-network (DQN) algorithm 

across multiple episodes. The model's performance is 

evaluated based on cumulative scores, steps taken, 

explorations, and exploitations. Analysis reveals 

fluctuations in scores and steps, indicating variability in 

the model's effectiveness in completing the task. This 

variability suggests a dynamic learning process 

influenced by the complexity of the environment and the 

model's decision-making efficiency. Furthermore, the 

balance between exploration and exploitation shifts over 

time, with early episodes characterized by higher 

exploration and later episodes emphasizing the 

exploitation of learned knowledge. This transition 

highlights the model's adaptability and ability to refine its 

strategies based on experience.  

Overall, the results provide valuable insights into 

the learning dynamics and decision-making processes 

of the DRL model. Further exploration of these metrics 

can inform strategies for optimizing performance and 

enhancing the model's effectiveness in real-world 

applications. 

Future Improvements: To address the observed 

limitations and enhance the model's performance, 

recommend the following strategies: 

 

 Exploration-Exploitation Trade-off Adjustment: 

Fine-tuning the balance between exploration and 

exploitation is crucial for optimizing learning. 

Dynamic adjustment of the exploration-exploitation 

trade-off, such as incorporating adaptive epsilon 

values or exploring alternative exploration strategies 

like Upper Confidence Bound (UCB), may enhance 

the model's ability to efficiently explore the 

environment while maximizing rewards 

 Model Architecture Optimization: Optimizing the 

neural network architecture and hyperparameters, 

such as network depth, width, and learning rates, can 

significantly impact the model's learning capacity and 

generalization performance. Experimenting with 

different network architectures, including deeper or 

wider networks, residual connections, or attention 

mechanisms, may uncover more effective 

representations and improve learning efficiency 

 

Discussion 

This study demonstrates the potential of Deep 

Reinforcement Learning (DRL) for adaptive and dynamic 

management of telecommunication networks, particularly 

through the integration of the Deep Q-Network (DQN) 

algorithm. The results reveal that the DRL model 

successfully transitions from exploration to exploitation 

within a short time frame, allowing for effective 

optimization of Key Performance Indicators (KPIs). This 

adaptability reflects the model's ability to autonomously 

refine its strategies and achieve optimal decision-making 

without predefined knowledge or human intervention. 

The findings of this study align with existing literature 

on DRL applications in dynamic environments, where 

reinforcement learning models have shown efficacy in 

optimizing resource allocation and decision-making 

under uncertainty. However, this study specifically 

highlights the potential of combining simulation 

environments with DRL for telecommunication network 

optimization, bridging a significant gap in practical 

network management applications. 
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A notable innovation in this research is the adaptive 

exploration-exploitation strategy, which allows the DRL 

model to balance learning new strategies and exploiting 

known optimal actions effectively. This strategy not only 

accelerates the learning process but also ensures that the 

model adapts to changing network dynamics, ultimately 

improving performance consistency and robustness. 

Despite these promising results, several limitations 

warrant discussion. Firstly, the use of simulation 

environments, while safe and controlled, may not fully 

capture the complexities of real-world telecommunication 

networks. Real-time deployments often involve stochastic 

variables, such as unpredictable user behavior and 

external environmental factors, which are not addressed 

in this study. Secondly, although the DQN algorithm 

worked well in this study, its current neural network 

design and fixed training settings might not be sufficient 

for more complex 5G networks. These networks involve 

more variables, larger decision spaces, and dynamic 

environments that may require more advanced models to 

handle effectively. 

Lastly, while the training process requires significant 

computational resources due to the large state and action 

spaces, this challenge highlights opportunities for further 

optimization. Future work could focus on fine-tuning the 

exploration-exploitation balance, refining the neural 

network architecture, and improving the scalability of the 

DRL framework to handle more complex scenarios like 

5G networks. These enhancements would ensure that the 

model remains efficient and adaptable as it is applied to 

increasingly dynamic and diverse network environments. 

Conclusion 

This study demonstrates that Deep Reinforcement 

Learning (DRL) has significant potential for managing 

telecommunication networks more effectively and 

adaptively. Using the Deep Q-Network (DQN) algorithm, 

the DRL model does not require predefined knowledge; it 

begins with random actions and learns through trial and 

error to find the optimal solution with the highest reward. 

In the first episode, the DRL model focuses on exploration 

to understand the environment. By the second episode, the 

model shifts towards optimizing Key Performance 

Indicators (KPIs) effectively. This transition from 

exploration to exploitation highlights the DRL model's 

capability to quickly adapt and improve its performance 

based on accumulated experience. 

The results underscore that DRL can dynamically 

and adaptively optimize resources, enhancing overall 

service quality and network reliability. This 

adaptability is crucial for identifying and preventing 

network issues, ultimately improving customer 

experience and network management. 

A key innovation in this study is the adaptive 

exploration-exploitation strategy employed by the DRL 

model. The model’s ability to refine decision-making 

strategies by transitioning from exploration to 

exploitation based on accumulated experience highlights 

its effectiveness and adaptability. Future research should 

address any limitations and focus on further improving 

the DRL model, particularly by fine-tuning the 

exploration-exploitation balance and refining the 

model’s architecture. These advancements will support 

more efficient and effective management of 

telecommunication networks. 

Future Directions 

While the study demonstrates the effectiveness of the 

DRL model, future research should address several 

limitations. Key areas of focus should include: 

 

 Fine-tuning the exploration-exploitation balance: 

Refining this balance further through dynamic 

epsilon adjustments or advanced exploration 

strategies (e.g., Upper Confidence Bound) could 

improve the model's learning efficiency 

 Optimizing the model’s architecture: Investigating 

deeper or wider neural networks, as well as modern 

architectural enhancements like residual connections 

or attention mechanisms, can significantly improve 

learning and generalization performance across 

varied network conditions 

 Scalability and application to 5G networks: Future 

research should explore the scalability of the DRL 

framework in more complex environments, such as 

5G networks, where diverse traffic patterns, higher 

data rates, and new KPIs introduce additional layers 

of complexity 

 

By addressing these areas, DRL-based solutions can 

continue to evolve, providing more efficient and 

autonomous network management systems capable of 

handling the increasing complexity of telecommunication 

networks, particularly as the industry moves toward 5G 

and beyond. 
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