

© 2025 Damola Gideon Akinola, Emmanuel Adetiba, Abdultaofeek Abayomi, Surendra Thakur, Uche Nnaji and Sibusiso

Moyo. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

FedLoBA-1: A Load Balancing Architecture for Mitigating

Resource Overloading in Federated Cloud Infrastructures

1Damola Gideon Akinola, 1,2Emmanuel Adetiba, 3Abdultaofeek Abayomi, 4Surendra Thakur,
1Uche Nnaji and 5Sibusiso Moyo

1Department of Electrical and Information Engineering and Covenant Applied Informatics and Communications African Center
of Excellence, Covenant University Ota, Nigeria
2HRA, Institute for Systems Science, Durban University of Technology, Durban, South Africa
3HRA, Walter Sisulu University, East London 5200, South Africa & IASRG Summit University, PMB 4412, Offa, Nigeria
4Department of Information Technology and KZN e-Skills CoLab, Durban University of Technology, Durban, South Africa
5Department of Mathematical Sciences, School for Data Science and Computational Thinking, Stellenbosch University,
Stellenbosch, South Africa

Article history

Received: 22-09-2023
Revised: 10-01-2024
Accepted: 28-02-2024

Corresponding Author:
Emmanuel Adetiba
Department of Electrical and
Information Engineering and

Covenant Applied Informatics
and Communications African
Center of Excellence,
Covenant University Ota,
Nigeria
Email: emmanuel.adetiba@covenantuniversity.edu.ng

Abstract: In a subscription-based service such as cloud computing, clients

have scheduled access to shared resources such as data, software, storage,

and other assets as needed. Despite several benefits, cloud computing still

faces significant difficulties. Load balancing, which is the capacity of the

cloud infrastructure to equally distribute tasks among the resources in the

cloud environment has significant issues. Cloud federation is a novel concept

in cloud deployment that was developed to overcome load imbalance and

other drawbacks that come with standalone clouds. However, in a federated

cloud system, effective workload sharing among participating Cloud Service

Providers (CSP) is also challenging. Therefore, this study presents a

Federated Load Balancing Architecture version 1 (FedLoBA-1) for optimal
distribution of inter-cloud and intra-cloud loads within federated cloud

infrastructures. The inter-cloud load balancing was realized using Ant

Colony Optimization (ACO) whereas the intra-cloud component was

realized with the Throttled algorithm. The implementation of the FedLoBA-

1 and simulation of the federated cloud were carried out using the

CloudAnalyst simulation toolkit. Experimental results show that FedLoBA-

1 gave an average response time of 92.33 ms as compared with 328.4ms and

176.55 ms for Closest Datacenter (CDC) and Optimize Response Time

(ORT) algorithms respectively. The minimum average processing time

obtained for FedLoBA-1, CDC, and ORT were 1.49, 17.00, and 6.68 ms

respectively. FedLoBA-1 is a valuable solution for effective resource
utilization in federated cloud environments. It significantly improves load

balancing in cloud federation by offering an optimized two-tiered approach

for intra-cloud and inter-cloud load distribution. This approach results in

significantly better performance than existing algorithms.

Keywords: ACO, Balancing, CSPs, Cloud, Federated, Load, Throttled

Introduction

The advent of cloud computing technology has made

computing services such as application hosting, content

storage, and other services to be in high demand at a
reduced cost (Meenaskhi and Chhibber, 2016; Patrick et al.,

2022). Cloud computing is a subscription-based service in

which shared assets, data, software, and other resources

are made accessible as needed to clients at scheduled

times. In cloud computing, there is internetworking of

computing resources, and on-demand configuration and

accessibility of computing resources are made flexible,

easy, and fast through the Internet (Bura et al., 2018).

However, despite the various advantages, there are
still some challenges confronting cloud technology
(Mrhaoaurh et al., 2018).

 One of the major issues in cloud computing is the

inability of the cloud infrastructure to evenly distribute

Damola Gideon Akinola et al. / Journal of Computer Science 2025, 21 (2): 432.443

DOI: 10.3844/jcssp.2025.432.443

433

tasks among resources in the cloud environment leading

to load imbalance (Fatemi Moghaddam et al., 2015;

Balne, 2019). This is a consequence of the rapid increase
in the number of cloud users requesting or accessing cloud

services (Chamoli et al., 2016; Mohammadian et al.,

2022; Prasadhu and Mehfooza, 2020). Thus, there is often

a degradation in the Quality of Service (QoS) and a

compromise of the Service Level Agreement (SLA)

between the CSPs and the consumers (Afzal and Kavitha,

2019). Load balancing involves the dynamic and even

allocation of workloads among all the nodes that are

accessible in the cloud. This even distribution of traffic to

various data centers or geographic regions provides

geographic redundancy and enhances performance for
users located in different areas (Bogdanov et al., 2018).

Efficient load balancing ensures that each virtual machine

within the cloud system can handle an equivalent

workload. As a result, load balancing becomes crucial for

optimizing throughput by reducing response times

(Mishra et al., 2020).

 In order to improve the load imbalance problem, a
new paradigm of cloud deployment known as cloud
federation was introduced (Bhuskute and Kadu, 2021). In
cloud federation (also known as federated cloud),
aggregation and interconnection of various CSPs are done
to satisfy market requirements. The main elements of a

federated cloud include a cloud broker, cloud exchange,
and cloud coordinator (Bhuskute and Kadu, 2021).

One crucial advantage of federated cloud
environments is the guaranteed availability, as users
experience reduced response times thanks to a pool of
virtualized resources from various Cloud Service
Providers (CSPs) in the federation (Levin et al., 2018).

However, as opined in Ray et al. (2018), the federated
cloud environments are still confronted with issues such as:

i) Intercloud load balancing between CSPs

ii) Dynamic allocation of computing resources in the

data center (DC)

Thus, this study presents a federated load-balancing

architecture based on metaheuristic optimization and

throttle algorithms, to mitigate overloading in federated

clouds. The proposed Federated Load Balancing

Architecture (FedLoBA-1) presents a load-balancing

solution at both the inter-cloud (i.e., Federated) and the

intra-cloud levels. The inter-cloud level is load balancing

among the data centers (DCs) of a federated cloud whereas

the intra-cloud level is load balancing within the DC.

Background

Load Balancing

Load balancing is the process of distributing the entire

workload across nodes that are available in a cloud
computing infrastructure in order to have efficient task

allocation and optimum resource utilization (Narale and

Butey, 2018; Prasadhu and Mehfooza, 2020). It ensures

equitable and dynamic workload distribution and better
resource usage in the cloud environment. As the

population of cloud users increases, the workloads on the

cloud (i.e., memory capacity, network, and computing

resources (e.g. Central Processing Unit (CPU) and

Graphical Processing Unit (GPU)) become imbalanced

due to overloading or underloading (Jadav and Gayatri

Pandi, 2021). The consequence of load imbalance is a

degradation in the Quality of Service (QoS) and Service

Level Agreement (SLA) between the CSPs and the

consumers (Afzal and Kavitha, 2019). An efficient task

distribution contributes to better resource management
and a high level of user satisfaction. Applying load

balancing minimizes delays in data transmission and

prevents overloaded node conditions in cloud data centers

(Goyal and Bharti, 2014; Shafiq et al., 2021).

In response to the challenge of load imbalance, several

cloud providers offer Load-Balancing-as-a-Service

(LBaaS) to customers who employ these services on an

as-needed basis. Instead of distributing traffic among a

group of servers within a single data center, LBaaS

spreads workloads across servers and operates as a

subscription or on-demand service (Ramya et al., 2014).

Load balancing in cloud computing works exactly like a

traffic controller directing traffic to avoid congestion.

Figure (1) shows a generic architecture of a load balancing

scheme within a stand-alone cloud environment.

Information Technology (IT) teams utilize load

balancing to ensure that each node operates at maximum

efficiency (Chamoli et al., 2016; Sajjan and Yashwantrao,

2017). As a result of the essentiality of load balancing in

cloud computing, different algorithms are being used

depending on the QoS demands between the CSPs and the

customers (Shafiq et al., 2022; Thakur and Goraya, 2017).

There are three broad categories of load-balancing

algorithms, namely; static, dynamic, and nature-

inspired/metaheuristic algorithms.

Fig. 1: Generic architecture of cloud load balancing
(Singh et al., 2017)

Damola Gideon Akinola et al. / Journal of Computer Science 2025, 21 (2): 432.443

DOI: 10.3844/jcssp.2025.432.443

434

Static Algorithm

In static load balancing methods, nodes are given jobs

depending on their capacity to handle new requests after

past knowledge of their capabilities and attributes has

been taken into account (Ghutke and Shrawankar, 2014;

Sajjan and Yashwantrao, 2017). These load-balancing

algorithms are employed when the initial configuration,

network topologies, and already established

computational variables are all designated (Yadav and

Prasad, 2018). As a result of a lack of consideration for

the current state of the cloud infrastructure, the algorithm

usually encounters a lack of fault tolerance as a major

setback (Shafiq et al., 2021). Instantaneous migration of

tasks can also be a challenge in static algorithms (Shah

and Farik, 2015). Some of the common static load

balancing algorithms in cloud load balancing include

round-robin, weighted round-robin, opportunistic or

random, min-min, and max-min (Bura et al., 2018).

Dynamic Algorithm

Dynamic load balancing algorithms are developed to

proffer solutions to some of the challenges encountered in

static load balancing algorithm. They search for the

network's lightest server and then place the proper load on

it (Kumar and Singh, 2015; Shah and Farik, 2015). The

selection and distribution of tasks are based on the current

state of the nodes, making them more flexible and

complex (Fatima et al., 2019). These algorithms are more

suitable for heterogeneous environments. Examples

include throttled, Equally Spaced Current Execution

(ESCE), and least connection algorithms (Agarwal and

Singh, 2019; Ramadhan et al., 2018), etc.

Nature Inspired Algorithm

These load-balancing algorithms involve the

development of optimization techniques with the aim of

leveraging natural processes to solve the problem

encountered during resource allocation and task

scheduling in cloud computing (Thakur and Goraya,

2017). They are motivated by the behaviors of organisms

such as ants, honey bees, lions, etc., or biological

processes such as evolution and genetics (Shafiq et al.,

2021). Examples of nature-inspired algorithms that have

been employed for load-balancing tasks include genetic

algorithms, particle swarm optimization, honey bee

foraging, ant colony optimization, etc., (Hashem et al.,

2017; Jyoti et al., 2020).

Federated Cloud

Cloud federation, also known as federated cloud, is the

merging and coordinating of different cloud computing

services to meet business goals and customers’ demands

(Vaghela et al., 2018). It is a global cloud system that

combines community, private, and public clouds into

High-Performance Computing (HPC) platforms. One of

the fundamental goals is to meet high clients’ demand by

harnessing a large pool of computing resources from

different CSPs. Consumers may not always be able to

access high-quality services if they rely entirely on one

cloud provider (Molo et al., 2021). Thus, cloud federation

helps CSPs render optimal services as the workload grows

by renting resources from other providers. The cloud

federation architecture comprises the major components

hereafter described (Fig. 2):

i) Cloud broker: The federated cloud entity known as

the cloud broker communicates with the cloud

exchange on behalf of the client to learn about

premium pricing models, SLA guidelines, resource

availability, and cloud service providers. It is in

charge of allocating resources in accordance with

user needs (Molo et al., 2021; Zangara et al., 2015)

ii) Cloud exchange: The cloud exchange component

serves as a mediator between the cloud coordinator

and broker. It matches up the cloud coordinator's

available resources with the cloud broker's requests.

The cloud exchange keeps track of cloud service

providers (who are actively offering their services),

typical customer requests, and the current cost of

facilities (Assis and Bittencourt, 2016)

iii) Cloud coordinator: The cloud coordinator readily

updates all the data kept in the cloud exchange

database storage. All the computing resources from

different CSPs are pooled together by the cloud

coordinator. The customer's budget and the Quality

of Service (QoS) they require are taken into

consideration when the cloud coordinator distributes

the customer's access to the cloud's resources

(Bhuskute and Kadu, 2021)

Fig. 2: Federated cloud architecture (Neha, 2020)

Damola Gideon Akinola et al. / Journal of Computer Science 2025, 21 (2): 432.443

DOI: 10.3844/jcssp.2025.432.443

435

Both CSPs and cloud users can benefit from the cloud

federation framework. Customers primarily gain from

low prices and high performance, while CSPs can give
their entire customer base increased cloud capabilities

(Bhuskute and Kadu, 2021). However, federated cloud

often encounters the problem of load imbalance due to

the complexities involved in setting them up and in their

operation (Molo et al., 2021; Zangara et al., 2015). In a

federated cloud, more than one provider typically

processes a user request. In such circumstances, dividing

user requests equally between CSPs (using existing load-

balancing techniques) becomes challenging for

transparent workload sharing.

Related Works

The ultimate goal of load balancing in a cloud

environment (both standalone and federated) is to provide

seamless allocation of resources to cloud users.

Researchers have developed different algorithms to

handle load balancing in cloud computing infrastructure.

In (Ramadhan et al., 2018), an experimental

simulation of the throttled algorithm was implemented on

Cloud analysis. Key parameters such as response time,

latency, servicing times, and cost were used in the
evaluation. The authors reported that the response time

was directly proportional to the number of UserBase.

Sharma and Jain (2018) proposed a load-balancing

algorithm based on clients' QoS demand. Priority was

based on Cost Based QoS Request (CBQR), which

satisfies SLA between CSPs and clients. Three UserBases

with different CBQRs were used for simulation on Cloud

Analyst. The results showed an increase in response time

for UserBase and datacenter in different locations while a

decrease in response time occurred when the UserBase

and datacenter were in the same location.

In (Jaikar et al., 2014), the authors proposed workload

balancing in a federated cloud environment formed by

different CSPs. The algorithm involves the development

of two models (A and B) that study the access probability

and resource utilization of federated cloud resources. The

performance evaluation of the two models showed that

Model A has a higher overall access probability of 2.67%

than Model B.

Ray et al. (2018), developed the Overloaded Cloud

Provider Detection Algorithm (OCPDA) to identify CSPs

in a federation that are overloaded. It utilized Multiple

Linear Regression (MLR) to estimate current load values

for all the partner CSPs thereby detecting the overloaded

ones. Experimental results showed that the algorithm

successfully determined overloaded CSPs with an error

between 0.9-8% for the estimated and actual overloading.

However, the algorithm did not implement the balancing

of loads among the CSPs.
The authors (Rajarajeswari and Aramudhan, 2016)

proposed two load-balancing algorithms for improving

the performance of federated cloud broker architecture.

The first algorithm named Agent-based Round Robin

Scheduling (ARRS) distributes service requests among
the selected brokers by considering the workload and

queue size of brokers. It was however reported that with

ARRS, load imbalance still persists in the architecture.

The second algorithm named the Decentralized Agent-

based Load Balancing (DALB) algorithm operates at the

broker's level and balances workload by migrating

requests to underloaded brokers. It utilized stationary

agents, decision-making agents, and migration agents to

provide high flexibility in the request migration process.

Experimental results showed that DALB achieved

effective distribution of workload within a federated
cloud environment.

Rajeshwari et al. (2021) proposed a two-fold

hierarchical scheduling approach both at the federated and

the cloud levels. The Queue Partitioned based Fair Load

Distribution System (QPFS) was used for load

distribution among the CSPs at the federation level. At the

cloud level, it uses the Modified Activity Selection-based

Task Scheduling by Greedy (MASG) technique to

distribute tasks to the most appropriate Virtual Machines

(VMs). Simulation results in CloudSim showed that

QPFS-MASG achieved fairness in load distribution

among multiple CSPs. Furthermore, 90% of the tasks
were completed prior to their deadline with between 31

and 40% improvement in average response time.

An inter-cloud load balancer named Closest

Datacenter (CDC) is used in the CloudAnalyst simulation

toolkit for managing the routing of traffic between the

cloud users and the data centers (Menakadevi and

Devakirubai, 2016; Rani et al., 2015; Shahid et al., 2023).

The closest data center (CDC) takes the delay in

transmission into consideration while distributing traffic

to the closest data center (Sankla, 2015). Optimize

Response Time (ORT) is another scheme used in
CloudAnalyst to achieve load balancing. The ORT

scheme assigns a center to user requests by considering

the performance of the closest data center in terms of

response time. It assesses the current response time for

each datacenter and then looks for the datacenter with the

shortest estimated response time (Radi, 2015).

Materials and Methods

The system architecture of the proposed FedLoBA-1

is shown in Fig. (3). The architecture comprises Cloud

Service Consumers, Internet, Cloudlets, Cloud Broker,

Cloud Exchange (containing FedLoBA-1, the inter-cloud

load balancer), and the Data Centers (DCs) within the

federated cloud environment (with the intra-cloud load

balancer). The Cloud Service Consumers make requests

through the Internet, the Cloud Broker accommodates all

the various requests of the cloud service users in the form

of Cloudlets. In the Cloud Broker, the requests are

Damola Gideon Akinola et al. / Journal of Computer Science 2025, 21 (2): 432.443

DOI: 10.3844/jcssp.2025.432.443

436

submitted in a Job Queue and each request is processed

by the Cloud Information Services (CISs) to identify

specifically the type of cloud service of the submitted
requests. The Cloud Exchange serves as a link between the

Cloud Broker and the DCs that form the federated cloud

resources. The information of the interconnected data

centers is registered in the Cloud Exchange. The inter-cloud

or federated load balancing in this study was implemented

with Ant Colony Optimization (ACO), which is a meta-

heuristic algorithm. It was incorporated into the Cloud

Exchange to select the best DCs with respect to cloud users'

requests and to perform load balancing between the DCs.

In order to evenly map cloud users' requests with the

available resources within the DC resources, the intra-load
balancer scheme was realized with the Throttled algorithm

(Ramadhan et al., 2018). It was incorporated in each of the

data centers as shown in Fig. (3).

Ant Colony Optimization for Inter-Cloud

(Federated) Load Balancing

The inter-cloud (federated) load balancer leverages the
ability of ACO to find the optimum shortest path to food
source (s). In terms of the federated cloud environment,
the mapping of the ACO algorithm is done such that the
Ant, Food, and Pheromone represent the Load, DCs, and
Communication Link respectively. The balancing of loads
across the DCs via the shortest path using ACO entails
three major steps. These include pheromone initialization,
selection of DCs, and pheromone updating, which are
hereafter described.

Pheromone Initialization

In ACO, the cloud users' requests search for nodes,

which are contained in DCs, and create a communication
path known as a pheromone trail. The pheromone trails
activate an indirect communication behavior between
requests. This communication path creates distances

between the users' requests and nodes within the DCs. In
implementing the ACO algorithm, choosing an optimum
value as the start or initial value for the pheromone

contributes either positively or negatively to the overall
efficiency and convergence process of the algorithm
(Bellaachia and Alathel, 2014; Tamura et al., 2021).

Fig. 3: FedLoBA-1 system architecture

In order to ensure the effectiveness of the initial

pheromone value of the connection between DCs, it is

ideal to set it as close as possible to the average expected
pheromone value that a task would deposit on that edge

during a single iteration (Nishant et al., 2012). The initial

pheromone level in ACO algorithms is often initialized

using either a fixed value or a value that was pre-

determined by executing a fast incomplete route design

technique (Nilesh and Patel, 2017). In order to initialize the

pheromone in this study, the local pheromone initialization

(Bellaachia and Alathel, 2014) method was adopted, with

the initial pheromone value represented as Eq. (1):

𝜏𝑥𝑦 =
1

∑ 𝑑𝑥𝑧𝑧є𝑁𝑥
𝑘

 (1)

The term τ𝑥𝑦 represents the initial pheromone value and

𝑑𝑥𝑧 is the distance between the connecting datacenter x and

datacenter z that is associated with the neighborhood 𝑁𝑥
𝑘.

Selection of Datacenters

Redistributing requests or loads among the DCs is the

ACO algorithm's major function. The ACO technique

redistributes user requests by computing the probability of

the optimal DC to respond to the requests (Nilesh and

Patel, 2017). The algorithm moves through the federated

cloud network, selecting DCs for their subsequent step

using the probabilistic function formula in Eq. (2):

𝑃𝐾(𝑐, 𝑛) =
 [τ(𝑐,𝑛)][ŋ(𝑐,𝑛)]𝑏

 ∑[τ(𝑐,𝑢)][ŋ(𝑐,𝑢)] 𝑏
 (2)

where:

Pk = Probability of the ACO choosing the nearby DC n

for the shortest path to the current DC c

τ = Pheromone intensity of the edge

ŋ = The desirability of the move by the ant; and

𝑏 = Is a factor that represents the relationship between

pheromone concentration and communication path

Pheromone Table Updating

The ant (i.e., load or user request) will move by using

two different types of pheromones. The type of

pheromone that the ant is updating would indicate the type
of movements it makes and would reveal the type of DC

it is looking for. There are two different kinds of

pheromones known as foraging and trailing pheromones.

Foraging pheromone: Foraging pheromone involves

the forward movement of requests in searching for food

sources. Foraging pheromones would be laid down once

the requests found the overloaded DCs to search under

loaded DCs. An ant will therefore use a foraging

pheromone to try to determine the next path after

approaching a DC that is not fully filled. The foraging

pheromone is computed via Eq. (3) (Nilesh and Patel,
2017; Nishant et al., 2012):

Damola Gideon Akinola et al. / Journal of Computer Science 2025, 21 (2): 432.443

DOI: 10.3844/jcssp.2025.432.443

437

τ𝑓𝑝(𝑡) = (1−𝑝) τ𝑓𝑝(𝑡) + ∑ ∆𝑛
𝑘=1 τ𝑓𝑝(𝑡)

𝑘 (3)

Given that:

τ𝑓𝑝(𝑡) = Foraging pheromone before the move

∆τ𝑓𝑝(𝑡) = Change in foraging pheromone; and

𝑝 = Pheromone evaporation rate

Trailing pheromone: Trailing pheromone is used to

initiate backward movement of the request upon meeting

an overloaded DC, the user request finds its way back to

the DC via trailing pheromone. The requests use this

pheromone in this algorithm to determine their route to

the underloaded DC after coming across the overloaded

DC. The trailing pheromone is computed via Eq. (4)

(Nilesh and Patel, 2017; Nishant et al., 2012):

 𝜏𝑡𝑝(𝑡) = (1−𝑝) 𝜏𝑡𝑝(𝑡) + ∑ ∆𝑛
𝑘=1 𝜏𝑡𝑝(𝑡) (4)

Given that:

τ𝑡𝑝(𝑡) = Trailing pheromone before the move

∆τ𝑡𝑝(𝑡) = Change in trailing pheromone

𝑝 = Pheromone evaporation rate

Table (1) presents the summary of the parameters

used for the implementation of ACO in this study.

These parameters determine which decision to make in

order to find the optimum path for load balancing

among federated data centers.

Intra-Cloud Load Balancing

The intra-cloud load balancing within the federated

cloud infrastructure involves an even balancing of loads

or requests across the Virtual Machines (VMs). The

FedLoBA-1 uses existing Throttled algorithms (Panchal

and Parida, 2018) to create an even distribution of loads

in the VMs. By establishing a table of VMs and their

status, the Throttled algorithm distributes the load

equally. The intra-cloud load balancer picks the first VM

it finds in the list of available VMs when a request to

allocate VMs from the data center is made. The request is

assigned to a VM if one is discovered. The datacenter will

receive a return value of -1 if no VM is discovered. It will

then add this request or task to the queue and wait for the

discovered VM. The benefits of this dynamic intra-cloud

load balancing approach include good speed and efficient

resource consumption. The list of VMs is kept up to date

with their state.

Figure (4) presents the process flowchart of the ACO-

based inter-cloud (federated) load balancer and the

Throttled algorithm-based intra-cloud load balancer in

FedLoBA-1.

Table 1: Description of ant colony optimization parameters for
federated load balancing

ACO Parameters Description

Number of Ants The number of users ’requests.

Pheromone
initialization

The initial value or strength of the
communication link

Threshold The maximum value of the
pheromone level to discover an
overloaded data center

Pheromone update rate
(Alpha)

The rate at which pheromone
values are deposited or increased.

Pheromone decay rate
(Beta)

The rate at which pheromone
values are reduced

Iteration The movement of users' requests
around the data centers

Fig. 4: FedLoBA-1 process flowchart

Implementation and Simulation of FedLoBA-1

In a typical federated cloud environment, the essential

elements that must be created include the Federal Cloud

Broker, Cloudlets, Cloud Exchange, Virtual Machines,

and data centers (CSPs). The CloudAnalyst simulation

toolkit (developed with Java) was adopted to simulate

FedLoBA-1. It expands on the core functionality of the

CloudSim framework to model and analyze the behavior

of large-scale Internet applications in cloud settings

(Jena et al., 2020). It contains Java classes that were used
to simulate the various elements in FedLoBA-1 (Fig. 4) as

well as the designed inter-cloud and intra-cloud load

balancers in this study.

The configurations of the simulation parameters are in

two parts; (i) The datacenter parameters and (ii) the user

base parameters. The data center parameters were

configured based on the specifications of the FEDGEN

Testbed as shown in Table (2) (Nzanzu et al., 2022). The

FEDGEN Testbed is a prototype federated cloud

infrastructure at the Covenant Applied Informatics and

Communications African Center of Excellence (CApIC-

ACE) (Adetiba et al., 2022).

Damola Gideon Akinola et al. / Journal of Computer Science 2025, 21 (2): 432.443

DOI: 10.3844/jcssp.2025.432.443

438

Table 2: Datacenter configuration parameters

Regi

on ID

No. of

Server

Operating

system

Archite

cture

RAM

(GB)

Storage

(TB)

Processor

Speed

(GHz)

1 6 Ubuntu X86 8 0.1 2

2 6 Ubuntu X86 16 3 2.10

3 6 Ubuntu X86 16 3 2.10

Table 3: Number of Facebook users in April 2023 (Simon, 2023)

Region
CloudAnalyst
Region ID

Users
(millions)

Percentage
(%)

North
America

0 208.6 9.87

South
America

1 261.2 12.35

Europe 2 275.4 13.02

Asia 3 268.4 12.69

Africa 4 1079.1 51.02

Australia 5 22.2 1.05

The UserBase is a representation of cloud users and
requests from the UserBase are processed in a particular
DC based on FedLoBA-1. In order to have a real-life

scenario of the cloud users, we carried out the simulation
using Facebook users' reports, which emulate the
percentage distribution of users across the regions. This is
similar to the approach used by the authors
(Wickremasinghe, 2009). Table (3) shows the summary
of the total number of Facebook users with respect to
different regions of the world as reported by DataReportal
in April 2023 (Simon, 2023). Our simulation in
CloudAnalyst used a percentage ratio of the Facebook
user's report to specify the UserBase distribution. The
assumption for the simulation is that most cloud users use
the cloud services in the morning between the hours of 8

and 11 and also that 10% of the registered users will be
online during the peak time simultaneously and only one-
tenth of that number during the off-peak hours.

Results and Discussion

Inter-Cloud and Intra-Cloud Load Balancing

Simulation Results

In order to evaluate the inter-cloud and intra-cloud
load balancing algorithms within FedLoBA-1, we
simulated a federated cloud environment in CloudAnalyst
with three data centers based on the FEDGEN Testbed
configurations in Table (2). The simulation at the initial
stage considered 6 UserBases spread across 6 continents
and 3 datacenters named DC1, DC2, and DC3 located in
North America (Region 0), Europe (Region 2), and Africa
(Region 4) respectively (Fig. 5). The users’ requests from
each UserBase are evenly distributed with the cloud

resources from the three datacenters as shown in Fig. (5).
Other assumptions for the simulation include 5 requests
per user, 10 bytes of data size per request and that all the
cloud users utilize the cloud between the hour of 8-11 in
the morning. The simulation runtime was set to 10 min.
The ACO-based inter-cloud load balancing component of

FedLoBa-1 was implemented as a Java class to select the
best data center for the UserBases, whereas the Throttled
algorithm was implemented as a VM load balancer within
each of the data centers.

The simulations in this study were carried out under
different scenarios. These scenarios were created by
varying the number of available VMs in the data centers.
Table (4) gives a summary of the number of allocated VMs
for each scenario with their corresponding overall response

time and processing time. For instance, in Scenario 1, 2
VMs, 4 VMs, and 4 VMs were allocated for DC1, DC2 and
DC3 respectively. As shown in the table, the simulation of
Scenario 1 shows the overall response time and processing
time of 92.33 and 42.05 ms respectively. Furthermore, in
Scenario 2 the allocated VMs for the DC1, DC2, and DC3
are 5, 10, and 10 respectively with overall response time
and processing time of 69.07 and 19.44 ms respectively.
The results for scenarios 3-6 are shown in Table (4). Based
on the results, it can be deduced that an increase in the
allocated number of VMs to the data centers resulted in a
progressive decrease in both the overall average response

time and processing time of the system.

Fig. 5: Geographical distribution of data centers and user bases

in a simulated federated cloud environment

Table 4: FedLoBA-1 simulation results for different configuration scenarios

Scenario ID Scenario detail

Overall

average

response

time (ms)

Overall

average

processin

g time

(ms)

Scenario 1 2VMs in DC 1, 4VMs in

each DC 2 and DC 3

92.33 42.05

Scenario 2 5VMs in DC 1, 10 VMs

in each DC 2 and DC 3

69.07 19.44

Scenario 3 10VMs in DC 1, 15VMs

in each DC 2 and DC 3

59.07 9.43

Scenario 4 10VMs in DC 1, 20VMs

in each DC 2 and DC 3

57.25 7.62

Scenario 5 20VMs in DC 1, 40VMs

in each DC 2 and DC 3

52.00 2.36

Scenario 6 25VMs in DC 1, 50VMs

in each DC 2 and DC 3

51.13 1.49

Damola Gideon Akinola et al. / Journal of Computer Science 2025, 21 (2): 432.443

DOI: 10.3844/jcssp.2025.432.443

439

Performance Benchmarking

The existing inter-cloud load balancers in

CloudAnalyst include Closest Datacenter (CDC) and the

Optimize Response Time (ORT) algorithms. The two

inter-cloud load balancers leverage network latency to

direct user requests to the data center. In this section, we

report the performance benchmarking of the CDC and

ORT algorithms against the proposed FedLoBA-1 in

terms of response time and processing time.

Response Time

The amount of time it takes for a user or application to

obtain a response after making a request is referred to as

the response time in cloud computing environments.

Cloud load balancer routes requests to data centers that

can process them more effectively by using response time

as a metric.

The CloudAnalyst CDC and ORT were evaluated

against the load balancing algorithms in FedLoBA-1 by

varying the number of allocated VMs from 10-125 for

each of the 3 data centers. All the simulation parameters

were also the same for these algorithms. Figure (6) shows

the plot of the average response time against the number

of VMs. As shown in the figure, FedLoBA-1 gave the

lowest response time as compared with CDC and ORT.

FedLoBA-1 has a maximum overall average response

time of 92.13 ms while CDC has a maximum overall

average response time of 328.40 ms and ORT has a

maximum overall average response time of 176.55 ms.

Processing Time

The amount of time it takes for a data center to

process and complete a user's request is referred to as the

data center processing time. The processing time can be

used as a metric by load balancers to redirect requests to

data centers with shorter processing times. Simulations

were carried out in this study to compare the processing

times among CDC, ORT, and FedLoBA-1 using VMs

from 10-125. Figure (7) shows that FedLoBA-1

produced the lowest average processing time as

compared with CDC and ORT. The maximum average

processing time for FedLoBA-1, CDC, and ORT are

42.05, 278.80 and 126.94 ms respectively whereas the

minimum average processing time for FedLoBA-1,

CDC, and ORT are 1.49, 17.00, and 6.68 ms

respectively. These evidently show the superior

performance of FedLoBA-1 (within the simulated

federated cloud infrastructure) over the other two

CloudAnalyst load-balancing algorithms.

The FedLoBA-1 achieving a faster response time (and

lower processing time) across all the experimented VMs

implies that it effectively distributes the workload across

the DCs in the simulated federated cloud environment.

Fig. 6: Relationship between the average response time of

FedLoBA-1, CDC, and ORT

Fig. 7: Relationship between overall average processing time of

FedLoBA-1, CDC, and, ORT

The results also show that FedLoBA-1 handles peak loads
more efficiently thereby providing better mitigation of

overloading (than CDC and ORT) during periods of high

demands. The efficacy of the FedLoBA-1 is hinged on the

capability of ACO to find the optimum shortest path

between users' requests and underloaded data centers as

well as dynamically distribute loads among the data

centers. The capability of the Throttled algorithm to

effectively distribute traffic among VMs within a data

center is also demonstrated in the results of the response

time and processing time.

Conclusion

In this study, we have presented the design and

simulation of Federated Load Balancing Architecture

version 1 (FedLoBA-1). We adopted the Ant Colony

Optimization (ACO) algorithm to realize inter-cloud

(federated) load balancing for optimal traffic distribution

among federated data centers. The Throttled algorithm

was further adopted to realize intra-cloud load balancing

in order to evenly distribute users' requests among VMs
within a data center. CloudAnalyst, which is a Java-based

simulation toolkit was employed to simulate a federated

cloud infrastructure and implement all the components of

Damola Gideon Akinola et al. / Journal of Computer Science 2025, 21 (2): 432.443

DOI: 10.3844/jcssp.2025.432.443

440

FedLoBA-1. Furthermore, various simulations were

carried out within CloudAnalyst for performance

evaluation. The simulation results showed that both the
response time and the processing time decreased as the

number of allocated VMs per data center increased. This is

proof that FedLoBA-1 is capable of mitigating resource

overloading in federated cloud infrastructures. Moreover,

benchmarking results also showed that FedLoBA-1 gave

improved performance over CDC and ORT, which are the

existing load-balancing algorithms in CloudAnalyst. In

order to establish the performance of FedLoBA-1 in real-

life scenarios, it will be deployed on live cloud testbeds

such as the FEDGEN Testbed and similar platforms. In the

future, we hope to improve the performance of FedLoBA-
1 by exploring a hybrid of metaheuristic algorithms for

inter-cloud load balancing. We also hope to develop a

cloud-native web application for FedLoBA-1 so that CSPs

can carry out real-time monitoring of workloads (across

data centers and VMs) in a federated cloud environment.

Acknowledgment

The authors are grateful to Covenant University's
Covenant Applied Informatics and Communication

Africa Centre of Excellence (CApIC-ACE) for financing

this research and the publication through a World Bank

ACE Impact grant administered by the Nigerian

National University Commission. The NEMISA eSkills

Co-Lab, Durban University of Technology, Durban,

South Africa is also acknowledged for supporting EA as

a Visiting Professor/Research Associate during the

writing of this article. Also, SM would like to thank the

Department of Mathematical Sciences at Stellenbosch

University, Stellenbosch, South Africa.

Funding Information

Covenant Applied Informatics and Communication

Africa Centre of Excellence (CApIC-ACE), Covenant

University, Nigeria received funding for this study and

its publication through the World Bank ACE Impact

grant administered by the Nigerian National University

Commission.

Author’s Contributions

Damola Gideon Akinola: Algorithm design and

implementation, experimentation, and simulation, writing

of manuscript.

Emmanuel Adetiba: Conception of the idea, the

source for funding as the study's PI, supervision,

manuscript correction, editing, and approval.

Abdultaofeek Abayomi: Contribution to manuscript

writing, correction, and editing.

Surendra Thakur: Source for funding, manuscript

correction, editing, and approval.

Uche Nnaji: Contribution to implementation,

experimentation, and simulation, writing of the manuscript.

Sibusiso Moyo: Source for funding, manuscript
correction, editing, and approval.

Ethics

The authors confirm that this article is original and has

not been published in any other journal. All authors have

read and approved the manuscript. No ethical review or

approval process was undertaken for this study since no

human or animal subjects were involved.

Reference

Adetiba, E., Akanle, M., Akande, V., Badejo, J., Nzanzu,

V. P., Molo, M. J., Oguntosin, V., Oshin, O., &

Adebiyi, E. (2022). FEDGEN Testbed: A Federated

Genomics Private Cloud Infrastructure for Precision

Medicine and Artificial Intelligence Research.

Informatics and Intelligent Applications, 78–91.

https://doi.org/10.1007/978-3-030-95630-1_6

Afzal, S., & Kavitha, G. (2019). Load balancing in cloud

computing – A hierarchical taxonomical

classification. Journal of Cloud Computing, 8(1), 22.

https://doi.org/10.1186/s13677-019-0146-7

Agarwal, S., & Singh, J. (2019). Performance analysis of

load balancing algorithms for cloud computing.

International Journal of Recent Technology and

Engineering, 7(6S4), 374–379.

Assis, M. R. M., & Bittencourt, L. F. (2016). A survey on

cloud federation architectures: Identifying functional

and non-functional properties. Journal of Network

and Computer Applications, 72, 51–71.

https://doi.org/10.1016/j.jnca.2016.06.014

Balne, S. (2019). Review on challenges in SAAS model

in cloud computing. Journal for Innovative

Development in Pharmaceutical and Technical

Science, 2(3), 8–11.

Bellaachia, A., & Alathel, D. (2014). A local pheromone

initialization approach for ant colony optimization

algorithm. 2014 IEEE International Conference on

Progress in Informatics and Computing, 133–138.

https://doi.org/10.1109/pic.2014.6972311

Bhuskute, S. S., & Kadu, S. (2021). A Study on Federated

Cloud Computing Environment. International

Journal of Recent Technology and Engineering

(IJRTE), 10(2), 187–193.

https://doi.org/10.35940/ijrte.b6311.0710221

Bogdanov, K. L., Reda, W., Maguire, G. Q., Kostić, D.,

& Canini, M. (2018). Fast and Accurate Load

Balancing for Geo-Distributed Storage Systems.

Proceedings of the ACM Symposium on Cloud

Computing, 386–400.

https://doi.org/10.1145/3267809.3267820

https://doi.org/10.1007/978-3-030-95630-1_6
https://doi.org/10.1186/s13677-019-0146-7
https://doi.org/10.1016/j.jnca.2016.06.014
https://doi.org/10.1109/pic.2014.6972311
https://doi.org/10.35940/ijrte.b6311.0710221
https://doi.org/10.1145/3267809.3267820

Damola Gideon Akinola et al. / Journal of Computer Science 2025, 21 (2): 432.443

DOI: 10.3844/jcssp.2025.432.443

441

Bura, D., Singh, M., & Nandal, P. (2018). Analysis and

Development of Load Balancing Algorithms in

Cloud Computing. International Journal of

Information Technology and Web Engineering,

13(3), 35–53.

https://doi.org/10.4018/ijitwe.2018070103

Chamoli, N., Suyal, H., Panwar, A., & Chauhan, R.

(2016). Load Balancing Technique in Cloud

Computing : A Review. International Journal of

Computer Applications, 145(15), 6–10.

https://doi.org/10.5120/ijca2016910625

Fatemi Moghaddam, F., Ahmadi, M., Sarvari, S., Eslami,

M., & Golkar, A. (2015). Cloud computing

challenges and opportunities: A survey. 2015 1st

International Conference on Telematics and Future

Generation Networks (TAFGEN), 34–38.

https://doi.org/10.1109/tafgen.2015.7289571

Fatima, S. G., Fatima, S. K., Sattar, S. A., Khan, N. A., &

Adil, S. (2019). Cloud Computing and Load

Balancing. International Journal of Advanced

Research in Engineering and Technology (IJARET),

10(2), 189–209.

https://doi.org/10.34218/ijaret.10.2.2019.019

Ghutke, B., & Shrawankar, U. (2014). Pros and cons of

load balancing algorithms for cloud computing. 2014

International Conference on Information Systems

and Computer Networks (ISCON), 123–127.

https://doi.org/10.1109/iciscon.2014.6965231

Goyal, A., & Bharti, B. (2014). A Study of Load

Balancing in Cloud Computing using Soft

Computing Techniques. International Journal of

Computer Applications, 92(9), 33–39.

https://doi.org/10.5120/16041-5257

Hashem, W., Nashaat, Heba, & Rizk, Rawya. (2017).

Honey Bee Based Load Balancing in Cloud

Computing. KSII Transactions on Internet and

Information Systems, 11(12), 5694–5711.

https://doi.org/10.3837/tiis.2017.12.001

Jadav, P., & Pandi, G. S. (2021). Priority Based

Algorithm for Load Balancing and Scalability in

Distributed Environment of Cloud. International

Research Journal of Engineering and Technology,

8(1), 923–927.

Jaikar, A., Kim, G.-R., & Noh, S.-Y. (2014). Matrix-based

Data Center Selection Algorithm for a Federated

Cloud. International Journal of Multimedia and

Ubiquitous Engineering, 9(6), 153–158.

https://doi.org/10.14257/ijmue.2014.9.6.15

Jena, S. R., Shanmugam, R., Saini, K., & Kumar, S.

(2020). Cloud Computing Tools: Inside Views and

Analysis. Procedia Computer Science, 173, 382–391.

https://doi.org/10.1016/j.procs.2020.06.045

Jyoti, A., Shrimali, M., Tiwari, S., & Singh, H. P. (2020).

Cloud computing using load balancing and service

broker policy for IT service: a taxonomy and survey.

Journal of Ambient Intelligence and Humanized

Computing, 11(11), 4785–4814.

https://doi.org/10.1007/s12652-020-01747-z

Kumar, S., & Singh, D. (2015). Various Dynamic Load

Balancing Algorithms in Cloud Environment: A

Survey. International Journal of Computer

Applications, 129(6), 14–19.

https://doi.org/10.5120/ijca2015906927

Levin, A., Lorenz, D., Merlino, G., Panarello, A.,

Puliafito, A., & Tricomi, G. (2018). Hierarchical load

balancing as a service for federated cloud networks.

Computer Communications, 129, 125–137.

https://doi.org/10.1016/j.comcom.2018.07.031

Mrhaoaurh, I., Okar, C., Namir, A., & Chafiq, N. (2018).

Challenges of cloud computing use: A systematic

literature review. MATEC Web of Conferences, 200,

00007.

https://doi.org/10.1051/matecconf/201820000007

Meenaskhi, M., & Chhibber, A. (2016). An overview on

cloud computing technology. International Journal

of Advances in Computing and Information

Technology, 1(2), 219–223.

https://doi.org/10.6088/ijacit.12.10028

Menakadevi, T., & Devakirubai, N. (2016). An Optimum

Service Broker Policy for Selecting Data Center in

Cloudanalyst. International Journal of Research in

Engineering and Technology, 05(09), 76–84.

https://doi.org/10.15623/ijret.2016.0509011

Mishra, S. K., Sahoo, B., & Parida, P. P. (2020). Load

balancing in cloud computing: A big picture. Journal

of King Saud University - Computer and Information

Sciences, 32(2), 149–158.

https://doi.org/10.1016/j.jksuci.2018.01.003

Mohammadian, V., Navimipour, N. J., Hosseinzadeh, M.,

& Darwesh, A. (2022). Fault-Tolerant Load

Balancing in Cloud Computing: A Systematic

Literature Review. IEEE Access, 10, 12714–12731.

https://doi.org/10.1109/access.2021.3139730

Molo, M. J., Badejo, J. A., Adetiba, E., Nzanzu, V. P.,

Noma-Osaghae, E., Oguntosin, V., Baraka, M. O.,

Takenga, C., Suraju, S., & Adebiyi, E. F. (2021). A

Review of Evolutionary Trends in Cloud Computing

and Applications to the Healthcare Ecosystem.

Applied Computational Intelligence and Soft

Computing, 2021, 1–16.

https://doi.org/10.1155/2021/1843671

Narale, S., & Butey, P. (2018). Implementation of Load

Balancing Algorithms in Cloud Computing

Environment using Cloud Analyst Simulator.

International Journal of Recent Trends in

Engineering and Research, 4(7), 22–27.

https://doi.org/10.4018/ijitwe.2018070103
https://doi.org/10.5120/ijca2016910625
https://doi.org/10.1109/tafgen.2015.7289571
https://doi.org/10.34218/ijaret.10.2.2019.019
https://doi.org/10.1109/iciscon.2014.6965231
https://doi.org/10.5120/16041-5257
https://doi.org/10.3837/tiis.2017.12.001
https://doi.org/10.14257/ijmue.2014.9.6.15
https://doi.org/10.1016/j.procs.2020.06.045
https://doi.org/10.1007/s12652-020-01747-z
https://doi.org/10.5120/ijca2015906927
https://doi.org/10.1016/j.comcom.2018.07.031
https://doi.org/10.1051/matecconf/201820000007
https://doi.org/10.6088/ijacit.12.10028
https://doi.org/10.15623/ijret.2016.0509011
https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/10.1109/access.2021.3139730
https://doi.org/10.1155/2021/1843671

Damola Gideon Akinola et al. / Journal of Computer Science 2025, 21 (2): 432.443

DOI: 10.3844/jcssp.2025.432.443

442

Neha, T. (2020). Federated Cloud. Binary Terms.

https://binaryterms.com/federated-cloud.html

Nilesh, A. M., & Patel, C. A. (2017). Load Balancing in

Cloud Computing using Ant Colony Optimization.
International Journal of Computer Engineering &

Technology (IJCET), 8(6), 54–59.

Nishant, K., Sharma, P., Krishna, V., Gupta, C., Singh, K.
P., Nitin, & Rastogi, R. (2012). Load Balancing of

Nodes in Cloud Using Ant Colony Optimization.

2012 UKSim 14th International Conference on

Computer Modelling and Simulation, 3–8.
https://doi.org/10.1109/uksim.2012.11

Nzanzu, V. P., Adetiba, E., Badejo, J. A., Molo, M. J.,

Akanle, M. B., Mughole, K. D., Akande, V., Oshin,
O., Oguntosin, V., Takenga, C., Mbaye, M., Diongue,

D., & Adebiyi, E. F. (2022). FEDARGOS-V1: A

Monitoring Architecture for Federated Cloud

Computing Infrastructures. IEEE Access, 10,
133557–133573.

https://doi.org/10.1109/access.2022.3231622

Panchal, B., & Parida, S. (2018). Review Paper on
Throttled Load Balancing Algorithm in Cloud

Computing Environment. International Journal of

Scientific Research in Science, Engineering and
Technology, 2(4), 201–204.

https://doi.org/10.32628/IJSRSET184232

Patrick, N. V., Misra, S., Adetiba, E., & Agrawal, A.

(2022). An Incremental Load Balancing Algorithm in
Federated Cloud Environment. Data, Engineering

and Applications, 395–408.

https://doi.org/10.1007/978-981-19-4687-5_30
Prasadhu, M. N., & Mehfooza, M. (2020). An Efficient

Hybrid Load Balancing Algorithm for Heterogeneous

Data Centers in Cloud Computing. International

Journal of Advanced Trends in Computer Science and
Engineering, 9(3), 3078–3085.

https://doi.org/10.30534/ijatcse/2020/89932020

Radi, M. (2015). Efficient Service Broker Policy for
Large-Scale Cloud Environments. International

Journal of Computer Science Issues, 12(1), 85–90.

https://doi.org/10.48550/arXiv.1503.03460

Rajarajeswari, C. S., & Aramudhan, M. (2016). Agent
Based Load Balancing Mechanisms in Federated

Cloud. Research Journal of Applied Sciences,

Engineering and Technology, 13(8), 632–637.
https://doi.org/10.19026/rjaset.13.3049

Rajeshwari, B. S., Dakshayini, M., & Guruprasad, H. S.

(2021). Efficient Task Scheduling and Fair Load
Distribution among Federated Clouds. Journal of

ICT Research and Applications, 15(3), 216–238.

https://doi.org/10.5614/itbj.ict.res.appl.2021.15.3.2

Ramadhan, G., Purboyo, T. W., & Latuconsina, R. (2018).
Experimental Model for Load Balancing in Cloud

Computing Using Throttled Algorithm. International

Journal of Applied Engineering Research, 13(2),
1139–1143.

Ramya, R., Kriushanth, M., & Arockiam, L. (2014). A

State-of-Art Load Balancing Algorithms in Cloud

Computing. International Journal of Computer

Applications, 95(19), 10–14.

https://doi.org/10.5120/16701-6834

Rani, P., Chauhan, R., & Chauhan, R. (2015). An

Enhancement in Service Broker Policy for Cloud-

Analyst. International Journal of Computer

Applications, 115(12), 5–8.

https://doi.org/10.5120/20201-2450

Ray, B. K., Ghosh, O., Bhattacherjee, S., Roy, S., &

Khatua, S. (2018). OCPDA: A novel approach

towards detection of overloaded cloud providers in a

federated environment. 2018 IEEE International

Conference on Advanced Networks and

Telecommunications Systems (ANTS), 1–6.

https://doi.org/10.1109/ants.2018.8710148

Sajjan, R. S., & Yashwantrao, B. R. (2017). Load

Balancing and its Algorithms in Cloud Computing: A

Survey. International Journal of Computer Sciences

and Engineering, 5(1), 95–100.

Sankla, A. (2015). Analysis of Service Broker Policies in

Cloud Analyst Framework. Journal of Advance

Research in Computer Science & Engineering (ISSN:

2456-3552), 2(4), 32–37.

https://doi.org/10.53555/nncse.v2i4.456

Shafiq, D. A., Jhanjhi, N. Z., & Abdullah, A. (2022). Load

balancing techniques in cloud computing

environment: A review. Journal of King Saud

University - Computer and Information Sciences,

34(7), 3910–3933.

https://doi.org/10.1016/j.jksuci.2021.02.007

Shafiq, D. A., Jhanjhi, N. Z., Abdullah, A., & Alzain, M.

A. (2021). A Load Balancing Algorithm for the Data

Centres to Optimize Cloud Computing Applications.

IEEE Access, 9, 41731–41744.

https://doi.org/10.1109/access.2021.3065308

Shah, N., & Farik, M. (2015). Static Load Balancing

Algorithms In Cloud Computing: Challenges &

Solutions. International Journal of Scientific &

Technology Research, 4(10), 353–355.

Shahid, M. A., Alam, M. M., & Su’ud, M. M. (2023).

Performance Evaluation of Load-Balancing

Algorithms with Different Service Broker Policies

for Cloud Computing. Applied Sciences, 13(3), 1586.

https://doi.org/10.3390/app13031586

Sharma, M., & Jain, V. K. (2018). Load balancing in cloud

using prioritization based on Quality of Services (QoS)

demand. International Journal of Computer Sciences

and Engineering, 6(11), 938–943.

https://doi.org/10.26438/ijcse/v6i11.938943

Simon, K. (2023). The Latest Facebook Statistics:

Everything You Need to Know DataReportal Global

Digital Insights. DataReportal.

https://datareportal.com/essential-facebook-stats

https://binaryterms.com/federated-cloud.html
https://doi.org/10.1109/uksim.2012.11
https://doi.org/10.1109/access.2022.3231622
https://doi.org/10.32628/IJSRSET184232
https://doi.org/10.1007/978-981-19-4687-5_30
https://doi.org/10.30534/ijatcse/2020/89932020
https://doi.org/10.48550/arXiv.1503.03460
https://doi.org/10.19026/rjaset.13.3049
https://doi.org/10.5614/itbj.ict.res.appl.2021.15.3.2
https://doi.org/10.5120/16701-6834
https://doi.org/10.5120/20201-2450
https://doi.org/10.1109/ants.2018.8710148
https://doi.org/10.53555/nncse.v2i4.456
https://doi.org/10.1016/j.jksuci.2021.02.007
https://doi.org/10.1109/access.2021.3065308
https://doi.org/10.3390/app13031586
https://doi.org/10.26438/ijcse/v6i11.938943
https://datareportal.com/essential-facebook-stats

Damola Gideon Akinola et al. / Journal of Computer Science 2025, 21 (2): 432.443

DOI: 10.3844/jcssp.2025.432.443

443

Singh, A. B., Bhat, S., Raju, R., & D’Souza, R. (2017).

Survey on Various Load Balancing Techniques in

Cloud Computing. Advances in Computing, 7(2),

28–34. https://doi.org/10.5923/j.ac.20170702.04

Tamura, Y., Sakiyama, T., & Arizono, I. (2021). Ant

Colony Optimization Using Common Social

Information and Self‐Memory. Complexity, 2021(1),

6610670. https://doi.org/10.1155/2021/6610670

Thakur, A., & Goraya, M. S. (2017). A taxonomic survey

on load balancing in cloud. Journal of Network and

Computer Applications, 98, 43–57.

https://doi.org/10.1016/j.jnca.2017.08.020

Vaghela, A. M., Shah, N. Y., & Tulshyan, V. (2018).

Cloud Federation : A Review. Journal of Emerging

Technologies and Innovative Research (JETIR), 5(7),

1–6.

Wickremasinghe, B. (2009). Cloudanalyst: A cloudsim-

based tool for modelling and analysis of large scale

cloud computing environments.

Yadav, M., & Prasad, J. S. (2018). A Review on Load

Balancing Algorithms in Cloud Computing

Environment. International Journal of Computer

Sciences and Engineering, 6(8), 771–778.

https://doi.org/10.26438/ijcse/v6i8.771778

Zangara, G., Terrana, D., Corso, P. P., Ughetti, M., &

Montalbano, G. (2015). A Cloud Federation

Architecture. 2015 10th International Conference on

P2P, Parallel, Grid, Cloud and Internet Computing

(3PGCIC), 493–503.

https://doi.org/10.1109/3pgcic.2015.183

https://doi.org/10.5923/j.ac.20170702.04
https://doi.org/10.1155/2021/6610670
https://doi.org/10.1016/j.jnca.2017.08.020
https://doi.org/10.26438/ijcse/v6i8.771778
https://doi.org/10.1109/3pgcic.2015.183

