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Abstract: The aging of air navigation facilities leads to a decline in 
equipment performance and reliability, posing significant challenges for 

aviation organizations in the large-scale replacement of outdated systems, as 

well as in managing budgets and resources. To address these issues, a 

performance prediction model for equipment was developed using the K-

Nearest Neighbor (KNN) method, aimed at enhancing maintenance planning 

and budget management. The development process includes collecting 

damage report data from facilities, preprocessing the data to ensure quality 

and consistency, and applying the KNN algorithm to generate accurate 

predictions. The KNN model, with the parameter n_neighbors = 2, achieved 

a high accuracy of 89.13% on the test data, with the best performance in class 

1 classification. These results demonstrate the superiority of KNN over other 

models, such as Random Forest, which achieved an accuracy of 77%, and 
Logistic Regression, which only reached 41%. This research not only 

validates the effectiveness of the KNN model in predicting the performance 

of air navigation equipment facilities but also contributes significantly to 

maintenance efficiency. By using the KNN method, aviation organizations 

can plan maintenance more proactively and efficiently, minimizing the risk 

of unexpected failures. Moreover, the model aids in more effective budget 

preparation by adjusting maintenance priorities according to the specific 

needs and conditions of the facilities. This research focuses on providing a 

practical and reliable solution for maintenance planning and improved 

budget management, ultimately enhancing the performance and safety of 

flight services. 
 

Keywords: Data Mining, Prediction, K-Nearest Neighbour, Machine 
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Introduction 

The management of air navigation equipment facilities 

faces significant challenges, particularly with 

performance degradation as equipment ages. Aging is a 

common phenomenon in long-operating aviation 
infrastructures, impacting components such as hardware 

and supporting systems. This degradation affects the 

reliability of navigation services, increasing the risk of 

errors in determining position and direction. Over time, 

continuous use exacerbates these issues, raising the 

likelihood of sudden failures. When equipment fails, 

corrective actions are taken to restore functionality, 

focusing primarily on repairing or replacing faulty 

components. While this reactive approach minimizes initial 

costs, it can result in higher maintenance expenses and 

prolonged downtime, especially for critical equipment 

(Zhang et al., 2022). 

Budgetary constraints further complicate maintenance 

prioritization, as simultaneous replacements are often 

required for multiple facilities. Organizations must strike a 
balance between managing costs and maintaining 

operational efficiency to prevent disruptions to flight 

operations (Kabashkin et al., 2024). Traditional approaches 

based on the economic life of equipment have been 

implemented to address these challenges, but their reliance 
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on mass replacements leads to significant expenditures. This 

has spurred interest in predictive maintenance strategies, 

which use data-driven methods to forecast equipment 

performance and schedule maintenance proactively. 
The method that has been implemented to address this 

issue is using facility aging based on the economic life of 
the equipment. However, the drawback of this method is 
that the organization must replace the equipment en 
masse, which incurs significant costs. One of the methods 
offered to address this is using machine learning for 
predictive maintenance, which utilizes damage report data 
to predict facility performance and plan more effective 
maintenance. This data-based predictive maintenance has 
become an important strategy in maintaining operational 
efficiency and reducing costs (Celikmih et al., 2020). 

Machine learning has emerged as a pivotal tool for 
predictive maintenance, with its ability to analyze damage 
report data and generate actionable insights. Among 
various machine learning methods, K-Nearest Neighbor 
(KNN) has proven effective in predicting equipment 
performance due to its capacity to identify local patterns 
within historical data (Inyang et al., 2023). KNN’s 
simplicity and ability to handle non-linear data make it 
particularly suitable for navigation facility damage data, 
which often exhibit complex patterns (Sládek, 2023). 

This study applies the KNN method to predict the 
performance of air navigation facilities, aiming to enhance 
prediction accuracy, enable timely maintenance, and reduce 
the risk of service failures. By providing efficient and timely 
maintenance planning recommendations, this approach 
addresses the industry's dual priorities of reliability and cost-
effectiveness. Previous studies have demonstrated KNN's 
versatility in diverse domains, such as predicting damage to 
centrifugal pumps using vibration signals (Chen et al., 2021), 
detecting false alarms in wind turbines (Peco Chacón et al., 
2023), improving GNSS data accuracy for drone navigation 
(Aziez et al., 2021) and predicting air traffic patterns 
(Zhuang and Cao, 2023). These applications validate KNN’s 
robustness in handling complex data, making it well-suited 
for predictive maintenance in dynamic and critical 
environments like air navigation systems. 

However, challenges remain, particularly related to class 
imbalances in damage report data, which can affect model 
performance. Addressing these limitations involves 
incorporating oversampling techniques or exploring 
alternative algorithms such as Decision Tree or XG Boost for 
improved accuracy. Future research should also consider 
integrating real-time sensor data and environmental variables 
to refine predictive capabilities further. 

By building on previous work, this research focuses on 

the unique challenges of air navigation facilities, aiming to 
enhance the predictive performance of KNN while 
addressing operational complexities. The study not only 
seeks to improve prediction accuracy but also provides 
practical insights for optimizing maintenance budgets and 
ensuring reliable navigation services, meeting the aviation 
industry's critical needs. 

Materials and Methods 

Prediction models are approaches used to estimate 
future values or behaviors based on available historical 
data. The main goal of predictive models is to generate 
accurate and reliable forecasts by identifying patterns and 
trends observed in past data. Prediction involves 
analyzing historical data using analytical algorithms to 
estimate future events or outcomes (Zhao, 2022). 

A machine learning approach is applied in this study 
to predict equipment maintenance using historical data. 
Machine learning, a field within artificial intelligence, 
focuses on creating algorithms that enable systems to 
detect patterns in data (Choi et al., 2020). Data mining 
plays a critical role in this research, as it utilizes historical 
data to uncover hidden patterns related to equipment 
failures. This process provides insights into potential 
equipment damage that may not be visible through 
manual inspection (Gupta and Chandra, 2020). In this 
context, data mining is employed to identify factors 
contributing to the failure of air navigation equipment. 

Among the many algorithms used in predictive 
modeling, KNN stands out for its effectiveness in 
classification based on data proximity. KNN categorizes 
new items by evaluating their similarity to existing data 
points (Arifiansyah, 2023). This research employs the 
KNN algorithm to forecast the performance of air 
navigation equipment. This method was chosen due to its 
ability to categorize data based on feature similarity, 
making it well-suited to the type of data used, such as 
facility damage reports. KNN has demonstrated 
effectiveness in handling non-linear data patterns and 
enabling real-time monitoring of equipment conditions to 
predict operational failures. Comprehensive and real-time 
data collection enhances prediction models (Namoun and 
Alshanqiti, 2020). This research is designed with a 
quantitative approach. The process of predicting 
equipment performance involves facility damage report 
data that is collected and analyzed using KNN. This 
model is developed by simulating based on the available 
historical data to produce accurate predictions. The user 
defines the number of nearest neighbors, represented as k, 
which influences the classification process (Isnain et al., 
2021). Optimizing k is essential for model performance, 
as the value is data-dependent (Lubis et al., 2020). 
Additionally, the algorithm's effectiveness hinges on 
selecting an appropriate distance metric (Amrutha and 
Prabu, 2021). This study determined k = 2 as the optimal 
value through cross-validation, balancing model 
accuracy, and generalization. 

Alternative methods such as Random Forest and Logistic 
Regression were considered but found less suitable for this 
dataset. Random Forest achieved only 77% accuracy and 
Logistic Regression struggled with the non-linear patterns 
present in the data. The decision to adopt KNN was based on 
its capacity to handle non-linear patterns and its 
compatibility with the dataset's characteristics. 

To ensure the reliability of the predictions produced by 
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the KNN model, the evaluation process employed the 

cross-validation technique. This approach allowed the 

model to be thoroughly tested on different subsets of the 

dataset. Cross-validation is considered a robust and 
comprehensive method for evaluating predictive models. 

This technique demonstrated that the KNN model 

provided consistent predictions with a high level of 

accuracy, making it an optimal choice for contexts such 

as facility maintenance and complex systems. The 

validation findings confirm that the KNN model utilized 

in this study offers reliable predictions, making it well-

suited for the context of air navigation facility 

maintenance (Nti et al., 2021). 

Predicting the performance of air navigation 

equipment is critical for enhancing operational 
reliability and minimizing unexpected failures. The 

aviation industry demands effective methods to 

forecast equipment damage and optimize maintenance 

schedules. For instance, KNN has been applied 

successfully in other contexts, such as predicting false 

alarms in wind turbines, where it reduced unnecessary 

operational costs by identifying 22% of false alarms 

(Peco Chacón et al., 2023). 

Applying this method to air navigation facilities 

introduces additional challenges due to higher operational 

complexity and more dynamic variations in system 

conditions. Compared to wind turbines, the complexity 
and variability of air navigation systems require models 

that can predict not only physical failures but also 

operational performance, incorporating variables such as 

average failure interval and average repair time. 

In general, the KNN model has proven effective in 

various scientific applications. This research expands on 

previous studies by applying KNN to more complex 

scenarios in air navigation systems, addressing limitations 

in data coverage, and offering practical solutions to 

enhance equipment performance forecasting. As a 

result, this research contributes to the development of 
predictive methods in the aviation sector while 

demonstrating KNN's relevance across various fields of 

predictive technology. 

Addressing the challenges of managing aging 

navigation facilities requires identifying and evaluating 

the condition of equipment that needs replacement. This 

involves analyzing factors such as economic lifespan, 

actual performance, and their impact on flight operations. 

Such an approach is essential for prioritizing budget 

allocation to ensure critical equipment receives proper 

attention. A mature infrastructure management strategy 

capable of predicting and identifying damage conditions 

provides more efficient solutions for managing aging 

facilities (Assaad and El-Adaway, 2020). The 

replacement of critical assets must be carefully planned to 

avoid unexpected financial losses while maintaining 

operational reliability (Balanta et al., 2023). 

Table 1: Data parameters 

No. Attribute Valid 
entries 

Data type 

0 Location 4599 valid text 

1 Equipment type 4599 valid text 

2 Equipment identifier 4599 valid int 

3 Fault report 4599 valid int 

4 Average failure 
interval 

4599 valid float 

5 Average repair time 4599 valid float 

6 Operational duration 4599 valid int 

7 Actual operation time 4599 valid float 

8 System availability 4599 valid float 

 

The study analyzed five years of historical data on 

recurring equipment failures, focusing on key attributes 

such as Location, Equipment Type, Equipment Identifier, 

Fault Reports, Average Failure Interval, Average Repair 

Time, Operational Duration, Actual Operation Time, and 

System Availability, as summarized in Table (1). Several 

preprocessing steps were implemented to prepare the data 

for modeling. Missing values were addressed using mean 

imputation to prevent gaps from affecting the analysis. 

The data was normalized with Min-Max scaling to 

standardize all parameters within a uniform range, 

ensuring consistency across the dataset. To address class 

imbalance, oversampling techniques were applied, 

enhancing the model's performance by providing 

sufficient representation for underrepresented categories 

during training. 

Next, feature selection was performed to identify the 

attributes most relevant to equipment failures. This 

process reduced dimensionality, improved computational 

efficiency, and increased the model's interpretability. 

Techniques such as correlation analysis and mutual 

information were used to remove redundant or irrelevant 

features, retaining only significant predictors. The dataset 

was then split into training and testing subsets using a 

stratified sampling method, which preserved the 

distribution of failure classes across both sets. This 

approach reduced the risk of biased performance metrics 

and enabled robust model evaluation. By integrating 

comprehensive preprocessing, feature selection, and 

balanced dataset preparation, the study established a 

strong foundation for accurately predicting recurring 

equipment failures. 

The data collection stage involved gathering historical 

data from key systems, including communication, 

navigation, surveillance, and automation equipment. This 

dataset spans five years of operational records and 

includes critical parameters: Location, Equipment Type, 
Equipment Identifier, Fault Reports, Average Failure 

Interval, Average Repair Time, Operational Duration, 

Actual Operation Time, and System Availability. These 

attributes provide comprehensive insights into equipment 
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performance, enabling the identification of patterns and 

trends essential for effective predictive maintenance. 

The research methodology, as illustrated in Fig. (1), is 

structured into four stages: Data collection, data 
preprocessing, model design, and model evaluation. Each 

stage is designed to systematically develop a reliable 

predictive model for air navigation equipment performance. 

In the data preprocessing stage, the collected dataset 

was refined to ensure quality and consistency. Missing 

values were addressed using mean imputation to avoid 

gaps in the analysis. Data normalization was performed 

using Min-Max scaling to standardize all parameters 

within a uniform range, ensuring compatibility with the 

KNN algorithm. Additionally, to handle class 

imbalance caused by underrepresented failure 

categories, oversampling techniques were applied, 

thereby improving the model’s ability to generalize 

across all classes. 

The model design phase focused on the 

implementation of the KNN algorithm, selected for its 

simplicity and proven effectiveness in handling non-linear 

data patterns. The value of k = 2 was determined through 

cross-validation to achieve optimal accuracy and 

generalization. This algorithm categorizes equipment 

performance by evaluating the proximity of data points 

within the dataset, making it particularly suitable for 

predicting recurring failures in complex systems. 

Finally, in the model evaluation stage, the KNN 

model’s performance was rigorously tested using 

unseen test data. Evaluation metrics such as accuracy, 

precision, recall, and f1-score were employed to assess 

the reliability and robustness of the predictions in real-

world scenarios. This comprehensive evaluation 

ensured that the model could effectively support 

maintenance planning and operational decision-making 

for air navigation facilities. 

This structured methodology leverages robust data 

collection and preprocessing techniques combined with 

an optimized KNN design, providing a reliable 

framework for predicting equipment performance in 

communication, navigation, surveillance, and 

automation systems. 

Model evaluation is conducted using metrics such 

as accuracy, precision, recall, and f1-score to validate 

the model performance (Vujović, 2021). This modeling 

strategy aims to predict air navigation equipment 

failures, enabling proactive maintenance and reducing 

operational disruptions. By forecasting potential 

issues, it optimizes maintenance schedules, minimizes 

downtime, and enhances reliability and safety. This 

approach ensures critical equipment performs 

optimally while improving resource allocation for 

maintenance activities. 

 
 

Fig. 1: Research stages 

 

Results 

The results of this study are organized to emphasize 

the effectiveness of the K-Nearest Neighbor (KNN) 

model in predicting the performance of air navigation 

facilities. The research process followed a systematic 

methodology that included data collection, 

preprocessing, model design, and evaluation, ensuring a 

robust framework for predictive maintenance. Key 

parameters used in the analysis include attributes such as 

location, equipment type, operational time, and 

availability. Preprocessing steps were undertaken to 

prepare the data for effective modeling, including 

imputing missing data using mean values and 

normalizing parameters to ensure consistency across the 

dataset. These preprocessing steps were essential for 

enhancing the quality of the dataset and ensuring its 

suitability for analysis. Additionally, the study 

highlights how machine learning methods, including 

KNN, Random Forest, and Logistic Regression, are 

integrated into the predictive framework. It focuses on 

critical attributes for performance prediction, such as 

average failure interval and availability. This 

comprehensive approach enhances the understanding of 

the study's methodological rigor and ensures the 

replicability of the proposed framework. 

Class diagrams are used because they effectively 

visualize the structure and relationships between system 

elements. This visualization simplifies the understanding 

of the roles of each component and their interactions, 

contributing to a more organized and efficient system 

design. UML Class Diagrams are particularly well-suited 

for representing object-oriented systems and facilitating 

software design (Gosala et al., 2021). Neighbor, Random 

Forest, and Logistic Regression used to analyze historical 

equipment data. 

The interconnection between system elements is 

depicted in the class diagram shown in Fig. (2), which 
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illustrates the structure and relationships among system 

components used in predicting the performance of air 

navigation equipment. The diagram highlights three key 

machine-learning algorithms: KNN, random forest, and 

logistic regression. These algorithms are employed to 

predict equipment performance using historical data. 

Each piece of equipment, such as communication, 

navigation, surveillance, and automation tools, is 

represented by the facility equipment class, which 

includes critical attributes like location, average time 

between failures, and availability. 

The performance prediction process begins with data 

collection and preprocessing. The prepared data is then 

analyzed using each machine learning algorithm to 

generate predictions and evaluate model performance. 

This evaluation involves key metrics, including accuracy, 

precision, recall, and f1-score. The generalization 

relationship between the facility equipment class and 

specific systems (e.g., communication, navigation, 

surveillance, automation) ensures that the algorithms can 

be applied broadly to various types of equipment in the air 

navigation environment. This approach supports 

enhanced predictive maintenance efficiency and 

improved equipment reliability. 

Thus, the Class Diagram is essential for developing 

structured object-oriented systems, enabling the seamless 

integration of machine-learning methods to enhance the 

efficiency and accuracy of equipment maintenance. By 

clearly defining the relationships between system 

components and their attributes, the Class Diagram ensures 

that all relevant data is organized in a way that supports 

effective predictive modeling. This structured approach not 

only facilitates the implementation of machine learning 

algorithms but also ensures that the system can be easily 

modified or expanded to accommodate future requirements 

or technological advancements. 

Additionally, the use of class diagrams provides a 

robust framework for aligning system design with 

operational goals. By incorporating critical attributes such 

as average time between failures, repair times, and system 

availability, the diagram ensures that the data required for 

accurate performance predictions is readily accessible and 

systematically analyzed. This clarity in design allows for 

more reliable predictions, enabling maintenance teams to 

make informed decisions that minimize downtime and 

optimize resource allocation. The Class Diagram thus acts 

as a foundation for creating intelligent maintenance 

systems that can adapt to the evolving needs of complex 

operational environments. 

The training procedure for the KNN algorithm to 

predict the performance of air navigation facilities begins 

with the collection of data from diverse sources, including 

parameters such as location, equipment type, average 

failure interval, average repair duration, and operational 

duration. Once the data is collected, it undergoes 

preprocessing steps, such as cleaning, normalization, and 

feature selection, to ensure its suitability for analysis. The 

dataset is then divided into training and testing subsets to 

facilitate model development and evaluation. 

The KNN model is developed by determining the 
optimal value of k and calculating distances using metrics 
such as Euclidean distance. Based on these calculated 
distances, the model identifies the nearest neighbors to 
make predictions. The performance of the model is 
evaluated using metrics such as accuracy, precision, 
recall, and f1-score, ensuring its reliability and 
effectiveness in predicting equipment performance. 

After evaluation, the KNN model supports decision-

making processes related to equipment maintenance or 
replacement. This predictive capability enables 
technicians to make accurate, data-driven decisions, 
thereby improving operational efficiency and extending 
the lifespan of air navigation equipment. The workflow of 
the KNN algorithm is visually represented in the form of 
an activity diagram, as shown in Fig. (3). 
 

 
 
Fig. 2: Class diagram of entities 
 

 
 
Fig. 3: Activity diagram algorithm model 



Rachmat Hidayat and Ditdit Nugeraha Utama / Journal of Computer Science 2025, 21 (4): 800.809 

DOI: 10.3844/jcssp.2025.800.809 

 

805 

The Activity Diagram illustrates the systematic 

workflow of the KNN algorithm for predicting equipment 

performance. The process begins with the data collection 

stage, where relevant information is gathered from 
various sources. Next, the data undergoes preprocessing, 

which involves cleaning and normalization to ensure the 

dataset is prepared for analysis. Once the preprocessing is 

complete, the data is split into training and testing sets to 

enable model training and evaluation. 

Within the KNN model, several key steps are 

performed. First, the value of k is set, which determines 

the number of nearest neighbors to consider during the 

prediction process. The algorithm then calculates the 

distances between data points using a suitable metric, 

such as Euclidean distance. These distances are 
subsequently sorted and the closest neighbors are selected 

based on the calculated values. From these selected 

neighbors, the algorithm identifies the majority class, 

which forms the basis for making predictions. 

Once predictions are made, the model's performance 

is evaluated using various metrics, such as accuracy, 

precision, recall, and f1-score. This workflow ensures a 

structured and efficient approach to leveraging the KNN 

algorithm for predictive maintenance, enabling accurate 

predictions and informed decision-making for 

equipment reliability. 

The interpretation of the results is summarized in 
Table (2). The evaluation of the K-Nearest Neighbors 

(KNN) model was conducted using a classification report 

that includes precision, recall, and f1-score for each class. 

Class 1 exhibited the best performance, achieving a 

precision of 0.92, a recall of 0.97, and an f1-score of 0.95. 

Classes 0 and 2 also demonstrated strong performance, 

with f1-scores of 0.90 and 0.84, respectively. However, 

classes 3 and 4 showed weaknesses, particularly in recall. 

Overall, the KNN model demonstrated strong 

performance, achieving a macro-average f1-score of 0.86 

and a weighted-average f1-score of 0.89. The macro-

average f1-score reflects consistent performance across 

all classes, regardless of sample size. In contrast, the 

weighted-average f1-score highlights the algorithm's 

overall effectiveness, accounting for the sample 

distribution and yielding more accurate predictions for the 

more prevalent classes. While the KNN model performs 

well in classifying data and managing class imbalance, 

there remains room for improvement in classes with lower 

recall. Further tuning of hyperparameters, such as the 

value of k and distance metrics, may enhance model 

performance. Incorporating additional data preprocessing 

techniques could also address class imbalance and 

improve recall for weaker classes. Future work could 

explore ensemble methods to combine KNN with other 

algorithms for enhanced classification accuracy. 
The dataset used in this study exhibited class 

imbalance, which can negatively affect the performance 

of machine learning models, particularly for 

underrepresented classes. To address this issue, 

oversampling techniques were applied during the 

preprocessing stage to balance the class distribution. By 
artificially increasing the representation of minority 

classes, the model was better able to learn patterns across 

all classes. This approach enhanced the KNN model's 

ability to handle imbalanced data, as demonstrated by the 

improved f1-scores for minority classes in Table (2). 

Despite these improvements, some challenges remain, 

particularly in classes with lower recall values, indicating 

that further optimization may be necessary. 

After making predictions, the next step is to evaluate 

the KNN model through verification and validation 

procedures. Model verification ensures that the model is 

constructed according to the algorithm's specifications, 

while validation assesses its performance on unseen data. 

Several methods, such as the ROC curve and AUC, 

are used to evaluate the model's classification accuracy. 

Fig. (4) presents the ROC curve and AUC results for each 

class. The ROC curve and AUC are essential metrics for 

assessing classification models, particularly in evaluating 

the trade-off between the True Positive Rate (TPR) and 

the False Positive Rate (FPR). 

 
Table 2: KNN model predictions 

Class Recall Precision F1-Score Support 

0 0.91 0.89 0.90 232 

1 0.97 0.92 0.95 340 

2 0.86 0.83 0.84 181 

3 0.70 0.91 0.80 105 

4 0.77 0.86 0.81 62 

Accuracy 0.89 

 

 
 
Fig. 4: ROC Curve and AUC 
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The analysis revealed that class 1 achieved the highest 

performance with an AUC of 0.97, followed by classes 0 

and 4, which had AUCs of 0.93 and 0.92, respectively. 

Classes 2 and 3 also performed well, with AUCs of 0.91 

and 0.88. The high AUC values (ranging from 0.88 to 

0.97) confirm the model’s effectiveness in distinguishing 

instances. Consistent performance across most classes 

indicates that the KNN model handles variations in the 

dataset effectively. These results highlight the robustness 

of the KNN algorithm in classification tasks, even when 

faced with imbalanced data. The findings also underscore 

the importance of preprocessing steps, such as 

oversampling, in achieving reliable model performance. 

Future improvements could involve testing additional 

metrics or tuning hyper parameters to further refine the 

model’s predictive capabilities. 

Additionally, the confusion matrix provides a detailed 

summary of classification errors. By analyzing the confusion 

matrix, the strengths and weaknesses of the classification 

system can be identified. Classes 0 and 1 demonstrated 

strong performance, with high True Positive rates and 

minimal errors. However, classes 2, 3, and 4 faced greater 

challenges, exhibiting higher False positive and false 

negative rates. The overall accuracy of the KNN model is 

80.39% but the confusion matrix analysis shows room for 

improvement, especially in reducing prediction errors in 

certain classes. As illustrated in Fig. (5), The confusion 

matrix provides an extensive overview of the classification 

system's outcomes, emphasizing both the accurate and 

inaccurate predictions made for each class. 

To further validate the model, its performance was 

compared with two additional models: Random forest and 

logistic regression. The comparison aimed to identify the 

best model for the dataset based on metrics such as 

accuracy, precision, recall, and f1-score. 
 

 
 
Fig. 5: Confusion matrix of KNN 

Table 3: Model comparison evaluation results 

Model Precision Recall F1-Score Accuracy 

KNN 0.89 0.89 0.89 0.89 

Random 

Forest 

0.77 0.77 0.77 0.77 

Logistic 
regression 

0.35 0.41 0.32 0.41 

 

The comparison results indicate that the KNN model 

outperforms the others, achieving 89% accuracy along 

with strong precision, recall, and f1-score of 0.89. This 

demonstrates that KNN is capable of providing accurate 

and balanced predictions for data classification. 

Meanwhile, Random Forest achieves an accuracy of 77%, 
which, although quite good, still falls short compared to 

KNN. This model may require further tuning to improve 

its performance. Conversely, Logistic Regression shows 

the lowest performance, with an accuracy of only 41%, 

along with low precision, recall, and f1-score values. This 

suggests that Logistic Regression is not suitable for this 

classification problem or may require better parameter 

adjustments. Overall, KNN emerged as the best model for 

this dataset, while Random Forest served as a fairly good 

alternative, and Logistic Regression was less effective in 

this context. Table (3) presents the findings from the 
evaluation of the machine learning model comparison. 

Discussion 

The results indicate that the KNN model provides 

accurate predictions for air navigation facility performance, 

particularly for frequently occurring classes. The superior 

classification performance, as reflected in the f1-score and 

AUC values, demonstrates the effectiveness of KNN in 
predictive maintenance. The structured representation 

highlights the comprehensive design of the predictive 

framework, ensuring that relevant attributes are incorporated 

into the modelling process. 

The training and evaluation workflow illustrates the 

systematic approach undertaken to optimize KNN’s 

predictive accuracy. The confusion matrix shows that 

misclassification occurred primarily in minority classes, 

which can be attributed to class imbalance. Although 

oversampling improved performance, further enhancements 

could be achieved through advanced resampling techniques 
or hyper parameter tuning. 

The comparison with Random Forest and Logistic 

Regression confirms that KNN is the most suitable model for 

this dataset. The poor performance of Logistic Regression 

suggests that linear decision boundaries are insufficient for 

complex patterns in air navigation equipment data. 

The findings of this study demonstrate the effectiveness 

of the KNN algorithm in predictive maintenance and align 

with several prior research efforts. For instance, previous 

studies such as those by Zhang et al. (2022) on maritime 

vessel trajectory prediction and (Peco Chacón et al., 2023) 
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on wind turbine maintenance have highlighted the capability 

of KNN to handle non-linear datasets and improve prediction 

accuracy. Zhang et al. (2022) achieved an accuracy of 

99.2%, whereas (Peco Chacón et al., 2023) reached 98% 

accuracy in identifying false alarms. 

In the context of air navigation, this study contributes 

to the field by focusing specifically on equipment 

performance prediction and addressing class imbalance 

through oversampling, achieving an overall accuracy of 

89%. Unlike earlier works, such as (Jang, 2023), which 

applied KNN for frost prediction on bridges with 95% 

accuracy, this study incorporates multiple evaluation 

metrics (precision, recall, f1-score, accuracy) and 

compares the KNN model with Random Forest and 

Logistic Regression to validate its robustness. 

Additionally, while prior research like that of 

(Manyol et al., 2022) utilized KNN for data 

imputations in large-scale datasets, this study extends its 

application to predictive maintenance for critical air 

navigation infrastructure, highlighting its scalability and 

adaptability. These comparisons emphasize the novelty of 

integrating KNN into predictive maintenance frameworks 

for aviation systems, contributing to enhanced operational 

reliability and maintenance planning. 

This study corroborates earlier research that employed 

KNN for equipment failure prediction, showing high 

accuracy. However, the inclusion of more comprehensive 

data has yielded even better results. 

Conclusion 

This study aims to predict the performance of air 

navigation equipment facilities using the KNN algorithm. 

The key findings demonstrate that the KNN model can 

achieve a high accuracy of 89%, with an average precision 

of 0.87 and a recall of 0.83. This indicates that KNN is 

effective in predicting equipment failures, especially in 

classes with a high frequency of failures. Further 

verification and evaluation using cross-validation, the 

ROC curve, AUC, and the Confusion Matrix show very 

good performance. 

The primary contribution of this study is the 

deployment of an enhanced KNN model for predicting the 

maintenance of air navigation equipment, providing more 

accurate predictive solutions compared to models used in 

earlier research. Thus, this research contributes to the 

development of more reliable predictive maintenance 

methods in the field of air navigation, reducing the likelihood 

of system failures and improving operational efficiency. 

From a practical perspective, the results of this 

research can be utilized by air navigation facility 

maintenance management to be more proactive in 

detecting equipment malfunctions and taking preventive 

actions before a larger failure occurs. Additionally, the 

theoretical implications of this research enhance the 

understanding of utilizing machine learning algorithms, 

such as KNN, for critical equipment maintenance within 

the aviation sector. 

This research shows that KNN is an effective model 

for predicting air navigation equipment failures and can 

provide practical benefits in maintenance management. 

The use of this method not only aids in better decision-

making related to maintenance but also promotes higher 

efficiency in the operations of the aviation industry. 

One limitation of the study is that it relies solely on 

damage reports. Integrating real-time sensor data or 

additional variables, such as environmental conditions, 

could improve prediction accuracy. Future research should 

explore models like Decision Tree or XG Boost and 

incorporate more variables to enhance prediction accuracy. 
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