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Abstract: With the escalating frequency and sophistication of Distributed 
Denial of Service (DDoS) attacks, the realm of cyber security has witnessed 
a paradigm shift towards innovative solutions. This review explores the 
potential of machine learning as a powerful defense mechanism in the field 

of DDoS mitigation within Software-Defined Networks (SDNs). The study 
methodically examines a variety of machine learning algorithms used for 
DDoS mitigation, from cutting-edge deep learning approaches to 
conventional statistical approaches. A key focus of this review is to provide 
a comparative analysis of different machine learning approaches, evaluating 
their efficacy in identifying and mitigating DDoS attacks within SDN 
environments. The discussion encompasses the strengths and limitations of 
each algorithm, shedding light on their applicability and performance 
metrics. By dissecting the nuanced differences between these methodologies, 
the review aims to guide practitioners and researchers toward informed 
decisions when implementing DDoS mitigation strategies in SDNs. 
Furthermore, this study addresses the main challenges faced by machine 

learning-based DDoS mitigation in SDNs. From issues related to real-time 
detection and adaptability to dynamic attack patterns to the impact of 
network scale and diversity, the review systematically outlines these 
challenges and proposes potential avenues for overcoming them. By 
understanding these hurdles, stakeholders in the field can proactively develop 
solutions that enhance the robustness and effectiveness of DDoS mitigation 
frameworks within SDNs. Conclusively, this review stands as an invaluable 
resource for cyber security professionals, researchers, and policymakers 
navigating the intricate terrain of DDoS mitigation in Software-Defined 
Networks. Through a meticulous exploration of machine learning techniques 
and a discerning analysis of associated challenges, the paper not only 
provides comprehensive insights but also lays the groundwork for the 

development of resilient and adaptive security measures against the ever-
evolving landscape of cyber threats. By assimilating the knowledge gleaned 
from this review, stakeholders are empowered to make informed decisions 
and contribute to the ongoing refinement of DDoS mitigation strategies, 
ensuring the continued integrity and security of Software-Defined Networks 
in the face of emerging threats. 
 
Keywords: SDN, Software Defined Networks, DDoS, DDoS Mitigating, 

Machine Learning, Cyber Security, DDoS Attacks 
 

Introduction 

The concept of software-defined networking is not 

new; This is a complete transformation. Rather, it is the 
result of collaboration, the development of ideas, and 
network research. In (Liu et al., 2024), three main cases 
of SDN development are identified: functional coupling 

(the mid-1990s to early 2000), separation of data and 

control planes (2001-2007), and OpenFlow API and 
NOS (2007-2010). All this is discussed below. The 
challenge for researchers to test new ideas on real 
architecture and the time, effort, and resources required 
to implement these ideas at the Internet Engineering 
Task Force (IETF) will result in some work being done 
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on network equipment. Active networking provides a 
programmable network interface, or API, that exposes 
users to the resources of each network (such as 
processing, memory resources, and packet processing) 
and includes the availability nature of identity for 
packets arriving between nodes. The need to use 
different models on nodes is the first step in network 
virtualization research and the development of methods 
or platforms for building applications on nodes. Active 

Network Architecture Framework v1.0 (Liu et al., 2024) 
consists of a shared Operating System (NodeOS), a layer 
of operational environments (Execution Environments 
(EEs)) and active applications (Active Applications 
(AA)). NodeOS manages shared resources, while EE 
defines virtual machines for package operations. AA 
operates on Energy Efficiency and provides end-to-end 
services. The separation of packets sent to each EE 
depends on the pattern in the packet header of the 
incoming object. This model is used in the PlanetLab 
platform, where researchers perform experiments in a 
virtual operating environment and packets are parsed to 

each virtual destination based on their headers. These 
developments are especially important in examining 
network architectures, platforms, and programming 
models. However, their commercial use is limited and 
has been criticized mainly for their performance and 
security limitations. The work proposed by (Li and 
Louri, 2021) tries to achieve a high level of collaboration, 
while the secure active network environment architecture 
(Rose et al., 2020) tries to increase its security.  

Improve network connectivity, management process 

and connection (train engineering), traffic forecasting, 

reaction and rapid response to network problems, etc. 

This creates the need to use the best management 

resources, such as management cycle methods. 

However, the development of this technology is strictly 

limited by the tight coupling between the hardware and 

software of the network equipment. It also means that 

the connection speed (branch networks) constantly 

improves, and all transmitted packets (packet 

forwarding) are destined for hardware, controlled 

separately, or network management for software 

applications. These applications run best on servers that 

have higher performance and better memory than a 

network device. In this sense, the IETF (RFC 3746) 

standard CES (Separation of Transport and Control 

Objects) project (Yang et al., 2024) creates an interface 

between data and control planes in network nodes. 

SoftRouter (Islam et al., 2021) Use this software 

interface to configure messages sent on the router’s data 

plane. In addition, the Routing Control Platform (RCP) 

(Zhang, 2020) project proposes logical central control of 

the network, promoting network management, 

innovation capabilities, and programming. RCP is 

immediately available because it uses the existing 

management system Border Gateway Protocol (BGP) to 

improve entries in routers' routing tables. The separation 

of the data plane and control plane allows the 

development of "new" architectures such as 4D Project 

(Badotra and Panda, 2020) and Ethernet (Abuarqoub, 

2020). The architecture shows a four-layer architecture 

in function: Data plane, plane detection, plane 

communication, and decision plane. In addition, the 

Ethanet project (Abuarqoub, 2020) proposed a 

centralized management system for business 

connections. However, the need for a switch based on 

Linux, OpenWrt, and NetFPGA and supporting the 

Ethan protocol makes it difficult to implement the 

project. Currently, the OpenFlow protocol (Eliyan and 

Di Pietro, 2021) is the most widely used protocol in the 

scientific community and has become the basis of 

different projects. Companies like Cisco have also called 

for a new architecture called Cisco Open Network 

Environment (Cisco ONE).  

The term software-defined communication, which 

was easy to define in the past, shows some changes 

today. First, the data plane and the control plane are 

separated or decoupled, ensuring independent 

development and evolution. Second, it proposes a 

centralized control plane so that there is a global view 

of the network. Finally, SDN creates an open 

connection between the control plane and the data 

plane. The differences between these architectures are 

shown in Fig. (1). The network programmability 

provided by SDN is comparable to mobile applications 

running on operating systems (Android and Windows 

Mobile). These applications use the mobile phone's 

resources (GPS, accelerometer, and memory) through 

APIs provided by the operating system. Likewise, 

network administrators can manage and manage 

network resources through APIs (private or open) 

available on the controller according to user needs 

(Scaranti et al., 2020).  
 

 
 
Fig. 1: SDN overview  



Ahmed Gaber Abu Abd-Allah et al. / Journal of Computer Science 2025, 21 (4): 940.960 

DOI: 10.3844/jcssp.2025.940.960 

 

942 

OpenFlow  

OpenFlow (Eliyan and Di Pietro, 2021) was initially 

proposed as an alternative to the universities’ 

experimental protocol, allowing new algorithms to be 

tested without disrupting or interfering with a common 

process among other users’ traffic. Today, the Open 

Networking Foundation (ONF) (Yang et al., 2004) is the 

organization responsible for publishing the OpenFlow 

protocol and other regulations such as OF Config 

(Shaghaghi et al., 2020) for SDN. The advantage of 

OpenFlow over the SDN protocol is that it uses hardware 

and functionality found in most network devices. These 

elements include reading headers, forwarding packets to 

ports, sending packets, etc. These are routing tables with 

various functions such as: OpenFlow exposes concepts 

and functions; so these can be controlled externally. This 

means that by updating the firmware, real devices can 

support OpenFlow. These companies do not need to 

change their hardware to use SDN in their products and 

services (Ahmad et al., 2020). OpenFlow architecture 

defines the existence of the controller, OpenFlow switch, 

and secure communication protocol. These elements are 

shown in Fig. (2). Each OpenFlow switch has a flow table 

managed by a controller. Each flow table has three 

components: Packet header, processing, and statistics. 

The packet header is like a mask that selects the packets 

the switch will process. The domain used for comparison 

can be from layers 2, 3, or 4 of the TCP/IP architecture. 

This means that there is no distinction between layers as 

in current architectures. All packets processed by the 

switch are filtered by this method. The number of zones 

the exchanger can manage depends on the version of the 

OpenFlow protocol. OpenFlow v1.0 (Costa et al., 2021) 

(the most used version) has 12 domains, while the latest 

version of OpenFlow v1.3 means there are 40 domains, 

including IPv6 support. When the header of the incoming 

packet matches the packet header of the routing table, the 

switch matches this mask. There are important actions and 

choices to be made. The main operations are as follows: 

Send the packet to a specific port, package the packet send 

it to the controller, and then release the packet. Some of 

the processing options are: Sending packets over the 

connected port (queuing process) or 802.1D processing. If 

the header of the incoming packet does not match the 

packet header of the routing table, the switch (depending 

on its configuration) forwards the packet to the controller for 

verification and processing. Finally, the statistics file uses 

counters to collect statistics for management (Phan et al., 

2016). The OpenFlow protocol defines the following 

terms related to switches and controllers: Controller-to-

switch, symmetric, and asynchronous. The switch 

message type controller checks the status of the switch. 

The corresponding message is sent by the controller or 

switch to initiate a connection or message exchange.  

 
 
Fig. 2: OpenFlow architecture  

 

Asynchronous messages update network event handling 

and state transitions. Similarly, OpenFlow generates two 

types of switches: OpenFlow only and OpenFlow 

enabled. Only OpenFlow switches use the OpenFlow 

protocol to process packets. On the other hand, 

OpenFlow-enabled switches can still use traditional 

switching or routing algorithms to process packets (von 

Rechenberg et al., 2021). The controller receives data 
from each variable and adjusts the variable table at that 

time. Here users can allow the behavior of the network. 

Active mesh, unlike active mesh, proposes a “node 

operating system”. OpenFlow opens up the concept of 

Network Operating Systems (NOS). In this case, 

(Anerousis et al., 2021), NOS is defined as the software 

installed in the network switch that controls the logic and 

usage status of the network behavior. In recent years, NOS 

has continued to evolve according to the needs and uses 

of researchers and network administrators. The concept of 

a Network Operating System (NOS) is based on the 
functioning of the operating system in the computer. That 

is, the operating system allows users to create applications 

using high levels of data, resources, and hardware. In 

SDN, some authors (von Rechenberg et al., 2021; 

Hamdan et al., 2021) divide the network resources 

experience into southern and northern (Fig. 3). The 

function of the south side is to understand the function of 

the programmable switch and connect to the control 

software. An obvious example of the south side is 

OpenFlow. You run the network operating system on the 

south interface. NOX is an example of NOS (Wang, 2022; 

Qin, 2021) and others. The north side allows applications 
or advanced network requirements to be easily created and 

these functions are transferred to the Network Operating 

System (NOS). Examples of these interfaces include 

Frenetic (Foster et al., 2016), Procera (Foster et al., 2019), 

(Voellmy et al., 2012), Netcore (Monsanto et al., 2017) 

and McNettle (Voellmy and Wang, 2012). They were 

later detected in the main NOS and the northern part 

(Polat et al., 2020). SDN has become an alternative to 

traditional security systems due to the easy network 
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management it provides. However, if the SDN 

framework is compromised, the security of the system is 

also compromised. Ordinary controllers also create the 
same point of failure. Therefore, an attack on the 

controller will cause the entire network to collapse 

(Abhiroop et al., 2018). The main security issues in SDN 

are rogue controllers (intrusion), man-in-the-middle 

attacks, and policy changes that alter packets. Other 

related issues include malicious packets hijacking 

controllers, denial of service due to a flood of changes, 

and communications and configuration issues. 

Distributed Denial of Service (DDoS) is one of the 

most dangerous and feared threats designed to 

completely prevent traffic from reaching the controller. 
This attack works by inserting more malicious packets 

into the controller than it can handle, causing the 

controller to fail. The attack is done using various bots 

to create malicious packets. The attacker creates a 

botnet, a group of bots, from switches connected to a 

controller and then takes control of the entire network 

after disabling the controller.  

Background and Related Works  

The authors performed a systematic literature review 

(SLR) to examine current methodologies for detecting 

and mitigating distributed denial of service (DDoS) 

attacks in software-defined networking (SDN) 

environments (Phan et al., 2017). They followed a 

predefined SLR protocol to search, select, and analyze 70 

primary studies published from 2014-2022 that used 

machine learning (ML), deep learning (DL), or hybrid 

methods to address the DDoS problem in SDN. They 

classified the existing approaches into three categories: 

ML-based, DL-based, and hybrid-based, and discussed 

their strengths, weaknesses, and limitations. They also 

examined the evaluation metrics, datasets, network 

simulators, hacking tools, and experimental platforms 

used in the literature. Moreover, they identified the 

challenges, open issues, and future research directions for 

DDoS detection in SDN networks. The main contribution 

of this study is to provide a comprehensive and critical 

overview of the state-of-the-art approaches and to 

highlight the research gaps and opportunities in this area.  
Table (1) shows that most of the methods in the 

literature are in the hybrid category, followed by the 

machine learning category, and then by the integrated 
machine learning category. In addition, while most 

researchers used self-generated real-world data to 

evaluate and train their planning, due to the lack of 

benchmark data for SDN DDoS attacks, few other 

researchers used it for the Untruth collection. It is public 

information. In addition, most studies use a special 

selection process to select the best features to improve to 

ensure the accuracy and distribution of network 

connections. However, some studies such as (Nadeem et al., 

2022; Dong and Sarem, 2020) do not use them. At the 

same time, most work continues on SDN controllers and 
imposes unnecessary overhead on the controller, e.g., 

(Sahoo et al., 2020; Alamri and Thayananthan, 2020; De 

Assis et al., 2018; Nurwarsito and Nadhif, 2021). In 

addition, some researchers have opined that SDN 

controllers can reduce the load and overhead, especially 

during DDoS attacks, for example (Perez-Diaz et al., 

2020; Cui et al., 2016). In contrast, some studies do not 

provide detailed information on where their methods were 

used, for example (Santos et al., 2020; Oo et al., 2020; 

Sahoo et al., 2018). Furthermore, the majority of 

techniques either target or mitigate DDoS attacks, 

whereas very few do both (Sahoo et al., 2018; Hannache 
and Batouche, 2020). Furthermore, the majority of 

machine learning techniques are only capable of 

identifying or thwarting DDoS attacks (Ahuja et al., 2021; 

Tonkal et al., 2021; Tan et al., 2020), which may be 

accomplished with great precision because of the volume 

of malicious traffic. However, only a few machine learning 

techniques, like (Swami et al., 2021; Cui et al., 2016), are 

able to identify low-level DDoS attacks in SDN 

networks (Maheshwari et al., 2022; Firdaus et al., 2020; 

Ahuja et al., 2021; Sangodoyin et al., 2021). 
 

Table 1: Current Approaches and Methodologies  

Ref. ML. based 

approach  

Realistic 

dataset  

Feature 

selection 

technique  

Deployment 

of detection 

approach  

DDoS attack 

techniques  

Rate of 

attack  

Detection 

accuracy  

Limitations  

 E or H or S    In or Out  D or M  High or 

Low  

  

Phan et al. 

(2017) 

E  No  Yes  In  D, M  High  High  The suggested 

methodology was 

assessed using 

implausible 

datasets that failed 

to represent the 

attributes of the 

SDN network. 

Which did not 

reflect the 

characteristics of 

the SDN network  
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Nadeem et 

al. (2022) 

E  No  Yes  In  D  High  High  The proposed 

approach was 

assessed using 

datasets that lacked 

realism and did not 

accurately represent 

the characteristics 

of the SDN  

Dong and 

Sarem 

(2020) 

E  Yes  Yes  In  D  High  High  Testing the 

suggested model's 

ability to identify 

such assaults is not 

as good as putting it 

into practice on an 

actual SDN 

network  

Sahoo et al. 

(2020) 

E  No  Yes  In  D  High  Low  Unrealistic datasets 

that did not 

accurately represent 

the properties of the 

SDN network were 

used to evaluate the 

suggested 

methodology. The 

overall strategy 

performed poorly  

Alamri and 

Thayanantha

n (2020) 

H  Yes  Yes  In  D  High  High  The strategy is 

restricted to heavy 

DDoS attacks, 

which can be 

accurately 

predicted because 

of high frequency  

De Assis et 

al. (2018) 

H  No  Yes  In  D  High  High  An artificial dataset 

that does not 

accurately represent 

the nature of the 

SDN network 

environment was 

used to train and 

test the method  

Nurwarsito 

and Nadhif 

(2021) 

H  Yes  Yes  Out  D  High  High  Since DDoS attacks 

on the SDN 

controller have an 

impact on a global 

scale, the DAD is 

restricted to 

handling SYN 

DDoS flood attacks 

on data plans. We 

used a small dataset 

to train and test the 

proposed model 

Perez-Diaz et 

al. (2020) 

H  No  Yes  In  D, M  High  High  Realistic datasets 

were used for 

testing and training 

the proposed 

model, although 

these datasets do 

not represent the 

properties of SDN 

networks  

Cui et al. 

(2016) 

H  Yes  Yes  In  D  High, 

low  

High  This method can 

only be used to 

counter TCP-SYN 

flood attacks. A 

small dataset was 

used to examine the 

proposed approach  
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Santos et al. 

(2020) 

H  Yes  Yes  In  D  High  High  Tests should be 

conducted on a 

genuine SDN 

testbed, as this 

would be the 

preferred method. It 

is restricted to high-

rate DDoS attacks, 

which are easily 

identifiable due to 

the heavy network 

traffic flow  

Oo et al. 

(2020) 

H  Yes  Yes  In  D  High  High  Because ML is 

most effective when 

control parameters 

or hyper-

parameters are fine-

tuned or optimized, 

it was trained using 

the default values  

Sahoo et al. 

(2018) 

H  Yes  Yes  In  D, M  High  High  The method does 

not evaluate its 

outcomes against 

alternative 

methods. The 

proposed system 

operates on the 

controller, 

introducing 

additional load and 

overhead to it 

Hannache 

and 

Batouche 

(2020) 

H  No  Yes  —  D  High  High  The residual 

algorithms exhibit 

suboptimal 

performance. The 

suggested method 

was assessed using 

an artificial dataset 

that fails to 

represent the 

characteristics of 

the SDN network 

environment  

Ahuja et al. 

(2021) 

H  No  Yes  In  D  High  Low  The residual 

algorithms exhibit 

suboptimal 

performance. The 

suggested method 

was assessed using 

a non-

representative 

dataset that fails to 

embody the 

attributes of the 

SDN network 

environment  

Tonkal et al. 

(2021) 

H  Yes  Yes  In  D  High  High  The remaining 

machine learning 

classifiers have 

comparatively low 

performance in 

terms of detection 

accuracy. The 

proposed 

approach's false 

positive rate is 

unspecified 

Tan et al. 

(2020) 

H  No  Yes  Out  D, M  Low  Low  The remaining 

machine learning 
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classifiers have 

comparatively low 

performance in 

terms of detection 

accuracy. The 

proposed 

approach's false 

positive rate is not 

disclosed 

Swami et al. 

(2021) 

H  Yes  Yes  In  D, M  High  High  Due to the large 

volume of 

forgeries, high-rate 

DDoS attacks are 

easier to spot and 

this is where the 

framework is 

tested. The 

controller's job is 

increased by the 

suggested 

architecture  

Myint Oo et 

al. (2019) 

H  No  Yes  In  D, M  High  High  The controller is 

subjected to a 

superfluous burden 

and overhead as a 

result of the 

proposed system’s 

operation. The 

proposed method is 

burdened by a 

substantial amount 

of processing and 

communication 

overhead  

Maheshwari 

et al. (2022) 

H  Yes  Yes  In  D, M  High  High  The proposed 

method applied to 

the SDN controller 

introduces an 

additional 

challenge in the 

context of DDoS 

attacks 

Firdaus et al. 

(2020) 

H  Yes  No  –  D  High  Low  The suggested 

method continues to 

demonstrate 

inferior 

performance in 

detecting DDoS 

attacks and requires 

implementation on 

an actual SDN 

network to evaluate 

its efficacy in 

identifying these 

attacks 

Sangodoyin 

et al. (2021) 

H  No  Yes  In  D  High  Low  The suggested 

method 

demonstrates 

inadequate 

performance and 

requires 

enhancement. The 

suggested 

methodology was 

assessed using an 

artificial dataset 

that fails to 

represent the 

attributes of the 
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SDN network  

Bendale et 

al. (2018) 

H  Yes  Yes  –  D  High  High  The proposed 

method 

demonstrated that 

the controller 

DDoS assault 

yielded the lowest 

classification 

results for SVM 

and MLP, with 

accuracy rates 

below 90% 

compared to flow-

table and 

bandwidth attacks. 

The proposed 

approach's false 

positive rate is 

unspecified 

Xu et al. 

(2019) 

H  No  Yes  Out  D, M  High  High  A dataset that does 

not represent the 

features of an SDN 

network 

environment was 

used for the defense 

system's 

evaluation, testing, 

and training 

Dayal and 

Srivastava 

(2017) 

H  Yes  Yes  In  D, M  High  High  There is more work 

and impose added 

by the proposed 

model since it 

operates on the 

controller. A 

dataset that does 

not represent the 

features of an SDN 

network 

environment was 

used for the defense 

system's 

evaluation, testing, 

and training 

Caraguay et 

al. (2016) 

H  No  Yes  In  D  High  High  The proposed 

method employed 

at the SDN 

controller elevates 

the controller’s 

overhead during a 

DDoS attack 

Kokila et al. 

(2014) 

S  Yes  Yes  In  D, M  High  High  The suggested 

method operates on 

the SDN controller 

as an application 

system, introducing 

superfluous burden 

and overhead, 

especially during 

DDoS assaults on 

the controller 

Deepa et al. 

(2019) 

S  Yes  Yes  

– 

D  High  Low  The ASVM 

approach 

demonstrates 

suboptimal efficacy 

in identifying 

DDoS attacks 

Ali et al. 

(2023) 

S  Yes  Yes  In  D  Low  High, Low  The suggested 

method operates on 

the SDN controller 
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as an application 

system, introducing 

superfluous burden 

and overhead, 

especially during 

DDoS assaults on 

the controller 

Musumeci et 

al. (2022) 

S  Yes  Yes  In  D  High  Low  Implementing the 

proposed solution 

at the controller 

results in an 

increase in load and 

overhead that is not 

warranted. In 

addition to that, it 

needs to be 

improved in terms 

of the accuracy of 

detection 

Gonzalez 

and 

Charfadine 

(2023) 

S  No  No  –  D  High  High, Low  The proposed 

approach 

demonstrated low 

accuracy in its 

performance. The 

proposed approach 

was tested and 

trained on a dataset 

that does not ac 

accurately 

represent the 

characteristics of 

the SDN network 

environment 

Fernandes et 

al. (2019) 

S  Yes  Yes  IN  D  High  Low  Due to the fact that 

the scheme needs to 

be implemented on 

each and every 

switch, the 

suggested solution 

suffers from a 

scalability issue. 

This is because the 

implementation of 

the scheme is 

required on every 

switch 

Freytsis et al. 

(2024) 

S  Yes  Yes  In  D, M  High  High  The suggested 

approach has 

processing and 

communication 

overhead at the 

SDN controller. 

The suggested 

technique was 

assessed and 

trained using an 

unrealistic NSL-

KDD dataset, 

which fails to 

represent the 

characteristics of 

the SDN network 

environment 

Ajaeiya et al. 

(2017) 

S  Yes  No  In  D  High  High  The proposed 

model operates at 

the controller, 

resulting in 

increased load and 

overhead on the 
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SDN controller 

during DDoS 

attacks. Information 

regarding the testing 

and training datasets 

is insufficient  

Firouzi and 

Rahmani 

(2022) 

S  Yes  Yes  In  D, M  High  Low  The suggested 

method exhibits a 

detection accuracy 

of 96.13%, 

attributable to 

significant false-

positive and false-

negative rates 

Satheesh et 

al. (2017) 

S  No  Yes  –  D  High  High  The proposed 

methodology has 

been assessed using 

an unrealistic 

dataset that fails to 

represent the 

attributes of the 

SDN network 

environment 

Nain et al. 

(2014) 

S  No  Yes  –  D  High  High  It takes additional 

time to examine 

and classify all 

packet flows that 

enter via the data 

layer’s OpenFlow 

switches since they 

feature an attack-

detection module  

Hesamifard 

et al. (2018) 

S  Yes  Yes  Out  D, M  High  High  Due to the SDN 

controller collecting 

all flows from the 

switches for 

detection reasons, 

this system still has 

overhead in heavy 

DDoS assault flows, 

leading to 

congestion and a 

reduction of 

response time 

 

DDoS Attacks  

DDoS is a serious attack that has a major impact on 

network operations. It affects the traffic between the 

switch and the controller. An attacker can manipulate the 

key and engage the controller with many queries 

(Bendale et al., 2018). The attack is depicted below in 

Fig. (3). Within the context of this assault, the attacker 

targets the server by bombarding it with a large number 

of requests, which ultimately results in the server 

crashing. The server is unable to receive requests from 

users who are authorized to access it, which leads to a 

distributed denial of service assault.  

One of the most significant security concerns with 

SDN is the possibility of Distributed Denial of Service 

(DDoS) attacks. The network’s functionality will be 

severely compromised by this assault. By intercepting 

network traffic, malicious actors are able to attack 

services, denying service to innocent consumers. DDoS 

attacks in SDN can compromise both the data and control 

systems of airplanes. The controller will be occupied with 
requests during an attack on the control plane. Xu et al. 

(2019), adversely affecting the computation time. The 

controller is the nerve center of every network, therefore any 

assault on it can have far-reaching consequences. We will not 

accept legal claims. If the controller notices an unusually 

high volume of traffic coming from only one location, it may 

be a sign of a denial-of-service attack. Downtime is easily 

detectable. The continual monitoring and updating of 

regulations on SDN makes fraud less prevalent. Using the 

key to launch a Man in the Middle attack is possible. Forging 

the key is another way that attackers can get inside the 
system. This controller needs to be able to recognize each 

switch before letting it into the network in order to 

circumvent SDN. Two main types of distributed denial of 

service attacks are the data plane and control plane 

distributed denial of service attacks (Dayal and Srivastava, 

2017; Caraguay et al., 2016).  
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Fig. 3: Spoofing (DDoS) attack  

 

 
 
Fig. 4: Categories of DDoS Attack  

 

Data Plane DDoS 

There are two categories as shown in Fig. (4), in these 

categories: Volumetric attacks and protocol attacks. In a 

volumetric attack, the attacker sends a large number of 

requests to the victim. Therefore, the victim tries to 

complete these requests and eventually, the victim gets 

overwhelmed by the packets received and therefore loses 
the request and cannot complete it. Essentially, this attack 

makes a large number of requests to the victim causing 

the server to fail. Examples of this attack are Internet 

Control Message Protocol (ICMP) Flood, User Datagram 

Protocol (UDP) Flood, and Smurf attack. The purpose of 

using the protocol is tools resources and applications, that 

is, the main action of the victim will affect its work as 

follows: Consumes memory, bandwidth, and other 

resources. The Synchronized (SYN) flood assault is an 

example of this type of attack, in which the attacker sends 

SYN packets repeatedly without waiting for an 

acknowledgment (ACK) from the recipient. Eventually, 
the server allocates memory for SYN requests and runs 

out of memory, which leads to network failure. The death 

ping is another instance of this kind. However, the activity 

of the program uses resources to generate connection 

requests, which finally overwhelms the victim and 

prevents an extended request from being approved 

(Kokila et al., 2014). 

Control Plane DDoS 

Such attacks pose a threat to aircraft control. Two 

things cannot accomplish what the attacker is trying to do 

sending a flood of random streams to the switch until it 

misses the attack and sends a Packet-In message. You 

must process the message or else the data bundle will be 

incomplete. An additional form of attack impacts the 

OpenFlow protocol’s bandwidth. Because the controller 

has no control over the request, a Packet-In message is 

sent in this instance. As a result, the network will become 

unresponsive due to a lack of available bandwidth 

(Shaghaghi et al., 2020). 

DDoS Mitigation 

Due to the fact that normal users might occasionally 

be confused with attackers, it is impossible to totally 

eliminate distributed denial of service assaults. It is 

necessary to take preventative measures after a distributed 

denial of service assault has been identified. In order to 

protect against distributed denial of service attacks, it is 

possible to identify the attacker and stop them from 

sending any additional requests. We are able to add 

policies thanks to SDN. In addition to the modifications, 

legal notifications have been included, which enables us 

to restrict people. IP and MAC addresses can be blocked 

with the use of firewalls. For instance, when the client 

needs to create a TCP connection to the server, it can 

expressly limit the number of SYN packets that can be 

transmitted to the server at the same time during the 

connection establishment process. It is possible to ban 

nodes that exceed these restrictions by creating firewall 

rules that are based on IP and MAC addresses. For an 

extended period of time, the node will be prevented from 

issuing requests.  

 

 
 
Fig. 5: DDoS mitigation architecture  
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The above Fig. (5) shows the basic functionality of the 

control plane’s DDoS attack mitigation architecture. 

There is a module in the control plane that collects traffic 
from the network. This traffic data is transferred to the 

DDoS detection module, where data analysis and 

detection algorithms are used to see if the network is 

under attack. If it is detected that the network is attacked, 

the interrupt is informed about the attack and the module 

takes the necessary actions for the attack. These actions 

include blocking suspicious hosts.  

Machine Learning Approaches for DDoS 

Detection and Mitigation  

Flow-Based Anomaly Detection 

Network flows: A flow essentially represents a 
unidirectional stream of data between two network 

endpoints. Anomaly detection: Anomaly detection 

involves identifying patterns or behaviors that deviate 

from what is considered normal or expected. In the 

context of network flows, anomalies may indicate 

potential DDoS attacks. Unsupervised machine learning: 

Unsupervised machine learning algorithms are often 

employed for flow-based anomaly detection. Unlike 

supervised learning, unsupervised learning doesn’t rely 

on labeled training data but instead attempts to identify 

patterns or anomalies without prior knowledge of what is 
“normal.” Training phase: During the training phase, the 

system observes the characteristics of normal network 

behavior by analyzing historical flow data. Features such 

as the number of packets per flow, the duration of flows, 

and other relevant attributes are considered. Model 

building: The unsupervised machine-learning algorithm 

builds a model of normal behavior based on the observed 

features. Detection phase: In the detection phase, the 

system continuously monitors incoming network flows in 

real time. As new flows are observed, the system 

compares their characteristics to the learned model of 

normal behavior. Anomaly identification: If a flow 
exhibits characteristics significantly different from the 

learned normal behavior (Deepa et al., 2019), it may be 

flagged as an anomaly. The degree of deviation from the 

norm can be quantified using statistical measures. Alert or 

Mitigation: When anomalies are identified, the SDN 

controller or security system can trigger an alert or take 

automated mitigation actions. Mitigation actions may 

include rerouting traffic, blocking specific flows, or 

dynamically adjusting security policies. Adaptability: 

Flow-based anomaly detection is adaptive and can 

respond to changes in network traffic patterns over time. 
This adaptability is crucial for effectively identifying 

new and evolving DDoS attack strategies. Limitations: 

It’s important to note that while flow-based anomaly 

detection is effective, it may have limitations in 

detecting subtle or low-rate DDoS attacks. Combining 

flow-based detection with other techniques can enhance 

overall DDoS mitigation capabilities. Flow-based 

anomaly detection leverages unsupervised machine 
learning to analyze network flows, identify deviations 

from normal behavior and trigger timely responses to 

potential DDoS attacks in SDN environments (Zhang, 

2020; Ali et al., 2023).  

Statistical Analysis for DDoS Mitigation in SDN  

Monitoring Statistical Metrics: In this approach, 
various statistical metrics related to network traffic are 

continuously monitored. These metrics include packet 
rates, traffic volume, protocol distribution, and other 

statistical characteristics of the network. Supervised or 
unsupervised machine learning: Statistical analysis for 

DDoS mitigation can utilize both supervised and 
unsupervised machine learning techniques, depending on 

the specific requirements and available data. Training 
phase (for supervised learning): In the case of supervised 

learning, the system is trained on labeled datasets that 
include examples of normal and malicious network 

behavior. The model learns to differentiate between the 
two based on the provided labels. Feature selection: 

Relevant features, such as packet rates, traffic volume per 
protocol, or distribution of source/destination IP 

addresses, are selected for analysis. Feature selection is 
crucial to focus on the most informative aspects of the 

data. Model building (for supervised learning): 
Supervised machine learning algorithms, like support 

vector machines (SVM) or neural networks, are trained to 
recognize patterns associated with normal and malicious 

network behavior. The model aims to generalize from the 
training data to make accurate predictions on new, unseen 

data (Musumeci et al., 2022). Real-time monitoring: In 
the deployment phase, the system continuously monitors 

real-time network traffic, collecting statistical metrics as 
new data flows through the SDN infrastructure. Deviation 

detection (for unsupervised learning): In the case of 
unsupervised learning, the system analyzes the statistical 

metrics without pre-existing labels. Deviations from 
established statistical norms are identified as potential 

anomalies or signs of a DDoS attack. Alerting or 
mitigation actions: When significant deviations or 

anomalies are detected, the SDN controller or security 
system can trigger alerts or automated mitigation actions. 

Mitigation actions may include traffic redirection, rate 
limiting, or the dynamic adjustment of security policies. 

Dynamic adaptation: Statistical analysis allows for 
dynamic adaptation to changing network conditions. As 

DDoS attacks evolve, the statistical model can be updated 
to account for new patterns of malicious behavior. 

Combination with other techniques: Statistical analysis is 
often used in conjunction with other machine learning and 

DDoS mitigation techniques to provide a comprehensive 
defense strategy. Statistical analysis leverages machine 

learning techniques to continuously monitor and analyze 
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statistical metrics of network traffic, identifying 
deviations from normal patterns and enabling timely 

responses to potential DDoS attacks in SDN 
environments (Zhang, 2020; Ali et al., 2023).  

Traffic Classification for DDoS Mitigation in SDN 

Distinguishing Legitimate and Malicious Traffic: 

Traffic classification involves the process of 

distinguishing between legitimate and potentially 

malicious traffic based on various characteristics, such as 

packet size, protocol type, source/destination IP 

addresses, and other relevant attributes. Supervised 

machine learning: Supervised machine learning 

techniques are commonly employed for traffic 

classification. During the training phase, the system is 

provided with labeled datasets containing examples of 

both normal and malicious traffic. Feature extraction: 

Relevant features, such as the size of packets, source and 

destination IP addresses, and protocol types, are extracted 

from the network traffic data. These features serve as 

input for the machine-learning model. Training phase: 

The system uses the labeled training data to train a 

machine learning model, such as a support vector machine 

(SVM), decision tree, or neural network. The model learns 

to associate specific patterns of features with either 

normal or malicious traffic. Real-time traffic analysis: 

During the deployment phase, the trained model is applied 

to real-time network traffic. As new traffic flows through 

the SDN infrastructure, the model classifies each flow as 

either normal or potentially malicious. Thresholds and 

decision-making: The model may employ predefined 

thresholds or decision boundaries to classify traffic. If a 

flow exhibits characteristics indicative of a DDoS attack 

(e.g., high packet rates, unusual patterns), it may be 

classified as malicious. Alerting or mitigation actions: 

When malicious traffic is identified, the SDN controller 

or security system can trigger alerts or automated 

mitigation actions. Mitigation actions may include 

blocking or redirecting the identified malicious flows. 

Adaptability: Supervised machine learning models can be 

adaptive, allowing for updates to the training data and 

retraining of the model to adapt to evolving DDoS attack 

strategies. Ensemble methods: Ensemble methods, which 

combine multiple machine learning models, can enhance 

the accuracy and robustness of traffic classification. 

Different models may focus on different aspects of the 

traffic characteristics. Integration with SDN policies: The 

results of traffic classification can be integrated with SDN 

policies to dynamically adjust routing or apply security 

measures based on the identified classification of traffic. 

Traffic classification leverages supervised machine 

learning to distinguish between normal and potentially 

malicious traffic in real time. By training models on 

labeled datasets, the system can make informed decisions 

about the nature of network traffic and take appropriate 

actions to mitigate the impact of DDoS attacks in SDN 

environments (Zhang, 2020; Ali et al., 2023).  

Behavioral Analysis for DDoS Mitigation in SDN 

Observing behavioral patterns: Behavioral analysis 

involves the continuous observation of the behavior of 

network entities, such as end-hosts, applications, or 

communication patterns between different components 

within the SDN infrastructure. Machine learning models: 

Machine-learning models, such as neural networks, 

decision trees, or clustering algorithms, can be employed 

for behavioral analysis. These models are trained to 

recognize normal patterns of behavior based on historical 

data. Feature extraction: Relevant features representing 

behavioral aspects are extracted from the network data. 

These features may include communication patterns, 

traffic volume, frequency of interactions, and other 

behavioral indicators. Training phase: During the training 

phase, the machine-learning model learns to associate 

specific patterns of features with normal behavior. This 

involves using labeled datasets where normal and 

abnormal behaviors are identified. Real-time behavioral 

monitoring: In the deployment phase, the system 

continuously monitors the real-time behavior of network 

entities. As new data flows through the SDN 

infrastructure, the model assesses whether the observed 

behavior aligns with what was learned during the training 

phase. Anomaly detection: Deviations from the learned 

normal behavior are flagged as potential anomalies. 

Behavioral analysis is particularly effective in identifying 

subtle and evolving DDoS attacks that may not exhibit 

easily detectable signature patterns. Alerting or 

Mitigation Actions: When anomalies indicative of a 

potential DDoS attack are detected, the SDN controller or 

security system can trigger alerts or automated mitigation 

actions. Mitigation actions may include isolating the 

affected entities, rerouting traffic, or dynamically 

adjusting security policies. Adaptive learning: Behavioral 

analysis is adaptive and can learn from new behavioral 

patterns over time. This adaptability is crucial for 

effectively identifying emerging DDoS attack strategies 

that may evolve or change their behavior. Combination 

with other techniques: Behavioral analysis is often used in 

conjunction with other DDoS mitigation techniques to 

provide a comprehensive defense strategy. Combining 

multiple techniques can enhance the overall accuracy 

and robustness of the DDoS detection system. Granular 

Insights: Behavioral analysis provides granular insights 

into the dynamics of network behavior, allowing for a 

more nuanced understanding of normal and abnormal 

activities within the SDN infrastructure. Behavioral 

analysis leverages machine learning models to 

continuously monitor and analyze the behavioral 

patterns of network entities, enabling the detection of 

anomalies that may indicate DDoS attacks. The adaptive 
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nature of behavioral analysis makes it well-suited for 

identifying evolving threats in SDN environments 

(Zhang, 2020; Ali et al., 2023).  

Feature Extraction and Dimensional Reduction for 

DDoS Mitigation in SDN  

Feature extraction: Feature extraction involves 

selecting and transforming relevant information, or 

features, from the raw data. In the context of DDoS 

mitigation, features may include attributes such as packet 

rates, traffic volume, protocol distribution, and other 

characteristics of network flows. Machine learning 

models: Machine-learning models, such as decision trees, 

neural networks, or clustering algorithms, benefit from 

having a set of informative features to make accurate 

predictions or classifications. Complexity of data: 

Network data can be complex, containing a large number 

of attributes. Some of these attributes may be redundant, 

irrelevant, or noisy. Feature extraction aims to capture the 

most important information while reducing the 

dimensionality of the data. Dimensional reduction 

techniques: Dimensional reduction techniques, such as 

Principal Component Analysis (PCA) or autoencoders, 

are applied to further reduce the number of features. These 

techniques help in retaining the most significant 

information while discarding less critical aspects. 

Training phase: During the training phase, the selected 

features and reduced-dimensional representations are 

used to train machine-learning models. This process helps 

the models learn the patterns associated with normal and 

malicious network behavior. Real-time processing: In the 

deployment phase, the system continuously processes 

real-time network data using the extracted features and 

reduced-dimensional representations. This enables 

efficient and quick analysis, crucial for the timely 

detection of DDoS attacks. Anomaly detection or 

classification: The machine learning models leverage the 

extracted features to detect anomalies or classify network 

flows as normal or potentially malicious. Dimensional 

reduction contributes to computational efficiency and 

prevents issues associated with the curse of dimension. 

Alerting or mitigation actions: When anomalies are 

identified or specific classifications are made, the SDN 

controller or security system can trigger alerts or 

automated mitigation actions. Mitigation actions may 

include rerouting traffic, blocking specific flows, or 

dynamically adjusting security policies. Adaptability: 

Feature extraction and dimensional reduction contribute 

to the adaptability of the DDoS mitigation system by 

focusing on the most relevant information. This 

adaptability is essential for handling variations in network 

traffic and attack strategies. Integration with other 

techniques: Feature extraction and dimensional reduction 

are often integrated into a broader DDoS mitigation 

strategy that may include other techniques, such as flow-

based anomaly detection or traffic classification. The 

combination of these techniques enhances the overall 

effectiveness of the defense mechanism. Feature 

extraction and dimensional reduction are critical 

processing steps in DDoS mitigation, enabling machine-

learning models to efficiently analyze network data, 

identify relevant patterns, and make informed decisions 

regarding the presence of DDoS attacks in SDN 

environments (Zhang, 2020; Ali et al., 2023). 

Reinforcement Learning for DDoS Mitigation in 

SDN  

Decision-making through interaction: Reinforcement 

learning involves training an algorithm to make decisions 

through interactions with an environment. The algorithm 

learns by receiving feedback in the form of rewards or 

penalties based on the actions it takes. Dynamic and 

adaptive responses: In the context of DDoS mitigation in 

SDN, reinforcement learning enables the system to 

dynamically and adaptively respond to evolving threats 

by learning optimal strategies over time. Training 

environment: The SDN environment serves as the training 

ground for the reinforcement-learning algorithm. The 

algorithm interacts with the SDN infrastructure, making 

decisions related to DDoS mitigation, and receives 

feedback based on the effectiveness of its actions. State 

Representation: The state of the SDN environment, 

including network traffic patterns, system resources, and 

security policies, is represented by the reinforcement-

learning algorithm. This representation helps the 

algorithm understand the current conditions and make 

informed decisions. Action space: The algorithm has an 

action space, representing the set of possible actions it can 

take in response to the observed state. Actions may 

include adjusting security policies, rerouting traffic, or 

dynamically allocating resources to mitigate the impact of 

DDoS attacks. Rewards and penalties: The algorithm 

receives rewards or penalties based on the consequences 

of its actions. For example, successful mitigation actions 

may yield positive rewards, while ineffective responses 

may result in penalties. Learning policy: The 

reinforcement-learning algorithm iteratively adjusts its 

policy, a mapping from states to actions, to maximize the 

cumulative reward over time. This learning process 

enables the algorithm to discover effective strategies for 

mitigating DDoS attacks. Adaptation to changing threats: 

Reinforcement learning excels in adapting to changing 

and dynamic environments. As DDoS attack strategies 

evolve, the algorithm can learn and update its policy to 

counter new threats effectively. Real-time decision-

making: Reinforcement learning facilitates real-time 

decision-making. The trained algorithm can quickly 

assess the current state of the SDN environment and take 

appropriate actions to mitigate DDoS attacks without 

requiring extensive manual intervention. Integration with 
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other techniques: Reinforcement learning can be 

integrated with other machine learning and DDoS 

mitigation techniques to form a comprehensive defense 

strategy. It complements other methods by providing 

adaptive and autonomous decision-making capabilities. 

Reinforcement learning enables autonomous decision-

making in response to DDoS attacks by training 

algorithms to learn optimal strategies through interactions 

with the SDN environment. This approach enhances the 

adaptability and effectiveness of DDoS mitigation in SDN 

environments (Zhang, 2020; Ali et al., 2023).  

Real-Time Analysis and Decision-Making for DDoS 

Mitigating in SDN 

Immediate response requirements: DDoS attacks can 

have rapid and severe impacts on network performance, 

necessitating quick detection and mitigation. Real-time 

analysis focuses on processing data and making decisions 

promptly to respond to ongoing threats. Continuous 

monitoring: The SDN system continuously monitors 

incoming network traffic and other relevant parameters in 

real time. This constant surveillance allows for immediate 

awareness of changes in network behavior. Machine 

learning models suitable for real-time: To facilitate real-

time analysis, lightweight machine learning models are 

often chosen. These models are designed for efficiency 

and quick processing, making them suitable for timely 

decision-making in dynamic environments. Feature 

extraction and simplified models: Techniques such as 

feature extraction and simplified machine learning models 

contribute to real-time capabilities. Extracting essential 

features and reducing model complexity helps in 

processing data swiftly without compromising accuracy. 

Thresholds and trigger mechanisms: Real-time analysis 

involves setting thresholds or trigger mechanisms that, 

when surpassed, signal potential DDoS attacks. These 

thresholds are determined based on the expected behavior 

of the network under normal conditions. Automated 

Alerting Systems: When anomalies or potential DDoS 

attack patterns are detected, automated alerting systems 

can promptly notify administrators or trigger predefined 

mitigation actions. Alerts provide timely information to 

initiate a response. Automated mitigation actions: 

Automated mitigation actions, such as rerouting traffic, 

blocking malicious flows, or dynamically adjusting 

security policies, can be triggered in real time based on 

the analysis of incoming data. These actions aim to 

minimize the impact of DDoS attacks as quickly as 

possible. Adaptability to changes: Real-time analysis 

requires systems to adapt swiftly to changes in network 

conditions or attack strategies. The use of adaptive 

machine learning models and continuous updates to 

detection mechanisms contribute to this adaptability. 

Minimizing detection latency: The goal of real-time 

analysis is to minimize detection latency the time it takes 

to identify a potential DDoS attack. Quick detection 

enables faster initiation of mitigation measures, reducing 

the overall impact on network performance. Integration 

with SDN controllers: Real-time analysis is integrated 

with SDN controllers, allowing for seamless 

communication between the detection system and the 

SDN infrastructure. This integration ensures that 

mitigation actions can be implemented directly within the 

SDN environment. Real-time analysis and decision-

making involve continuous monitoring, quick processing 

of data, and automated responses to potential DDoS 

attacks. This approach is essential for minimizing the 

impact of attacks in SDN environments where rapid 

adaptation to changing conditions is crucial (Zhang, 2020; 

Ali et al., 2023).  

Collaborative and Distributed Defense for DDoS 

Mitigation in SDN 

Shared Information among Components: 

Collaborative and distributed defense involves the sharing 

of information and coordination among multiple 

components within the SDN infrastructure. This 

collaboration enhances the overall effectiveness of DDoS 

mitigation. SDN controllers and network devices: SDN 

controllers and network devices, such as switches and 

routers, work together to detect and mitigate DDoS 

attacks. Collaboration ensures that information about 

potential threats is communicated seamlessly across the 

network. Shared threat intelligence: The various 

components exchange threat intelligence, including 

information about ongoing DDoS attacks, patterns of 

malicious traffic, and effective mitigation strategies. This 

shared intelligence enhances the collective defense 

posture. Coordinated response: In the event of a detected 

DDoS attack, the SDN controllers and network devices 

collaborate to formulate a coordinated response. This may 

involve dynamically adjusting routing tables, 

redistributing traffic, or activating specific security 

policies. Dynamic policy adjustments: Collaboration 

enables the dynamic adjustment of security policies 

across the SDN infrastructure. Policies can be updated in 

real time based on the shared threat intelligence and the 

evolving nature of the DDoS attack landscape. Load 

distribution and redundancy: Collaborative defense 

mechanisms can involve redistributing network traffic 

across multiple paths to balance the load and ensure 

redundancy. This approach helps prevent congestion at 

specific points targeted by DDoS attacks. Communication 

protocols: Effective communication protocols are 

established to facilitate information exchange among 

SDN components. These protocols allow for seamless 

coordination and quick dissemination of threat 

information. Adaptive decision-making: Collaboration 

enables adaptive decision-making. As DDoS attack 

strategies evolve, the collaborative defense system can 
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collectively adapt by sharing insights and implementing 

new mitigation measures. Scalability: Collaborative and 

distributed defense mechanisms are scalable. This 

scalability is crucial for protecting large-scale SDN 

environments. Resilience against sophisticated attacks: 

By working together, SDN controllers and network 

devices can create a more resilient defense against 

sophisticated DDoS attacks that may attempt to exploit 

vulnerabilities or bypass traditional security measures. 

Collaborative and distributed defense in SDN involves the 

cooperative efforts of SDN controllers and network 

devices to share threat intelligence, coordinate responses, 

and collectively defend against DDoS attacks. This 

collaborative approach enhances the overall resilience and 

adaptability of the DDoS mitigation system in SDN 

environments (Zhang, 2020; Ali et al., 2023).  

Challenges and Proposed Solutions  

Evolving Attack Techniques  

Description: DDoS attackers constantly develop new 

methods to evade detection. Traditional ML models 

trained on static datasets struggle to adapt. Solutions: 

Adaptive learning: Implement algorithms that can learn 

and update themselves based on real-time network traffic. 

This could include mechanisms like remote education. 

(Gonzalez and Charfadine, 2023) Focus on anomaly 

detection: Shift from signature-based detection to 

anomaly detection. Train models to identify deviations 
from normal traffic patterns, regardless of the specific 

attack type (Fernandes et al., 2019).  

False Positives and Negatives  

ML models can misclassify normal traffic as malicious 

(false positives) or miss actual attacks (false negatives). 

This disrupts legitimate traffic flow and leaves the 

network vulnerable.  
 

 
 
Fig. 6: Anomaly detection summary  

Solutions: Feature engineering: Carefully select and 

engineer relevant network traffic features that effectively 

distinguish normal from malicious traffic. This work has 
presented two tree-based approaches to detect anomalies in 

the presence of irrelevant features. As shown in Fig. (6), 

Anomaly detection methods are already starting to be 

used in LHC analyses. Since BDT-based methods are 

already used in experimental analyses, the hope is that our 

methods would be readily able to be adopted and 

calibrated for experimental use. They first considered a 

CWoLa-inspired method and showed that boosted 

decision trees are more robust to irrelevant features 

compared to neural networks. By exploiting the inherent 

feature selection of decision trees, the BDT-based classifier 
sustained strong performance despite the inclusion of 

significantly more irrelevant than discriminating auxiliary 

features (Freytsis et al., 2024). Hybrid detection systems: 

Combine ML-based detection with other techniques like 

signature-based methods or honeypots for a more robust 

approach. They introduced a lightweight flow-based 

Intrusion Detection System (IDS) that periodically 

gathers statistical information about flows from SDN 

OpenFlow forwarding devices and inspects traffic 

patterns by extracting and aggregating a set of features. 

The proposed IDS system proved to be accurate with a 

high detection rate of 0.98 measured by the F1-score of 
the classification model and a relatively low false alarm 

rate (Ajaeiya et al., 2017).  

Scalability and Performance  

Description: DDoS attacks can generate massive 

amounts of traffic overwhelming the SDN controller and 

switches. Real-time processing of network data for ML 

models can be computationally expensive. Solution: 

Distributed Learning: Train ML models in a distributed 

manner across multiple SDN controllers to handle large 

datasets efficiently. Hundreds of billions of things are 

estimated to be deployed in the rapidly advancing IoT 

paradigm, resulting in enormous amounts of data. 

Transmitting all these data to the cloud has recently 

proven to be a performance blockage, as it motivates 

many network challenges. We deploy Federated Learning 

Applications in our distributed SDN-based architecture, 

using the gateways to provide distributed intelligence at 

the edge of the network and conduct a comprehensive and 

detailed evaluation of the system from several 

perspectives (Firouzi and Rahmani, 2022) Resource 

optimization: Optimize the ML algorithms and network 

infrastructure to minimize processing overhead without 

compromising accuracy. The proliferation of mobile 

devices and the increasing use of networked applications 

have generated enormous data that require real-time 

processing and low-latency responses. There is a massive 

growth of data generated at the web edge, but its limited 

computing resources and boundary dynamics pose 
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significant challenges. For proficient resource utilization 

and network management, Software-Defined Networks 

(SDN) integration with EC can provide control and 

programmability in edge networking management. 

Besides (Satheesh et al., 2020), the utilization of SDN in 

EC addresses both centralized and distributed infrastructure 

while further facilitating data processing of data nearer to 

its source and supporting the increasing need for efficient 

and systematic evaluation of the current systems. The 

review of challenges, benefits, and various proposed 

approaches for utilizing capabilities in Edge and SDN-

based Edge environments are investigated. This study 

offers key findings of the present situation and upcoming 

trends of Edge, SDN-based EC systems, which can assist 

organizations in designing and deploying more efficient 

resource consumption solutions (Nain et al., 2024).  

Data Privacy  

Description: Network traffic data, which may contain 

sensitive information, is necessary for machine learning 

models to function. Data privacy and security must be 

balanced. Solution: Data anonymization: Before 

supplying network traffic data to the machine learning 

model, anonymize it. Techniques like tokenization and 

traffic aggregation can be used to accomplish this. Deep 

Neural Network (NN) based machine learning algorithms 

have produced impressive results and are widely applied 

across several areas. The theoretical underpinnings for 

applying deep neural network algorithms in an encrypted 

environment are presented in this research, along with 

strategies for integrating neural networks within realistic 

constraints of existing homomorphic encryption systems. 

They demonstrate that using encrypted data to train neural 

networks, producing encrypted predictions, and returning 

the suggested Crypto DL show its applicability across 

numerous datasets. The empirical findings demonstrate 

that it offers precise training and classification while 

protecting privacy (Hesamifard et al., 2018). 

Federated learning: Execute federated learning by 

training models on local devices while refraining from 

transmitting raw data to a central server. The proliferation 

of zero-day exploits has elevated privacy concerns since 

IoT devices generate and send sensitive data via the 

conventional internet. This research proposes the 

utilization of a Deep Neural Network (DNN) and 

Federated Learning (FL) within an IoT network, 

alongside Mutual Information (MI) as an efficient 

anomaly identification technique. A key advantage of 

combining Federated Learning (FL) with Deep Learning 

(DL) is that only modified weights are transmitted to the 

centralized FL server, whereas the data remains on local 

IoT devices for model training. The evaluation utilizes the 

IoT-Botnet 2020 dataset. Research indicates that the 

DNN-based Network Intrusion Detection System (NIDS) 

outperforms deep learning models, demonstrated by 

enhanced model accuracy and a reduction in the False 

Alarm Rate (FAR) (Wang et al., 2023). 

Conclusion  

In this comprehensive study, we conduct a qualitative 

investigation of the main machine learning techniques 

used in DDoS mitigation in software-defined networking 

(SDN) environments. Our research goes beyond this 

approach and includes identifying the need for recurring 

problems in the cybersecurity environment. Recognizing 

the importance of solving these problems, we are trying to 

propose solutions for everyone in order to reach a useful 

agreement for continuing efforts to improve DDoS 

mitigation systems. With this effort, we seek to deepen 

our understanding of the interplay between machine 

learning and SDN for DDoS prevention, highlighting the 

importance of real, flexible, real-time strategies in the face 

of changing threats. 
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