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Abstract: In this study, we study the existence and the nonexistence of 

positive solutions for the following nonlinear elliptic problems: 
 

      1

0, ,div a x u f x u u H      (P) 

 

where,  is a regular bounded domain in N , N  2, a(x) is a smooth 

function on   and f(x, s) is asymptotically linear in s at infinity, that is 

 ,
lim
s

f x s

s
= ℓ < . We will prove that the problem (P) has a positive 

solution for ℓ large enough and does not have positive solutions for ℓ less 

than the first eigenvalue of the operator. We prove also that the method 

works for the case when f(x, s) is sub-critical and super-linear at +. 
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Introduction 

The advantage of nonlinear equations lies in its 

stability to explain the evolution of a problem. In this 

study, we consider the following nonlinear elliptic 

weighted problems: 
 

    , , ,

0 ,

div a x u f x u in

u on

   


 

 (1.1) 

 

where,  is a regular bounded domain in N , N  2, a(x) 

is a continuous function on and f(x, s) is asymptotically 

linear in s at infinity, that is: 

 

 ,
lim .
s

f x s

s
   

 

This type of equations was proposed by (Turing, 

1952) for modeling morphogenesis phenomena in 

Biology, in population dynamics. It was a model of 

interaction of species or chemicals given by: 

 

    , ,
u

div a x u f x u
t


  


 

 

where, u is the density, div(a(x)u) represents the 

substance of diffusion through the system and f models 

the interaction of substances. In the stationary case and 

when f(x, s) depends only on s and f is asymptotically linear 

at +, the problem (1.1) was studied by (Saanouni and 

Trabelsi, 2016a). They considered the problem: 
 

     , ,

0 ,

div a x u f u in

u on

   


 

 (1.2) 

 
as a generalisation of the work done by (Mironescu and 

Rădulescu, 1993; 1996; Rădulescu, 2008; Sanchón, 

2007) where a is constant. They supposed that f:   
is a positive, increasing and convex smooth function and 

the condition f(0) > 0 is capital in their study. 

When f is super-linear (l = +) and a is constant, the 

problem was studied in (Brezis et al., 1996; Martel, 

1997). With the same nonlinearity and a constant, the 

problem was generated to the p-Laplace operator in 

(Filippakis and Papageorgiou, 2006; Schechter, 1995). 

Also, the same problems have been studied with the Bi-

Laplacian see for example (Arioli et al., 2005; Abid et al., 

2008; Saanouni and Trabelsi, 2016b; Wei, 1996). 

In a recent work, (Li and Huang, 2019) a generalized 

quasilinear Schrdinger equations with asymptotically 

linear nonlinearities. They supposed that the 

nonlinearities h(s) depend only on s and they prove the 

existence of positive solutions via variational methods. 

For the superlinear nonlinearities, the quasilinear 
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Schrdinger equations was investigated by (Li et al., 

2020). Zhou (2002) the problem (1.1) was treated when 

a is constant by Zhou but with more general 

nonlinearities: f(x, s) depends on x and s and f(x, 0) = 0. 

More precisely, He supposed that the reaction function 

f(x, t) satisfies the following conditions: 
 

 (F1) f(x, t)  C   , f(x, t)  0 for all t > 0 and x 

  and f(x, t)  0 for t  0 and x   

 (F2) 
 

 
0

,
lim
t

f x t
p x

t
 , 

 ,
lim
t

f x t

t
 = ℓ <  

uniformly in a.e.x , where 0  p(x)  L() and 

||p(x)|| < 1, where 1 > 0 is the first eigenvalue of 

(-div(a(x).), 1

0H ()). 

 (F3) The function 
 ,f x t

t
is nondecreasing with 

respect to t > 0; for a.e.x. 
 

In this study, we will consider the problem (1.1) 

when the function a is not constant and use the scheme 

as in (Zhou, 2002) to study the existence of positive 

solution for the problem (1.1) and extend its results. 

Definition 1.1 

We say that u is a solution of (1.1) if u  1

0H () and: 

 

     1

0, , .a x u f x u for all H  
 

       (1.3) 

 
In order to find a solution to problem (1:1), we can 

look up for a critical point of the C1 functional I defined 

on H1() by: 
 

     21
| | ,

2
I u a x u dx F x u dx

 
     (1.4) 

 
where: 
 

   
0

, , .
s

F x s f x t dt   

 
By the condition (F1) and the strong maximum 

principle, a nonzero critical point of the functional I is a 

positive solution of problem (1.1). Our approach to prove 

the existence of nonzero critical point of I is using the 

Mountain Pass Theorem given by (Ambrosetti and 

Rabinowitz, 1973; Rabinowitz, 1986). Often, one requires 

the technical condition introduced in (Ambrosetti and 

Rabinowitz, 1973), that is: for some  > 2 and M > 0: 
 

   0 , , , | | .F x t f x t t for all t M and x     (AR) 

 

Condition (AR) was an important way to prove that a 

functional satisfies the compactness condition, that is 

each Palais Smale sequence is bounded and then 

relatively compact. But the condition (AR) implies that 

 
2

,
lim
t

f x t

t
= + and so the function f(x, t) is super-linear 

with respect to t at infinity: 
 ,

lim
t

f x t

t
= + which 

contradicts the fact that f is asymptotically linear at +. 

So, in this study we can not suppose the condition (AR). 

In some papers and in order to avoid condition (AR), 

some other conditions were made as in (Costa and 

Magalhaes, 1994; Costa and Miyagaki, 1995; Jeanjean, 

1999; Schechter, 1995; Stuart and Zhou, 1996; Stuart and 

Zhou, 1999; Zhou, 2002) and the references therein. In 

this study we will applyMountain Pass Theorem without 

any equivalent assumption. 

Main Results 

Before setting our main results, we introduce some 

notations and assumptions. First, we suppose that the 

continuous function a(x) satisfies the condition: 

 

 1 2

1 2

0 ,    

     .   .

a a x a for some positive

constants a and a and a e x

  


 (A) 

 

We denote by ||.||p the Lp()-norm and by ||.|| the 

norm of 1

0H () induced by the inner product < u, v >= 

 a x
 u.v dx for u, v  1

0H (), that is: 

 

  
1

2 2|| || | | .u a x u dx


   

 

We denote 1 a normalised positive eigenfunction 

associated to 1, that is: 

 

  1 1 1

1

1 2

,

0 ,

|| || 1.

div a x in

on

  





   



 




 

 
We will prove the following result when the 

nonlinear term is asymptotically linear. 

Theorem 2.1 

Let  be a bounded regular open domain of N , N  2 

and f(x, t) satisfies Conditions (F1) and (F2), then we have: 

 

(i) If 0 < ℓ < 1 and (F3) holds, then there is no 

positive solution to problem (1.1) 

(ii) If ℓ > 1, then the problem (1.1) has a positive 

solution 

(iii) If ℓ = 1 and (F3) holds, then problem (1.1) has a 

positive solution u 1

0H () if and only if there 



Hanadi Zahed / Journal of Mathematics and Statistics 2020, Volume 16: 125.132 

DOI: 10.3844/jmssp.2020.125.132 

 

127 

exists a constant c > 0 such that u = c1 and f(x, u) 

= 1u a.e. in  
 

The next result treat the case ℓ = +. We prove the 

existence of a positive solution for the problem in the case 

of subcritical nonlinearities. More precisely we have. 

Theorem 2.2 

Let  be a bounded regular open domain of N , N  

2 and (F1), (F2), (F3) hold, ℓ = + and f(x, t) is 

subcritical that is 
 

1

,
lim 0

rt

f x t

t 
 uniformly in x for 

some 
2

2,
2

N
r

N

 
 

 
 if N > 2 or r(2, +) if N = 2, then 

the problem (1:1) has a positive solution. 

Our method is the variational one. We use the 

Mountain pass Theorem and we prove the compactness 

condition without use the (AR) condition introduced by 

Ambrosetti and Rabionovitz. 

Preliminaries and Some Lemmas 

Lemma 1 

( 1

0H (), ||.||) is a Hilbert space and the norm ||u|| is 

equivalent to the norm 
 1

0H
u


. 

Proof 

Since  
  1

0

1

0 , .
H

H


  is a Banach space where: 

 

   1
0

1

2 2| |
H

u u dx
 
   

 
and the function a(x) satisfies the condition (A) so the 

norm ||.|| is equivalent to the norm 
 1

0

.
H 

and then 

  1

0 .H   is a Banach space. 

Proposition 3.1 

Suppose that the function f satisfies (F1) and (F2), 

then the following results hold: 
 

(i) There exist ,  > 0 such that I(u)   for all u  

 1

0H   with ||.|| = . 

(ii) I(t1)  - as t  +, if 1 < ℓ < . 
 

Proof 

(i) For any  > 0, there exist A = A()  0 and t0  1 

such that for all t  t0, f(x, t)  2At. For q  1, we get f(x, 

t)  2Atq and then: 
 

     2 11
, || || | | ,

2

qF x t p x t A t 

    (3.1) 

for all (x, t)    . 

Let: 
 

*

2
2

2

2.

N
if N

q N

if N




 
 

 

 
If we choose q such that 2 < q + 1 < q*, then by the 

Sobolev embedding theorem we obtain 
1 1

1

q q

q
u C u

 


 . 

So, we get: 
 

   

  

  

2

2 2 1

2 1

2 2 1

2

1
,

2

1 1
|| ||

2 2

1 1
|| || .

2 2

q

q

q

I u u F x u dx

u p x u A u

u p x u AC u









 





 

   

   



 

 

Because of the characterization of 1, we have: 
 

 
  2 1

1

|| ||1
1 .

2

qp x
I u u AC u






 

    
 

 

 

With the hypothesis (F2) in mind, we can choose  > 

0 such that ||p(x)|| +  < 1 and then we can choose ||u|| = 

 small enough in order to have I(u)   for a given  > 

0 sufficiently small. 

(ii) Suppose that 1 < ℓ < +, for t > 0, we have: 
 

     
2

2

1 1 1, ,
2

t
I t a x F x t dx  

 
     

 

Since 1 is an eigenfunction associated to 1, we get: 
 

   
2

2

1 1 1 1, .
2

t
I t dx F x t dx   

 
    (3.2) 

 
By the condition (F2) and the asymptotically linearity 

of f(x, t), we have: 
 

 
2

,
lim .

2t

F x t

t
  

 
So, by Fatou’s Lemma we obtain: 

 

   

 

 

1 12 2

1 1 122

1

2

1 1

,1
lim lim

2

1
.

2

t t

I t F x t
dx dx

t t

dx

 
  



 

  



 

 

 



 

 

Since 1-ℓ < 0 and 1 is positive, the Proposition 3.1 

follows. 

As (3.1), for all  > 0, there exists B = B() such that: 
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    , ,f x t p x t B t


    

 

and so, for a fixed small , there exists B = B(1) such 

that: 

 

  1, ,f x t t B t   (3.3) 

 

for all t  . 

Proposition 3.2 

Suppose that the function f satisfies (F1), (F2) and 

(F3) with ℓ = +, then the following results hold: 

 

(i) There exist ,  > 0 such that I(u)   for all u  

 1

0H  with ||u|| =  

(ii) I(t1)  - as t  + 
 

Proof 

(i) Since f is supposed subcritical, that is: 

 

 
 

1

,
lim 0 2, *

rt

f x t
for some r q

t 
   

 

and for any  > 0, there exist A = A()  0 and t0  1 such 

that for all t  t0, f(x, t)  rAtr-1. Then: 
 

     21
, ,

2

r
F x t p x t A t


    (3.4) 

 

for all (x, t)   . 

Since 2 < r < q*, by Sobolev embedding theorem we 

have 
r r

r
u C u  and then: 

 

   

  

  

2

2 2

2

2 2

2

1
,

2

1 1

2 2

1 1
.

2 2

r

r

r

I u u F x u dx

u p x u A u

u p x u AC u











 

   

   



 

 

So: 

 

 
  2

1

1
1 .

2

rp x
I u u AC u






 
   
 
 

 

 

As in the proof of Proposition 3.1, we can choose  > 

0 such that ||p(x)|| +  < 1 and then we can choose ||u|| 

=  small enough in order to have I(u)   for a given  

> 0 sufficiently small and then the first geometric 

property is satisfied. 

(ii) This second geometric property is essentially due 

to (Zhou, 2002). For the sake of completeness, we give 

here a sketch of its proof. The positive function 1 is in 

C() (by standard regularity result) so there exist 0  

0   and  > 0 such that 1(x)   > 0 for all x 0. 

From the condition (F3), we have: 

 

   0 2 , , ,F x t tf x t   (3.5) 

 

and then the function 
 

2

,F x t

t
 is nondecreasing with 

respect to t > 0 for a.e. x   and 
 

2

,
lim
t

F x t

t
  . 

So, for all x  0 and t > 0: 

 

  
 

 1

2 2 2 2

1

, ,
.

F x t x F x t
as t

t x t

 

 
      (3.6) 

 

For all K > 0, there exist t0 such that for all t  t0 and 

x  0, we have 
  

 
1

2 2

1

,F x t x

t x




 K: 

 

 
 

 

 

0

21 1 2

1 122

1

2 2

1 1 1

2

1 1 0

,1

2

1

2

1
.

2

I t F x t
a x dx dx

t t

dx K dx

dx K

 
 



  

  

 

 



 

 

  

 

 



 

 

For a good K > 0, we obtain: 

 

 1 2

1 1 02

1
0

2

I t
dx K

t


  


     

 

and so I(t1)  - as t  +. 

Lemma 2 

Suppose that (vn) is a convergent sequence to v in 

Lp(), for some 1  p < +, then  nv  converges to v+ in 

Lp(), where 
nv  = max(0, vn) and v+ = max(0, v). 

Proof 

We have: 

 

2 2

n n

n

v v v v
v and v 

 
   

 

then: 
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1

2

1

2

1

2

1
2

2

.

p p

n np

p

n np

p

n np

p

n np

p

np

p

n p

v v v v dx

v v v v dx

v v v v dx

v v v v dx

v v dx

v v

   











  

   

   

   

 

 











 

 

So, 
nv v+ as n  +, in Lp(). 

In similar way as in (Stuart and Zhou, 1999; Zhou, 

2002), we have the following result. 

Lemma 3 

If < I(un), un >  0 and (F3) holds, then there exists 

a subsequence of (un), still denote by (un), such that I(tun) 

 
21

2

t

n


 + I(un), for all t > 0. 

Proof of the Main Results 

Proof of the Theorem 2.1 

(i) Suppose that 0 < ℓ < 1 and the function f satisfies 

the conditions (F1)-(F3). We will prove that the problem 

(1.1) does not have a positive solution by contradiction. 

Suppose that  1

0u H  is a positive solution of the 

problem (1.1), so u satisfies the equation (1.3) for all 

 1

0H  , in particular for  = u, we get: 

 

   
2 2,a x u dx f x u udx u dx

  
      (4.1) 

 
from (F1), (F2) and (F3). 

By definition of 1, we get 1  ℓ and this contradicts 

the fact that ℓ < 1. 

(iii) If ℓ = 1. Suppose that u is a positive solution for 

the problem (1.1) and take  1

1 0H   as test function in 

(1.3), we get: 
 

   1 1. , .a x u dx f x u dx 
 

     (4.2) 

 

Now, we consider the equation verified by 1 and 

take u as test function, we obtain: 

 

  1 1.a x u dx u dx 
 

     (4.3) 

 

and so    1, 0f x u u dx


  . Since 1 positive and the 

function f(x, t) satisfies (F2) and (F3), we conclude that 

f(x, u) = ℓu a.e. in . But ℓ = 1 and then u is an 

eigenfunction associated to the simple eigenvalue 1, so 

u = c1 for some constant c > 0. 

Conversely, if for some constant c > 0, u = c1 and 

f(x, u) = 1u, then: 

 

     

 

1

1 1

1

, .

div a x u cdiv a x

c

u

f x u



 



    







 

 

Also the boundary conditions are satisfied and then u 

is a positive solution for the problem (1.1). 

(ii) Suppose that 0 < ℓ < 1 and the function f satisfies 

the conditions (F1)-(F2). 

The space   1

0 , .H   is a Banach space and the 

functional I, given by (1.4), is C1 and satisfies I(0) = 0. 

By Proposition 3.1, there exist ,  > 0 such that I(u) 

  for all  1

0u H   with ||u|| =  and there exists 

 1

1 0u H   such that ||u1|| >  and I(u1) < 0. 

In order to prove the compactness condition, let (un) 

be a Palais Smale sequence at level d , that is: 

 

   
21

,
2

n n nI u u F x u dx d as n


     (4.4) 

 

and: 

 

 
*

0 .nI u as n     (4.5) 

 

and we have to prove that (un) contains a convergent 

subsequence in  1

0H  . For this, it suffices to prove that 

(un) is bounded in  1

0H  . Indeed, up to a subsequence 

we obtain: 

 

 

 

 

1

0

2

. .

n

n

n

u u weakly in H

u u stongly in L

u u a e in

 

 

 

 

 

Moreover, by the trace theorem: 

 

0 .u on   

 

Clearly (4.5) implies that: 

 

   
2

, , 0n n n n nI u u u f x u u


     (4.6) 

 

and: 
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     1

0. , 0 ,n na x u f x u for all H  
 

        (4.7) 

 

that is: 

 

      , 0 .n ndiv a x u f x u in       (4.8) 

 

Note that by (F2), f(x, un)  f(x, u) in L2() and in 

view of the L2()-convergence of (un): 

 

   , , .n nf x u u f x u u
 

   

 

and then (4.8) gives: 

 

      ,ndiv a x u f x u in      (4.9) 

 

and so: 
 

    , .div a x u f x u in     (4.10) 

 

From (4.10) and by taking u as test function, we get: 

 

 
2

, 0.u f x u u


   (4.11) 

 

Using (4.6) and (4.10), we have ||un||2  ||u||2 which 

insures that un  u in  1

0H  . 

To finish the proof, we have to prove that the (PS)-

sequence (un) is bounded in  1

0H  . From (4.4) and (3.2), 

we have only to prove that (un) is bounded in L2(). We 

suppose, by contradiction, that ||un||2  + and let: 

 

2

2

, .n
n n n

n

u
w k u

u
   (4.12) 

 

We have: 

 

 
 

2

2 2

1 1
lim lim , 0.

2

n

n ndn n
n n

I u
w F x u

k k  

 
   

 
  (4.13) 

 

By (3.2),    21/ ,n nk F x u
  is bounded and so (4.13) 

shows that wn is bounded in  1

0H  . 

Let  1

0w H  be such that: 

 

 

 

 

1

0

2

. .

n

n

n

w w weakly in H

w w strongly in L

w w a e in

 

 

 

 

 

We claim that: 

   .div a x w w in     (4.14) 

 

For the proof of the claim, we divide (4.7) by kn, then 

we get: 

 

     1

0

1
. , 0 .n n

n

a x w f x u for all H
k

  
 

      

 (4.15) 

 

Also, we have: 

 

   . . .na x w a x w 
 

       (4.16) 

 

If we prove that  
1

, n

n

f x u
k

 converges (up to 

subsequence) to ℓw+ in L2(), then (4.14) follows. 

By (F2),  
1

, n n

n

f x k w
k

 converges to ℓw+ in the set: 

 

      / 0 .nx w x w x and w x    

 

If wn(x)  w(x) and w(x) = 0, from (3.2) we deduce 

that  
1

, n n

n

f x k w
k

 converges to zero. Thus  
1

, n

n

f x u
k

 

converges to ℓw+ a.e. in . 

Since wn  w in L2(), by Theorem IV.9 (Brezis, 

2010), wn is dominated in L2() (up to subsequence) and 

then  
1

, n n

n

f x k w
k

 is dominated and then we conclude 

that  
1

, n n

n

f x k w
k

 converges to ℓw+ in L2() and so the 

propriety 4.14 is proved and we get: 

 

  
0 .

div a x w w in

w on

   


 

 (4.17) 

 

By the maximum principle, w > 0 and then w is a 

solution of: 

 

  

2

0

1

div a x w w in

w on

w


   


 


 

 (4.18) 

 

and then w = 1 and ℓ = 1, which contradicts the fact 

that 1 < ℓ < .  

Proof of the Theorem 2.2 

In this case ℓ = +. To prove the existence of critical 

point of the functional I, let (un) a Palais Smale sequence 
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satisfying (4.4) and (4.7). Following the same procedures 

as in the proof of Theorem 2.1 (ii), we have to prove that 

the sequence (un) is bounded in  1

0H  . By 

contradiction, suppose that (un) is not bounded in 

 1

0H  . Let c a positive real number and consider: 

 

1
, .n n n n

n

k w k u
c u

   (4.19) 

 

wn is bounded in  1

0H  , then there exists  1

0w H   

such that, up to subsequence: 
 

 

 

 

1

0

2 ,

. .

n

n

n

w w weakly in H

w w strongly in L

w w a e in

 

 

 

 

 
By Lemma 2, we have: 

 

 2 ,nw w stronglyin L    

 
and: 
 

    . . .nw x w x a e in    

 

We claim that: 

 

  0 . . .w x a e in    (4.20) 

 

Indeed, let 1 = {x  , w+(x) = 0} and 2 = {x ; 

w+(x) > 0}. 

By (4.19),  nu x  + a.e. in 2 so by (F2), for a 

given K > 0 and n large enough we have: 

 

  
 

     
2 2

0

,
.

n

n

n

f x u x
w x K w x for n n

u x



 


   (4.21) 

 

From (4.6) and (4.12) we get: 

 

 
 

 
 

 
 

 

2

2

2

2 2

2

2

2

2

,1
lim lim

,
lim

,
lim

n

n n n nd
n

n

n n

n

n

n n

n

f x u
w w

c u

f x u
w

u

f x u
w

u

K w

 






 





 





 















 

 

and K can be chosen large enough. So |2| = 0 and then 

w+  0 in . 

Now since w+  0, limn+   , 0nF x w x dx


 and 

hence: 

 

  2

1
lim .

2
n

n
I w

c
  (4.22) 

 

If we apply Lemma 3, we have up to subsequence: 

 

       21
1 ,

2
n n n n nI w I k u k I u

n
     (4.23) 

 

kn = 
1

nc u
 0 as n tends to +, then we have: 

 

 2

1
lim

2
n

n
I u

c 
  (4.24) 

 

this is for any c > 0 which contradict the hypothesis 

(4.4). So, the proof of the Theorem 2.2 is finished. 

Conclusion 

We have proved the existence of positive solution for 

a family of nonlinear elliptic problems by using 

Mountain Pass Theorem and critical point theory without 

addition condition on the nonlinearities of type 

Ambrosetti and Rabionovitz condition (AR) or one of its 

refinements (Ambrosetti and Rabinowitz, 1973). A 

general condition on the weight function a(x) is 

considered for the problem of equivalence of norms. We 

can also treat and discuss the same problem with a 

singular weight function and asymptotically 

nonlinearities. May be we can use what we call weighted 

Lebesgue and Sobolev spaces. 
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