Original Research Paper

The \boldsymbol{q}-Riccati Algebra

${ }^{1,2}$ Amna Hasan, ${ }^{3,4}$ Hakeem A. Othman and ${ }^{3,5}$ Sami H. Altoum
${ }^{1}$ Department of Mathematics, College of Sciences, Albaha University, KSA
${ }^{2}$ Department of Mathematics, Al neelain University, Sudan
${ }^{3}$ Department of Mathematics, AL-Qunfudhah University College, Umm Al-Qura University, Mecca, KSA
${ }^{4}$ Department of Mathematics, Rada'a College of Education and Science, University Albaydha, Albaydha, Yemen
${ }^{5}$ Academy of Engineering Sciences, Khartoum, Sudan

Article history

Received: 26-10-2019
Revised: 11-01-2020
Accepted: 13-01-2020
Corresponding Author:
Hakeem A. Othman
Department of Mathematics, AL-Qunfudhah University
College, Umm Al-Qura
University, Mecca, KSA
Email: hakim_albdoie@yahoo.com

Abstract

For $q \in(0,1)$, we introduce the q-Riccati Lie algebra. Using the q-derivative (or Jackson derivative), we give a representation of this Lie algebra.

Keywords: q-Derivative, q-Riccati Lie Algebra

Introduction

In the mathematical field of representation theory, the representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices (or endomorphisms of a vector space) in such a way that the Lie bracket is given by the commutator. More precisely, a representation of a Lie algebra g is a linear transformation:

$$
\psi: g \rightarrow M(V)
$$

where, $M(V)$ is the set of all linear transformations of a vector space V. In particular, if $V=\mathbb{R}^{n}$, then $M(V)$ is the set of $n \times n$ square matrices. The map ψ is required to be a map of Lie algebras so that:

$$
\psi[(A, B)]=\psi(A) \psi(B)-\psi(B) \psi(A)
$$

for all $A, B \in g$. Note that the expression $A B$ only makes sense as a matrix product in a representation. For example, if A and B are antisymmetric matrices, then $A B-B A$ is skew-symmetric, but $A B$ may not be antisymmetric. The possible irreducible representations of complex Lie algebras are determined by the classification of the semi simple Lie algebras. Any irreducible representation V of a complex Lie algebra g is the tensor product $V=V_{0} \otimes L$, where V_{0} is an irreducible representation of the quotient $g_{s s} \mid \operatorname{Rad}(g)$ of the algebra g and its Lie algebra radical and L is a one-dimensional representation. In the study of
representations of a Lie algebra, a particular ring, called the universal enveloping algebra, associated with the Lie algebra plays an important role. The Riccati algebra is a finite-dimensional linear space that is closed under commutator, that is R is a Lie algebra.

In recent years the q-deformation of the Heisemburg commutation relation has drawn attention. Leeuwen and Maassen (1995) and many of other researcher like (Altoum, 2018a; 2018b; Rguigui, 2015a; 2015b; 2016a; 2016b; 2018a; 2018b; Altoum et al., 2017), the purpose is to study the probability distribution of a noncommutative random variable $a+a^{*}$, where a is a bounded operator on some Hilbert space satisfying:
$a a^{*}-q a^{*} a=1$,
for some $q \in[-1,1)$. The calculation is inspired by the case, $q=0$, where a and a^{*} turn out to be the left and right shift on $l^{2}(\mathbf{N})$: In this case a and a^{*} can be quite nicely represented as operators on the Hardy class \mathcal{H}^{2} of all analytic functions on the unit disk with L^{2} limits toward the boundary. Subsequently, they find a measure $\mu_{q}, q \in[0,1)$, on the complex plane that replaces the Lebesgue measure on the unit circle in the above: μ_{q} is concentrated on a family of concentric circle, the largest of which has the radius $\frac{1}{\sqrt{1-q}}$. Their representation space (Leeuwen and Maassen, 1995) will be $\mathfrak{H}^{2}\left(\mathfrak{D}_{q}, \mu_{q}\right)$, the completion of the analytic functions on
$\mathfrak{D}_{q}=\left\{z \in \mathbb{C}|z|^{2}<\frac{1}{(1-q)}\right\}$ with respect to the inner product defined by μ_{q}. In this space annihilation operator a is represented by a q difference operator D_{q}. As q tends to $1, \mu_{q}$ will tend to the Gauss measure on \mathbb{C} and D_{q} becomes differentiation. We recall some basic notations of the language of q-calculus (Abdi, 1962; Adams, 1929; Gasper and Rahman, 1990; Jackson, 1910; Leeuwen and Maassen, 1995). For $q \in(0,1)$ and analytic $f: \mathbb{C} \rightarrow \mathbb{C}$ define operators Z and D_{q} as follows (Gasper and Rahman, 1990; Jackson, 1910; Leeuwen and Maassen, 1995):

$$
\begin{aligned}
& (Z f)(z):=z f(z), \\
& \left(D_{q} f\right)(z)=\left\{\begin{array}{l}
\frac{f(z)-f(q z)}{z(1-q)}, z \neq 0 \\
f^{\prime}(0)
\end{array}\right.
\end{aligned}
$$

In this paper, we introduce the q -Riccati Algebra. This paper is organized as follows: In Section 1, we present preliminaries include q-calculus. In Section 2, we introduce the q-Riccati algebra. In section 3 , we give a representation of this algebra.

Representation of the q-Riccati Algebra

Let $q \in(0,1)$. Then, we define the q-Riccati Lie algebra as follows:

$$
R_{q}=\langle A, B, C, D\rangle
$$

such that:

1. $[A, B]=A D$.
2. $[A, C]=[2]_{q} C D$.
3. $[B, C]=q C D$.
4. $[A, D]=0$.
5. $[B, D]=(1-q) B D$.
6. $[C, D]=(1-q)[2]_{q} C D$.

Representation of the q-Riccati Algebra

Let $M_{0, q}, M_{1, q}$ and $M_{2, q}$ given by:

$$
\begin{aligned}
& M_{0, q}=D_{q} \\
& M_{1, q}=X D_{q} \\
& M_{2, q}=X^{2} D_{q}
\end{aligned}
$$

where, D_{q} and X are defined as follows:

$$
\begin{aligned}
& D_{q} f(x)=\frac{f(x)-f(q x)}{x(1-q)} \\
& X f(x)=x f(x) .
\end{aligned}
$$

Proposition 3.1

For $q \in(0,1)$ we have:

i) $\left[M_{0, q}, M_{1, q}\right]=M_{0, q} H_{q}$
ii) $\left[M_{0, q}, M_{2, q}\right]=[2]_{q} M_{1, q} H_{q}$
iii) $\left[M_{1, q}, M_{2, q}\right]=q M_{2, q} H_{q}$
where, H_{q} is given by $H_{q} f(x)=f(q x)$

Proof

We have:

$$
\begin{aligned}
& {\left[M_{0, q}, M_{1, q}\right]=\left[D_{q}, X D_{q}\right]} \\
& =D_{q} X D_{q}-X D_{q} D_{q}
\end{aligned}
$$

But:

$$
\begin{aligned}
& D_{q} X D_{q} f(x)=D_{q}\left(x \frac{f(x)-f(q x)}{x(1-q)}\right) \\
& =\frac{1}{1-q} D_{q}(f(x)-f(q x)) \\
& =\frac{1}{1-q} \frac{f(x)-f(q x)-f(q x)+f\left(q^{2} x\right)}{x(1-q)} \\
& =\frac{1}{1-q} \frac{f(x)-2 f(q x)+f\left(q^{2} x\right)}{x(1-q)}
\end{aligned}
$$

and:

$$
\begin{aligned}
& X D_{q} D_{q} f(x)=x D_{q}\left(\frac{f(x)-f(q x)}{x(1-q)}\right) \\
& =\frac{x}{1-q}\left(\frac{\frac{f(x)-f(q x)}{x}-\frac{f(q x)+f\left(q^{2} x\right)}{q x}}{x(1-q)}\right) \\
& =\frac{1}{1-q} \frac{q f(x)-q f(q x)-f(q x)+f\left(q^{2} x\right)}{q x(1-q)} .
\end{aligned}
$$

Then, we obtain:

$$
\begin{aligned}
& {\left[M_{0, q}, M_{1, q}\right] f(x)=\frac{f(q x)(1-q)-(1-q) f\left(q^{2} x\right)}{q x(1-q)^{2}}} \\
& =\frac{f(q x)-f\left(q^{2} x\right)}{q x(1-q)} \\
& =D_{q} f(q x) \\
& =D_{q} H_{q} f(x) .
\end{aligned}
$$

But:

$$
\begin{aligned}
& D_{q} X^{2} D_{q} f(x)=x D_{q}\left(x^{2} \frac{f(x)-f(q x)}{x(1-q)}\right) \\
& =\frac{1}{1-q} D_{q}(x f(x)-x f(q x)) \\
& =\frac{1}{1-q}\left(\frac{x f(x)-x f(q x)}{x(1-q)}-\frac{x q f(q x)-x q f\left(q^{2} x\right)}{x(1-q)}\right) \\
& -\frac{1}{(1-q)^{2}}\left(f(x)-(1+q) f(q x)+q f\left(q^{2} x\right)\right)
\end{aligned}
$$

Similarly, we get:

$$
\begin{aligned}
& X^{2} D_{q}^{2} f(x)=x^{2} D_{q}\left(\frac{f(x)-f(q x)}{x(1-q)}\right) \\
& =\frac{x^{2}}{1-q}\left(\frac{\frac{q f(x)-q f(q x)}{q x}-\frac{f(q x)+f\left(q^{2} x\right)}{q x}}{x(1-q)}\right) \\
& =\frac{1}{q(1-q)}\left(q f(x)-(1+q) f(q x)+f\left(q^{2} x\right)\right)
\end{aligned}
$$

Which gives:

$$
\begin{aligned}
& {\left[M_{0, q}, M_{2, q}\right]=\frac{1}{q(1-q)^{2}}\left((1+q)(-q+1) f(q x)+\left(q^{2}-1\right) f\left(q^{2} x\right)\right)} \\
& =x(1+q)\left(\frac{f(q x)-f\left(q^{2} x\right)}{q x}\right) \\
& =x[2] q D_{q} f(q x) \\
& =[2] q X D_{q} H_{q} f(q x)
\end{aligned}
$$

We have:

$$
\begin{aligned}
& {\left[M_{1, q}, M_{2, q}\right] f(x)=\left[X D_{q}, X^{2} D_{q}\right]} \\
& =X D_{q} X^{2} D_{q}-X^{2} D_{q} X D_{q}
\end{aligned}
$$

$$
\begin{aligned}
& X D_{q} X^{2} D_{q} f(x)=x D_{q}\left(\frac{x f(x)-x f(q x)}{(1-q)}\right) \\
& =\frac{x}{1-q}\left(\frac{x f(x)-x f(q x)-q x f(q x)+q x f\left(q^{2} x\right)}{x(1-q)}\right) \\
& =\frac{x}{(1-q)^{2}}\left(f(x)-(1+q) f(q x)+q f\left(q^{2} x\right)\right)
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& X^{2} D_{q} X D_{q} f(x)=x^{2} D_{q}\left(\frac{f(x)-f(q x)}{(1-q)}\right) \\
& =\frac{x^{2}}{1-q}\left(\frac{f(x)-f(q x)-f(q x)-f\left(q^{2} x\right)}{x(1-q)}\right) \\
& =\frac{x}{q(1-q)^{2}}\left(f(x)-2 f(q x)+f\left(q^{2} x\right)\right)
\end{aligned}
$$
\]

Then, we get:

$$
\begin{aligned}
& {\left[M_{1, q}, M_{2, q}\right] f(x)=\frac{x}{q(1-q)^{2}}\left((1-q) f(q x)-(q-1) f\left(q^{2} x\right)\right)} \\
& =\frac{x}{(1-q)}\left(f(q x)-f\left(q^{2} x\right)\right) \\
& =q x^{2}\left(\frac{f(q x)-f\left(q^{2} x\right)}{q x(1-q)}\right) \\
& =q x^{2} D_{q} f(q x) \\
& =q X^{2} D_{q} H_{q} f(x) .
\end{aligned}
$$

Proposition 3.2

For $q \in(0,1)$ we have:
i) $\quad\left[M_{0, q}, H_{q}\right]=0$.
ii) $\left[M_{1, q}, H_{q}\right]=(1-q) M_{1, q} H_{q}$.
iii) $\left[M_{2, q}, H_{q}\right]=(1-q)[2]_{q} M_{2, q} H_{q}$.

Proof

We have:

$$
\begin{aligned}
& {\left[D_{q}, H_{q}\right] f(x)=D_{q} H_{q} f(x)-H_{q} D_{q} f(x)} \\
& =D_{q} f(q x)-H_{q}\left(\frac{f(x)-f(q x)}{x(1-q)}\right) \\
& =\frac{f(q x)-f\left(q^{2} x\right)}{q x(1-q)}-\frac{f(q x)-f\left(q^{2} x\right)}{q x(1-q)} \\
& =0 .
\end{aligned}
$$

Then, we get:

$$
\left[M_{0, q}, H_{q}\right]=0
$$

We have:

$$
\begin{aligned}
& {\left[X D_{q}, H_{q}\right] f(x)=X D_{q} H_{q} f(x)-H_{q} X D_{q} f(x)} \\
& =x D_{q} f(q x)-H_{q}\left(x D_{q} f(x)\right) \\
& =x D_{q} f(q x)-q x D_{q} f(q x) \\
& =(1-q) X D_{q} H_{q} f(x) .
\end{aligned}
$$

Then, we get:

$$
\left[M_{0, q}, H_{q}\right]=(1-q) M_{1, q} H_{q} .
$$

We have:

$$
\begin{aligned}
& {\left[X^{2} D_{q}, H_{q}\right] f(x)=X^{2} D_{q} H_{q} f(x)-H_{q}\left(X^{2} D_{q} f(x)\right)} \\
& =x^{2} D_{q} f(q x)-(q x)^{2} D_{q} f(x) \\
& =\left(1-q^{2}\right) X^{2} D_{q} H_{q} f(x) \\
& =(1-q)[2]_{q} X^{2} D_{q} H_{q} f(x) .
\end{aligned}
$$

Then, we obtain:

$$
\left[M_{2, q}, H_{q}\right]=(1-q)[2]_{q} M_{2, q} H_{q} .
$$

which complete the proof.
Now, we give the representation theorem of the qRiccati algebra.

Theorem 3.3
Let $\varphi: R_{q} \rightarrow g l\left(\mathfrak{H}^{2}\left(\mathfrak{D}_{q}, \mu_{q}\right)\right)$ a linear mapping such that:

$$
\begin{aligned}
& \varphi(A)=M_{0, q} \\
& \varphi(B)=M_{1, q} \\
& \varphi(C)=M_{2, q} \\
& \varphi(D)=H_{q} .
\end{aligned}
$$

Then, $\left(\mathfrak{H}^{2}\left(\mathfrak{D}_{q} ; \mu_{q}\right), \varphi\right)$ is a representation of R_{q}.

Proof

The proof follows from Proposition 3.1 and Proposition 3.2.

Author's Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished material. The corresponding author confirms that all of the other authors have read and approved the manuscript and no ethical issues involved.

References

Abdi, W.H., 1962. On certain q-difference equations and q -Laplace transforms. Proc. Nat. Inst. Sci. India Acad., 28: 1-15.

Adams, C.R., 1929. On the linear ordinary q-difference equation. Am. Math. Ser., 30: 195-205.
DOI: 10.2307/1968274
Altoum, S.H., 2018a. q-deformation of transonic gas equation. J. Math. Stat., 14: 88-93.
DOI: 10.3844/jmssp.2018.88.93
Altoum, S.H., 2018b. q-deformation of transonic gas equation. Am. J. Applied Sci., 15: 261-266.
DOI: 10.3844/ajassp.2018.261.266
Altoum, S.H., H.A. Othman and H. Rguigui, 2017. Quantum white noise Gaussian kernel operators. Chaos Solitons Fractals, 104: 468-476.
DOI: 10.1016/j.chaos.2017.08.039
Gasper, G. and M. Rahman, 1990. Basic hypergeometric series. Vol 35 of encyclopedia of mathematics and its application. Cambridge Universty Press, Cambridge.
Jackson, H.F., 1910. q-Difference equations. Am. J. Math., 32: 305-314. DOI: 10.2307/2370183
Leeuwen, H.V. and H. Maassen, 1995. A qdeformation of the Gauss distribution. J. Math. Phys., 36: 4743-4756. DOI: 10.1063/1.530917
Rguigui, H., 2015a. Quantum Ornstein-uhlenbeck semigroups, Qunantum Studies: Math. Foundat., 2: 159-175. DOI: 10.1007/s40509-014-0023-5
Rguigui, H., 2015b. Quantum λ-potentials associated to quantum Ornstein - Uhlenbeck semigroups. Chaos Solitons Fractals, 73: 80-89.
Rguigui, H., 2016a. Characterization of the QWNconservation operator. Chaos Solitons Fractals, 84: 41-48. DOI: 10.1016/j.chaos.2015.12.023
Rguigui, H., 2016b. Wick differential and Poisson equations associated to the QWN-Euler operator acting on generalized operators. Math. Slo., 66: 1487-1500. DOI: $10.1515 / \mathrm{ms}-2016-0238$
Rguigui, H., 2018a. Fractional number operator and associated fractional diffusion equations. Math. Phys. Anal. Geom., 21: 1-17.
DOI: 10.1007/s11040-017-9261-1
Rguigui, H., 2018b. Characterization theorems for the quantum white noise gross Laplacian and applications. Complex Anal. Oper. Theory, 12: 1637-1656. DOI: $10.1007 / \mathrm{s} 11785-018-0773-\mathrm{x}$

[^0]: Similarly, we have:

