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Introduction 

In the mathematical field of representation theory, the 

representation of a Lie algebra is a way of writing a Lie 

algebra as a set of matrices (or endomorphisms of a 

vector space) in such a way that the Lie bracket is given 

by the commutator. More precisely, a representation of a 

Lie algebra g is a linear transformation: 

 

 : g M V   

 

where, M(V) is the set of all linear transformations of a 

vector space V. In particular, if V = n , then M(V) is the 

set of n  n square matrices. The map  is required to be 

a map of Lie algebras so that: 

 

         ,A B A B B A          

 

for all A, B  g. Note that the expression AB only makes 

sense as a matrix product in a representation. For example, 

if A and B are antisymmetric matrices, then AB-BA is 

skew-symmetric, but AB may not be antisymmetric. The 

possible irreducible representations of complex Lie 

algebras are determined by the classification of the semi 

simple Lie algebras. Any irreducible representation V of a 

complex Lie algebra g is the tensor product V = V0L, 

where V0 is an irreducible representation of the quotient 

gss|Rad(g) of the algebra g and its Lie algebra radical and 

L is a one-dimensional representation. In the study of 

representations of a Lie algebra, a particular ring, called 

the universal enveloping algebra, associated with the Lie 

algebra plays an important role. The Riccati algebra is a 

finite-dimensional linear space that is closed under 

commutator, that is R is a Lie algebra. 

In recent years the q-deformation of the Heisemburg 

commutation relation has drawn attention. Leeuwen and 

Maassen (1995) and many of other researcher like 

(Altoum, 2018a; 2018b; Rguigui, 2015a; 2015b; 2016a; 

2016b; 2018a; 2018b; Altoum et al., 2017), the purpose 

is to study the probability distribution of a non-

commutative random variable a + a*, where a is a 

bounded operator on some Hilbert space satisfying: 
 

* * 1,aa qa a   (1) 
 

for some q  [-1, 1). The calculation is inspired by the 

case, q = 0, where a and a* turn out to be the left and 

right shift on l2(N): In this case a and a* can be quite 

nicely represented as operators on the Hardy class  2 of 

all analytic functions on the unit disk with L2 limits 

toward the boundary. Subsequently, they find a measure 

q, q[0, 1), on the complex plane that replaces the 

Lebesgue measure on the unit circle in the above: q is 

concentrated on a family of concentric circle, the largest 

of which has the radius 
1

1 q
. Their representation 

space (Leeuwen and Maassen, 1995) will be H2(Dq, q), 

the completion of the analytic functions on 
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D  with respect to the inner 

product defined by q. In this space annihilation operator 

a is represented by a q difference operator Dq. As q tends 

to 1, q will tend to the Gauss measure on  and Dq 

becomes differentiation. We recall some basic notations of 

the language of q-calculus (Abdi, 1962; Adams, 1929; 

Gasper and Rahman, 1990; Jackson, 1910; Leeuwen and 

Maassen, 1995). For q(0, 1) and analytic f:  define 

operators Z and Dq as follows (Gasper and Rahman, 1990; 

Jackson, 1910; Leeuwen and Maassen, 1995): 
 

    

  

   

 

 

: ,

, 0
1

0

q

Zf z zf z

f z f qz
z

z qD f z

f



 


 
 

 

 
In this paper, we introduce the q-Riccati Algebra. 

This paper is organized as follows: In Section 1, we 

present preliminaries include q-calculus. In Section 2, we 

introduce the q-Riccati algebra. In section 3, we give a 

representation of this algebra. 

Representation of the q-Riccati Algebra 

Let q(0, 1). Then, we define the q-Riccati Lie 

algebra as follows: 
 

, , ,qR A B C D  

 

such that: 
 
1. [A, B] = AD. 

2. [A,C] = [2]qCD. 

3. [B,C] = qCD. 

4. [A, D] = 0. 

5. [B, D] = (1-q)BD. 

6. [C, D] = (1-q)[2]qCD. 

 

Representation of the q-Riccati Algebra 

Let M0,q, M1,q and M2,q given by: 

 

0,

1,

2

2,

q q

q q

q q

M D

M XD

M X D







 

 

where, Dq and X are defined as follows: 

 

 
   

 

   

1

.

q

f x f qx
D f x

x q

Xf x xf x








 

Proposition 3.1 

For q(0, 1) we have: 

 

i) [M0,q, M1,q] = M0,qHq 

ii) [M0,q, M2,q] = [2]qM1,qHq 

iii) [M1,q, M2,q] = qM2,qHq 

 

where, Hq is given by Hq f(x) = f(qx) 

Proof 

We have: 

 

0, 1,, ,q q q q

q q q q

M M D XD

D XD XD D

      

 
 

 

But: 

 

 
   

 

    

       
 

     
 

2

2

1

1

1

1

1 1

21

1 1

q q q

q

f x f qx
D XD f x D x

x q

D f x f qx
q

f x f qx f qx f q x

q x q

f x f qx f q x

q x q

 
    

 


  


 

 


 

 

 

and: 

 

 
   

 

       

 

       
 

2

2

1

1 1

1
.

1 1

q q q

f x f qx
XD D f x xD

x q

f qx f q xf x f qx

x x qx

q x q

qf x qf qx f qx f q x

q qx q

 
    

 
 
 

   
 
 
 

  


 

 

 
Then, we obtain: 

 

 
      

 

   
 

 

 

2

0, 1, 2

2

1 1
,

1

1

.

q q

q

q q

f qx q q f q x
M M f x

qx q

f qx f q x

qx q

D f qx

D H f x

  
   












 

 
But: 
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2 2

2

2

2

1

1

1

1

1 1 1

1
1

1

q

q q q

f x f qx
D X D f x xD x

x q

D xf x xf qx
q

xqf qx xqf q xxf x xf qx

q x q x q

f x q f qx qf q x
q

 
    

 


 
  
   
 

   


 

 

Similarly, we get: 

 

 
   

 

       

 

 
        

2 2 2

2

2

2

1

1 1

1
1

1

q q

f x f qx
X D f x x D

x q

f qx f q xqf x qf qx

x qx qx

q x q

qf x q f qx f q x
q q

 
    

 
 
 

   
 
 
 

   


 

 

Which gives: 

 

 
         

 
   

   

   

2 2

0, 2, 2

2

1
, 1 1 1

1

1

2

2

q q

q

q q

M M q q f qx q f q x
q q

f qx f q x
x q

qx

x qD f qx

qXD H f qx

        


 
  
 
 





 

 

We have: 

 

  2

1, 2,

2 2

, ,q q q q

q q q q

M M f x XD X D

XD X D X D XD

      

 
 

 

 
   

 

       
 

 
        

2

2

2

2

1

1 1

1
1

q q q

xf x xf qx
XD X D f x xD

q

xf x xf qx qxf qx qxf q xx

q x q

x
f x q f qx qf q x

q

 
    

   
 
  
 

   


 

 

Similarly, we have: 
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1

1 1

2
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q q q

f x f qx
X D XD f x x D

q

f x f qx f qx f q xx

q x q
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f x f qx f q x

q q

 
    

   
 
  
 

  


 

 

Then, we get: 

 

 
 

        

 
    

   
 

 

 

2

1, 2, 2

2

2

2

2

2

, 1 1
1

1

1

.

q q

q

q q

x
M M f x q f qx q f q x

q q

x
f qx f q x

q

f qx f q x
qx

qx q

qx D f qx

qX D H f x

      


 


 
 
 
 





 

 

Proposition 3.2 

For q(0, 1) we have: 

 

i) [M0,q, Hq] = 0. 

ii) [M1,q, Hq] = (1-q)M1,qHq. 

iii) [M2,q, Hq] = (1-q)[2]qM2,qHq. 

 

Proof 

We have: 

 

     

 
   

 

   
 

   
 

2 2

,

1

1 1

0.

q q q q q q

q q

D H f x D H f x H D f x

f x f qx
D f qx H

x q

f qx f q x f qx f q x

qx q qx q

    

 
     

 
 

 



 

 

Then, we get: 

 

0, , 0.q qM H     

 

We have: 

 

     

    

   

   

,

1 .

q q q q q q

q q q

q q

q q

XD H f x XD H f x H XD f x

xD f qx H xD f x

xD f qx qxD f qx

q XD H f x
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Then, we get: 

 

 0, 1,, 1 .q q q qM H q M H      

 

We have: 

 

      

     

   

    

2 2 2

22

2 2

2

,

1

1 2 .

q q q q q q

q q

q q

q qq

X D H f x X D H f x H X D f x

x D f qx qx D f x

q X D H f x

q X D H f x

    

 

 

 

 

 

Then, we obtain: 

 

  2, 2,, 1 2 .q q q qq
M H q M H      

 

which complete the proof. 

Now, we give the representation theorem of the q-

Riccati algebra. 

Theorem 3.3 

Let : Rq  gl(H2(Dq, q)) a linear mapping such that: 

 

 

 

 

 

0,

1,

2,

.

q

q

q

q

A M

B M

C M

D H

















 

 

Then, (H2(Dq; q), ) is a representation of Rq. 

Proof 

The proof follows from Proposition 3.1 and 

Proposition 3.2. 
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