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Abstract: In this study, the transient analysis of the M/M/C queueing 

system has been made under the provision of servers' single vacation and 

loss of impatient customers. Customers arrive in the system in the Poisson 

process and are served by multiple servers in an exponential distribution 

process. Customers are served in the chronological order of their arrival. 

The main purpose of this investigation is to derive (i) the probability 

distribution functions, (ii) the formulas for the expected number of the 

customers in the system as well as in queue in the explicit form, (iii) the 

expected sojourn time and the expected time spent in waiting in the 

queue. Moreover, the sensitiveness of performance measures due to the 

small change of vacation rate γ, impatient rate ξ, and server’s waiting rate 

η has also been shown graphically. To show the applicability of the model 

under study, ample numerical results have been illustrated. The error 

computations have also been cited during the vacation period and busy 

period. Queueing model understudy may have its applications in 

multichannel telecommunications, security systems in the airport, train 

stations, and the manufacturing system. 
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Introduction 

In real-life, many queueing situations arise in which 

there may be a tendency for customers to be discouraged 

by a long queue. As a result, the customers either decide 

not to join the queue (balking) or depart after joining the 

queue without getting service due to impatience 

(reneging). Balking and reneging are not only common 

phenomena in queues rising in daily activities, but also in 

various machine models it has been prevailing. Many 

practical queueing systems especially those with balking 

and reneging have been widely applied to many real-life 

problems, such as the hospital emergency rooms handling 

critical patients and the inventory systems with storage of 

perishable goods. Several researchers in the past have 

studied queueing models with impatient customers, 

where the cause of impatience was considered to be either 

a heavy load of the server leading to a long wait that is 

experienced by the customers already in a queue or due 

to anticipation of impatience by a customer upon arrival 

so it is worthwhile to report some of the works done on the 

line. Perel and Yechiali (2010) analyzed customers' 

impatience that arises as a result of a slowdown in the rate of 

the server in a 2-phases (fast and slow) Markovian tandem 

environment. Dequan Yue et al. (2006) analyzed M/M/c/N 

queueing system with balking, reneging, and synchronous 

vacations of partial servers. Astakhov and Pichkurova 

(2021) dealt with the deformation characteristics of 

reinforcement coupling with concrete for railway transport 

structures and they presented the results of experimental 

studies of cable armature coupling in pres-tress cylindrical 

samples. Shin and Choo (2009) analyzed numerically an 

M/M/s queue with balking, reneging, and retrials by using an 

algorithm based on the generalized truncation method. A 

vacation queueing system is one in which a server may 

become unavailable for a random period from a primary 

service center. The time away from the primary service 

center is termed vacation. In some cases, the vacation can be 

occurred due to a server breakdown, which means that the 

system must be repaired and brought back to service. It can 

also be a deliberate action taken to utilize the server in a 

secondary service center when there are no customers 

present at the primary service center. Several authors have 

been attracted to the contributions to vacation queueing 

systems due to their applications in modern complex 

technological advancements. Wu and Ke (2013) studied an 

infinite buffer M/M/c queueing system under a multiple-

threshold synchronous vacation policy with partial servers 
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taking a synchronous single vacation when the number of 

customers in the system is less than a pre-fixed threshold and 

obtained a closed-form expression of the rate matrix by 

using the matrix-analytical method. Manoharan and Mojid 

(2017) contributed to a stationary analysis of a multi-server 

queue with multiple working vacations. 

Shanmugasundaram and Venkatesh (2016) investigated a 

multi-server queue with a single vacation policy in a fuzzy 

environment and used the approximation technique in the 

form of an algorithm to define membership functions of the 

performance measures such as expected waiting time in the 

queue and impatient customers. Raj and Chandrasekhar 

(2015) studied N-policy multiple vacation queueing system 

with breakdown and repair. Wu and Ke (2014) considered a 

multi-server machine repair queueing problem with M 

operating machines and S standbys in which R repairmen 

were responsible for supervising these machines and 

operating (V, R) vacation policy. Recently Bouchentouf et al. 

(2020) developed the M/M/1/N/DWN Markovian 

queueing model with the assumptions of Bernoulli 

scheduled vacation interruption and working vacation 

after the busy period under balking and reneging and 

determined the optimal service rates and vacation rates. 

Panta et al. (2021) developed a multi-server Markovian 

queueing model under the fuzzy environment with the 

provision of reneging of customers and they derived some 

performance measures in explicit form. 

Sindhu et al. (2021) proposed an exponentiated 

transformation of Gumbel Type-II (ETGTII) distribution 

for modeling COVID-19 and model parameters were 

estimated by utilizing the maximum likelihood method 

and Bayesian paradigm. Kumar and Madheswari (2002) 

obtained a transient solution for the system size in the 

M/M/2 queue with the possibility of catastrophes at the 

service stations using the probability generating function 

and Modified Bessel function. Kumar et al. (2014) 

discussed the transient probabilities for a single server 

queueing system subject to catastrophic failures and 

impatience of customers. Ammar (2017) discussed the 

transient solution of an M/M/1 vacation queue with a 

waiting server and impatient customer and he derived 

closed-form explicit expressions analytically for the 

system size probabilities, mean and variance in terms of 

Modified Bessel functions employing Laplace transform, 

continued fractions, generating functions. In the same 

way, Ammar (2015) carried out the transient analysis of 

an M/M/1 queue with impatient customers and multiple 

vacations where customers' impatience was due to an 

absence of a server upon arrival. Liu et al. (2021) 

discussed the cooperative hypercube queueing model for 

emergency service systems and verified the accuracy of 

the model by applying Arena simulation software. Sah and 

Ghimire (2015) analyzed the transient M/Ek/1 queueing 

model and obtained some of the performance measures of 

the model by using the probability generating function. 

Al-Seedy et al. (2009) presented the transient solution of 

an M/M/c queue with balking and reneging using 

generating function technique in terms of modified Bessel 

functions. Jindal et al. (2016) analyzed the time-

dependent infinite waiting space multi-server feedback 

queueing problem with reneging. They demonstrated the 

technique of obtaining stability conditions and 

probability distributions of the states of a two-

dimensional non-homogeneous queueing system by using 

the underlying Quasi-Birth-Death (QBD) structure and the 

matrix-geometric approach. A detailed study of the matrix-

geometric approach can be made in Neuts (1981). 

Shoukry et al. (2018) used the matrix-geometric 

method to derive the stationary distribution of the M/M/1 

queueing model with breakdown using the transition 

structure of its Markov chain. Working vacation policy is 

the rule under which the server resumes its work at the 

normal service rate after the end of the vacation, only if 

the customers are waiting in the queue. Liu and Hlynka 

(2018) formulated a queueing model as a quasi-birth-

death process and made the use of the partial probability 

generating functions for the distribution of queue sizes 

when the server is in a working vacation period and 

regular busy period. They also obtained many 

performance measures such as the mean queue length and 

mean waiting time by using matrix-analytic methods for 

the solution of an arising system of differential equations. 

Vijayashree and Janani (2015) considered an M/M/c 

queueing model subject to multiple exponential working 

vacations and they obtained the time-dependent 

probabilities of the number of customers in the system in 

the Laplace domain using the matrix-geometric method. 

Shah et al. (2009) studied the performance evaluation of 

multistage service systems using the matrix-geometric 

method. Abate and Whitt (1992) suggested the Fourier-

series method for computation of cumulative distribution 

functions and probability mass functions numerically by 

inverting the characteristics functions, the Laplace 

transform, and the generating functions. They presented 

the numerical technique for inversion of Laplace 

transform and identified the Poisson summation formula for 

discretization error associated with the Trapezoidal rule. 

Recently, Haralambie and Mandjes (2019) introduced a 

class of Markov processes modeling the time evolution of 

the network configuration of any open, work-conservative 

Multi-Class Queueing Network (McQN) having 

exponential service times and Poisson input. 

The scope and purpose of this study are to derive (i) 

the probability distribution functions, (ii) the formulas for 

the expected number of the customers in the system as 

well as in queue in the explicit form, (iii) the expected 

sojourn time and the expected time spent in waiting in the 

queue. Moreover, the sensitiveness of performance 

measures due to the small change of vacation rate γ, 

impatient rate ξ, and server’s waiting rate η has also been 
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shown graphically. To show the applicability of the 

model under study, ample numerical results have been 

illustrated. Our investigation is novel in the way that we 

have triggered the problem in the case of multi-servers 

with a time-dependent framework. The techniques we 

have used have rarely been applied. 

Model Description 

Mathematical Model 

The M/M/c vacation queueing model with a waiting 

server and impatient customers can be modeled by a two 

dimensional continuous-time Markov process {X(t),n(t),t ≥ 

0}, where n(t) is the number of units in the system at time t 

and X(t) is the system state at time t. If X(t) = 0, the server is 

on vacation, whilst if X(t) = 1, the server is working and 

serving customers. Let Pi,j(t) = P[X(t) = i,n(t) = j] denote the 

system state in the transient probabilities. 

Basic Assumptions 

For our model we have made the following 

assumptions: 
 
(a) Customers arriving according to a Poisson process with 

rate λ, the server has an independently and identically 

distributed exponential service time distribution with 

the rate µ and mean service discipline is FCFS and, 

there is infinite room for customers to wait 

(b) When the busy period is ended the server waits a 

random duration of time before beginning a vacation. 

This waiting duration follows the exponentially 

distributed with the density function is given by w(t) = 

ηe−ηtt ≥ 0, η ≥ 0, where η is the waiting rate of a server 

(c) It is assumed that the interval of vacation has an 

exponential distribution with the density function is 

given by v(t) = γe−γt t ≥ 0, γ ≥ 0, where γ is the vacation 

rate of a server 

(d) When the server is on a vacation, each customer sets 

up an impatience timer independently of the other 

customers in the system, which is assumed to be 

exponentially distributed with the density function is 

given by s(t) = ξe−ξt t ≥ 0, ξ ≥ 0, where ξ is the 

impatience rate of a customer 

(e) If the impatience time expires while the server is 

on a vacation, the customer abandons the queue, 

never to return 
 

The system of differential equations for the model 

obtained from the above transition diagram is: dP0,0(t) 
 

0,0( )
( ) 0,0( ) 1,0( ) 0,1( )

dP t
P t P t P t

dt
   =− + + +   (1) 

 

1

1

0, ( )
0, ( ) ( )

0, ( ) 0, ( ); 1

n

n

dP n t
P t

dt

P n t P t n

   



−

+

= − + +

+ 

  (2) 

1,0 1,1

1, ( )
0,0( ) ( ) ( ) ( )

dP n t
P t P t P t

dt
   = − + +  (3) 

 

( )1, 1 0,

1, ( )
( ) ( )

1, ( ) ( 1) 1, 1( ) 1

n n

dP n t
P t P t n

dt

P n t n P n t for n c

   



−= + − +

+ + +   −

  (4) 

 

( )

1, 1 0,

1, 1

1, ( )
( ) ( )

1, ( ) ( ) .

n n

n

dP n t
P t P t

dt

c P n t c P t for n c

 

  

−

+

= + −

+ + 

  (5) 

 

Let Pn(t) = [P0,n(t), P1,n(t)]; n = 0,1,2,···. 

The above system of equations can be represented in 

the matrix form as: 

 

( )
( ) ,

d p t
P t

dt
=   (6) 

 

where, ( ) ( ) ( ) ( )0 1 2 ...P t P t P t P t =   and the infinitesimal 

generator Q is given by: 

 

0

1 1

2 2

3 3

1 1

. . .

. . .

. . .

. . .

. . .

. . .

c c

A C

B A C

B A C

B A C

B A C

B A C

− −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
Where: 
 

( )

( )

( )

( )

( )

( )

0

0
,

0 0

; 1,2,3,..., 1,
0

0
; 1,2,3,..., 1,

0

0
,

0 0

n

n

A C

A n c
n

B n c
n

A B
c c

   

  

   

 





    

  

 − +  
= =   

+   

 − + +
= = − 

+ 

 
= = − 
 

 − + +  
= =   

+   

 

 

Transient Analysis 

Let, ( )ˆ
nP s denote the Laplace transform of ( )ˆ

nP t  for 

n = 0,1,2,···. Laplace transform of Eq. (6) 
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0 0 1 2

( ) (0) ( ) ( ) (0)

( )[ ] (0) (0) (0)...

sP s P P s P s sI P

P s sI P P P

− =  − = −

 
   − =−
  

 

 

 
where, Q−sI is: 
 

0

1 1

2 2

3 3

1 1

. . .

. . .

. . .

. . .

. . .

. . .

c c

A sI C

B A sI C

B A sI C

B A sI C

B A sI C

B A sI C

− −

 −
 

− 
 

− 
 −
 
 
 
 
 
 

− 
 

− 
 
 
 
 
 
 
   

 

0 1 1 0

0 1 1

( )( 0 ) ( ) (0)

. . ( ) ( 0 ) ( ) , 1,0 ,

P s A sI P s B P

i e P s A sI P s B e wheree

 − + = −

 − + = = − 

 (7) 

 

0 1 1 2 2

1 2 2 3 3

2 3 3 4 4

( ) ( )( ) ( ) 0,

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0,

.

.

.

P s C P s A sI P s B

P s C P s A sI P s B

P s C P s A sI P s B

+ − + =

+ − + =

+ − + =

 
 

2 1

1 1

1 2

( ) 1( )( ) ( ) 0,

( ) ( )( ) ( ) 0,

( ) ( )( ) ( ) 0,

.

.

.

c c c

c c c

c c

P s C Pc s A sI Pc s B

P s C P s A sI P s B

P s C P s A sI P s B

− −

− +

+ +

+ − − + =

+ − + =

+ − + =  (8) 

 

1 1 1

1 1

( ) ( )( ) ( ) 0,nn n n n

for n c

P s C P s A sI P s B− + +

   −

+ − + =

 (9) 

and: 

 

1 1

, 1, 2,..,

( ) ( )( ) ( ) 0nn n

for n c c c

P s C P s A sI P s B− +

= + +

+ − + =

 (10)  

 
Lemma 1 [24], the quadratic matrix equation related 

to equations represented by (10) is: 

 
2 ( ) ( )( ) 0R s B R s A sI c+ − + =  (11) 

 

has the minimal non-negative solution given by: 

 

( ) 11 12

22

( ) ( )

0 ( )

r s r s
s

r s

 
=  
 

 (12) 

 

To find r11(s), r22(s), r12(s), substituting R(s) into (11) 

which proceeds as: 

 

( )

11 12 11 12

22 22

11 12

22

11

( ) ( ) ( )( ) 0

0( ) ( ) ( ) ( )

00 ( ) 0 ( )

( ) 0 0( ) ( )

0 0 00 ( )

0 0

0 0

( ( )) ( (
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R s R s B R s A sI C

r s r s r s r s

cr s r s

sr s r s

c sr s

s
r s





    

  

   

+ − + =

     
      

    

 − + +       
+ − +         − +       

 
=  
 

− − + + +  −
 =

( )

2

2

22

)) 4. .
,

2

( ( )) ( ( )) 4. .

2

s

cµ s p cµ s cµ

r s cµ

   



  

+ + + −

− − + +  − + + −

=

 

 
Also ( ) ( ) ( )( ) ( )12 11 22 11[ ( )]  r s cµ r s r s cµ s r s + − + + = −  
 

For minimal solution: 
 

2
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2
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12

2
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12

11 1

2

1
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2
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2

( )
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2
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c
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c
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c r s c r s
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 − +
 
 

=
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=

2c  
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0
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where, 
 

2
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Again: 
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Lemma 2 [24], the matrix equation related to the 

equations represented by (9) are the following 

recurrence relation: 
 

1 1

11 12

22

( )( ) ( ) ( ) 0;1 1
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1, ( ) ;1 1
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+ ++ − + =   −
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satisfy the recurrence relation (14) then, we obtain r11

n (s), 

r12
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n (s). 
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1 1

11 12

1 1

22
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0 ( )
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then, the 
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Assuming Rc(s) = R(s), it is seen that: 
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is completely determined 
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and 

Therefore, 2 2

11 22( ), ( )c cr s r s− −  and 2
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terms of m0(s), r0(s), r1(s) for: 
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2
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2
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( ) ( )
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0 ( )

c c

cc

r s r s
R s

r s

− −

−−

 
= 
    

 

Similarly, Rc−3(s), Rc−4(s), ··· , R1(s) can be recursively 

determined in terms of m0(s), r0(s), and r1(s) which are 

already known. 
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Theorem 1 If c
λµ < 1, the Laplace transform of the 

transient state probabilities of the model under 

consideration [24], are: 

 

1
1

ˆ ˆ( ) ( ) ( );n c
cnP s P s R s n c− +
−=   (16) 

 

and: 

 

*
1 0

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( );1 1n n n nP s P s R s P s R s n c−= =   −  (17) 

 

where, R  because the 

relation (16) satisfies the Eq. (10) and the relation (17) 

satisfies the equation (9), which is shown in the 

following: 

For n ≥ c, substituting (16) in (10): 

 

1 1
ˆ ˆ ˆ( ) ( )( ) ( ) 0n n nP s C P s A sI P s B− ++ − + =

 
 

Again, for 1 ≤ n ≤ c−1, substituting the relation (17) 

in Eq. (9): 

 

1 1
ˆ ˆ ˆ( ) ( )( ) ( ) 0n n nP s C P s A sI P s B− ++ − + =  

 

Therefore, it is verified that Pˆn(s) expressed in (16) 

and (17) satisfies the governing system of differential 

equations in the Laplace domain as represented by 

equations (9) to (10). Hence from Eq. (7): 

 
1

0 0 0 1 1
ˆ ˆ( ) (0) ( )P s P sI A R s B

−

 = − −   (18) 

 

where A0, B1 is known and R1(s) can be recursively 

determined from Lemma 2. 

Thus, the transient state probabilities of the model 

under consideration are given by: 

and: 

 
*

*

0 1 0

1 1
1 0 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ),1 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ),

n n n

n c n c
n c c

P s P s R s P s R s n c

P s P s R s P s R s R s n c

−

− + − +
− −

= =   −

= = 

 

 

Where, Pˆ0(s) is given by equation (18); Rk(s), ∀ k is given 

by equation (13) and R , for n= 1,2,··· are recursively 

determined using Lemma 2. From (18), 

 

( )( ) ( )

( )( ) ( )

1

1 1 1

1

1 1 1

22
0,0

11 22 12

22
1,0

11 22 12

( )
( )

( ) ( ) ( )

( )
( )

( ) ( ) ( )

s r s
P s

s r s s r s r s

s r s
P s

s r s s r s r s

  

        

  

        

+ + −
=

+ + − + + − − +

+ + −
=

+ + − + + − − +

 (19) 

 

From the recurrence relation (17): 

0, 0, 1( ) ( );1 1n nP s P s n c−=   − (20) 

 

and: 

 

1, 0, 1 12 22 1
ˆ ˆ( ) ( ) ( ) ( )1

n n

n nP s P s r s r s n c−=   −  (21) 

 

Now, using the relation (20): 

 
1 1

0, 0,0 11

1 1 1

ˆ ˆ( ) ( ) ( )
i

nc c

n

n n i

P s P s r s
− −

= = =

=   (22) 

From the recurrence relation (16): 

 

( )
1

0, 1 0

1 1 1

0 0 0 11
1, 1 1, 0

1 1 0

ˆ ˆ( ) ( ) ( )

( ) ( ( )) ( ( ))
ˆ ˆ ˆ( ) ( ) ( )( ( ))

( ( ) ( )

n c

n c

n c n c i

n ci
n c c

P s P s m s n c

m s m s r s
P s P s P s r s

c r r s m s





− +

−

− + − + −

− +=
−

= 

= +
−


 (23) 

 

;n c  (24) 

 

Now, using relation (23): 

 

( ) ( ) ( ) ( )( )
1

0, 0,0 11 0

1

ˆ ˆ 1
c

i

n

n c n ci

P s P s r s m s n c
− 

= ==

= − +   (25) 

 

Adding the relation (22) and (25): 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

1
0

0, 0,

1

11
1

0

0,0 11 0

1 1 1

ˆ ˆ

ˆ

c

n n

n n c

cc n
n c

i

n i n ci

P s P s P s

P s P s r s s m s

− 

= =

−− 
− +

= = ==

= +

 
 = + 

 

 

 
 (26) 

 

Using the relation (21): 

 

( ) ( ) ( ) ( )
1

1, 1,1 1,2 1, 1

1

ˆ ˆ ˆ ˆ...
c

n c

n

P s P s P s P s
−

−

=

= + + +  (27) 

 

Again, using the relation (24), taking the sum from n = c 

to ∞ and add it with (27): 

 

( ) ( ) ( ) ( )
( )

( ) ( )(

( )( ) ( )( )

( ) ( ) ( )( )

11
0

1, 1, 0,0 11

1 1 1 1 0

1
1 1

0 0

1
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1

1,0 22 0
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n n

n n i
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n c i i

n c i
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n c

i

n ci

m s
P s P s P s r s
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− −

= = =

 − +
− + − −

= =

− 
− +

==

= +
−



+

  

 



 (28) 

 

The inverse transform P(t) is given by the well-known 

inversion formula, by Abate and Whitt [27]: 
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( ) ( )

( ) ( )  

( ) ( )

( )( ) ( )( )

1 ˆ
2

1 ˆ ,
2

ˆcos sin
2

ˆRe cos Im sin
2

a i
st

a i

a iu t

at

at

P t e P s ds
i

e P a iu du s a iu acomplex number

e
ut i ut P a iu du

e
P a iu ut P a iu ut du









+ 

− 

 +

−



−



−

 
=  
 

= + = +

= + +

 = + − +
 









 (29) 

 

Equation (29) can also be replaced by cosine 

transform pair: 

 

( )  ( )
0

ˆRe cosatP a iu e P t ut dt


−+ =   (30) 

 

( ) ( )( )
0

2 ˆRe cos
ate

P t P a iu ut




= +  (31) 

 

or by the sine transform pair: 

 

( )  ( )
0

ˆIm sinatP a iu e P t ut dt


−+ = −  (32) 

 

( ) ( )( )
0

2 ˆIm sin
ate

P t P a iu ut du




= − +  (33) 

 

Applying the trapezoidal rule to the Laplace transform 

inversion formula in (31), Abate and Whitt [26]: 

 

( ) ( )( )

( )
( )( )

( )( ) ( )

0

1

2 ˆRe cos

ˆRe 2 ˆRe cos .

at

at
at

h

n

e
P t P a iu ut

he P a he
P t P a inh nht



 





=

= +

  + +





 (34) 

 

Eliminate the cosine term in (34) and produce nearly 

an alternating series by letting h = 2π
t . 

Letting a = 2A
t at the same time, Abate and Whitt [26]: 

 

( ) ( )

( ) ( )( ) ( )

/ 2 / 2

1

1

2ˆ ˆRe 1 Re
2 2 2

1 ˆ ˆ, Re Re 1
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A A
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e A e A k i
P t P P

t t t t

e n i
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=



=

   +   
= + −      

      

     
= + + −     

     





 (35) 

 

With the discretization error, Abate and Whitt [26]: 

 

( ) ( )( )
1

, , 2 1 .nA

d d

n

e e P t A e P n t


−

=

 = +  (36) 

 

Which is called the Poisson summation formula with 

the bounds for two cases: first, if |P(t)| ≤ M, (i.e., the 

discretization error independent of the distribution) then, 

|ed| ≤ Me−A/(1−e−A) ≈ 3Mte−A. Second, if |P(t)| ≤ Mt, then: 

( )
( )

2

1

3
2 1 3

1

A A
nA A

d A
n

e e
e e n Mt Mt Mte

e

− −
− −

−
=

−
 +  

−
  (37) 

 

Now, replace P0(s) from (26) and P1(s) from (28) in 

(35) to obtain the approximate value of P0,n(t) and P1,n(t). 

Also, replace P0(s) from (26) and P1(s) from (28) in (36) 

for the error of probability computation. 

The formulas to find the expected number of 

customers waiting in the queue, the expected number of 

customers in the system, meantime spent waiting in 

queue, mean time spent in the system are respectively 

given in the following equations: 

 

( ) ( ) ( ) ( ) ( )0, 1,q n n

n c n c

L t n c P t n c P t
 

= =

= −  + −    (38) 

 

( ) ( ) ( )0, 1,

1 1

s n n

n n

L t n P t n P t
 

= =

=  +    (39) 

 

( )
( )

( )
q

q

L t
W t

t
=  (40) 

 

( )
( )

( )
s

s

L t
W t

t
=  (41) 

 

Numerical Interpretation 

Figures (2) and (7) show that the higher the value of 

arrival rate λ, above is the graph which is quite natural 

with real-life situations. Also, we observe in the same 

graphs that as the time passes on, the expected number of 

customers in the queue (Lq(t)) as well as in the system 

(Ls(t)) are decreasing because there have state-dependent 

service rates provisioned in the model under study. 

Figures (3), (8), (13), (18), reveal that Lq(t), Ls(t), 

Wq(t), Ws(t) are decreasing with the increase of service 

rates, as it should be. Figures (4), (9), (14), (19) 

explore that Lq(t), Ls(t), Wq(t), Ws(t) decrease as the 

values of γ increases. This can be explained by the fact 

that the increase in the vacation rate leads to an 

increase in the probability of a busy period during 

which a significant number of customers can be served. 

Figure (5), (10), (15), (20) depict that lower is the rate 

of waiting of server, the below is the graphs which imply 

that Lq(t), Ls(t), Wq(t), Ws(t) decrease faster when we 

decrease the rate η from 0.1 to 0.9. Figure (6), (11), (16), 

(21) suggest that Lq(t), Ls(t), Wq(t), Ws(t) decrease with 

time. This decrement is insignificant with the increase of 

impatience rate ξ from 0.01 to 0.9. 
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Fig. 1: State rate transition diagram 

 

 
 
Fig. 2: Time (t) versus mean number of customer in the queue 

(Lq) for different mean arrival rate λ and µ = 4, γ = 0.5, 

η = 0.6, ξ = 0.01, c = 5, N = 100 

 

 

 

Fig. 3: Time (t) versus mean number of customer in the queue 

(Lq) for different mean service rate µ and λ = 5 , γ = 0.5, 

η = 0.6, ξ = 0.01, c = 5, N = 100 

 

 

Fig. 4: Time (t) versus mean number of customer in the queue 

(Lq) for different vacation rate γ and λ = 5, µ = 4, η = 0.6, 

ξ = 0.01, c = 5, N = 100 

 

 

 

Fig. 5: Time (t) versus mean number of customer in the queue 

(Lq) for different servers’ waiting rate η and λ = 5, µ = 4 

, γ = 0.5, ξ = 0.01, c = 5, N = 100 
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Fig. 6: Time (t) versus mean number of customer in the queue 

(Lq) for different impatience rate ξ and λ = 5, µ = 4 , γ = 

0.5, η = 0.6, c = 5, N = 100 

 

 
 
Fig. 7: Time (t) versus mean number of customer in the system 

(Ls) for different mean arrival rate λ and µ = 4 , γ = 0.5, 

η = 0.6, ξ = 0.01, c = 5, N = 100 
 

 
 
Fig. 8: Time (t) versus mean number of customer Fig. 12 Time (t) 

versus mean time spent in the in the system (Ls) for 

different mean service rate queue (Wq(t)) for different 

arrival rate λ and µ = 4, µ and λ = 3, γ = 0.5, η = 0.6, ξ = 0.01, 

c = 5, γ = 0.5, η = 0.6, ξ = 0.01, c = 5, N = 100. N = 100 

 
 
Fig. 9: Time (t) versus mean number of customer in the system 

(Ls) for different vacation rate γ and 

λ = 5, μ = 4, η = 0.6, ξ = 0.01, c = 5, N = 100 

 

 

 

Fig. 10: Time (t) versus mean number of customer in the system 

(Ls) for different server’s waiting rate η and λ = 5, μ = 

4, γ = 0.5, ξ = 0.01, c = 5, N = 100 

 

 
 
Fig. 11: Time (t) versus mean number of customer in the system 

(Ls) for different impatience rate ξ and λ = 5, μ = 4, γ 

= 0.5, η = 0.6, c = 5, N = 100 
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Fig. 12: Time (t) versus mean time spent in the queue (Wq(t)) 

for different arrival rate λ and μ = 4, γ = 0.5, η = 0.6, ξ 

= 0.01, c = 5, N = 100 

 

 
 
Fig. 13: Time (t) versus mean time spent in the Fig. 9 Time (t) 

versus mean number of customer queue (Wq(t)) for 

different service rate µ and λ =5, in the system (Ls) for 

different vacation rate γ and γ = 0.5, η = 0.6, ξ = 0.01, c = 

5, N = 100. λ = 5, µ = 4, η = 0.6, ξ = 0.01, c = 5, N = 100 
 

 
 
Fig. 14: Time (t) versus mean time spent in the Fig. 10 Time (t) 

versus mean number of customer queue (Wq(t)) for 

different vacation rate γ and λ = in the system (Ls) for 

different server’s waiting rate 5, µ = 4, η = 0.6, ξ = 

0.01, c = 5, N = 100. η and λ = 5, µ = 4, γ = 0.5, ξ = 

0.01, c = 5, N = 100 

 
 
Fig. 15: Time (t) versus mean time spent in the queue (Wq(t)) 

for different server’s waiting rate η Fig. 11 Time (t) 

versus mean number of customer and λ =5, µ=4, γ=0.5, 

ξ =0.01, c=5, N =100. in the system (Ls) for different 

impatience rate ξ and λ = 5, µ = 4, γ = 0.5, η = 0.6, c = 

5, N = 100 
 

 
 
Fig. 16: Time (t) versus mean time spent in the queue (Wq(t)) 

for different impatience rate ξ and λ = 5,µ = 4, γ = 0.5, 

η = 0.6, c = 5, N = 100 

 

 
 
Fig. 17: Time (t) versus mean time spent in the system (Ws(t)) 

for different arrival rate λ and µ = 4, γ = 0.5, η = 0.6, ξ 

= 0.01, c = 5, N = 100 
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Fig. 18: Time (t) versus mean time spent in the system (Ws(t)) 

for different service rate µ and λ = 5, γ = 0.5, η = 0.6, ξ 

= 0.01, c = 5, N = 100. 4.1 Table of Probability Errors 

 

 

 

Fig. 19: Time (t) versus mean time spent in the system (Ws(t)) 

for different vacation rate γ and λ = 5, µ = 4, η = 0.6, ξ 

= 0.01, c = 5, N = 100 

 

 

 

Fig. 20: Time (t) versus mean time spent in the system (Ws(t)) 

for different server’s waiting rate η and λ = 5, µ = 4, γ 

= 0.5, ξ = 0.01, c = 5, N = 100 

 
 
Fig. 21: Time (t) versus mean time spent in the system (Ws(t)) 

for different impatience rate ξ and λ = 5, µ = 4, γ = 0.5, 

η = 0.6, c = 5, N = 100 

 

Table of Probability Errors 

The error of probability computation by using 

MATLAB programming is given in the following table, 

where E0 and E1 are the error during the numerical 

computation of P0,n(t) and P1,n(t) respectively. 

Special Cases 

Our derived results are different from the results 

obtained by, Ammar (2016; 2017) in the way that they 

had a single server queueing system and our model has 

multi-servers which gives complexity to the 

mathematical treatment. Our model is different from the 

model developed in Vijayashree and Janani (2015) in the 

way that their model did not take impatient customers and 

waiting for servers into account which we have. Hence 

our model is more general than their model. 

Conclusion 

The queueing model that we have developed in this 

investigation is more general than the queueing model 

studied by Ammar (2017) and Vijayashree and Janani 

(2015). We have set up the system of ordinary differential 

equations as balance equations of our model and have also 

derived the probability distribution functions explicitly in the 

Laplace domain. To find the probability distributions at any 

time t we have used the matrix geometric method, 

recursive and inverse Laplace numerical technique in the 

form of Fourier transform. The probability error table has 

also been obtained for both the server states. It has long 

been recognized that transient performance measures for 

the queues are complementary to the steady-state. 

The model under study may have potential applications 

in automatic machining systems, multichannel 

telecommunications, security systems in the airport, train 

stations, and flexible manufacturing systems. 
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This model can also be further extended as future 

research under heterogeneous arrival and service rates 

with multiple vacation provisions which leads the 

problem much more realistic. 
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