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ABSTRACT 

The recent astronomical observations indicate that the expanding universe is homogeneous, isotropic and 
asymptotically flat. The Euclidean geometry of the universe enables to determine the total gravitational and 
kinetic energy of the universe by Newtonian gravity in a flat space. By means of dimensional analysis, we 
have found the mass of the observable universe close to the Hoyle-Carvalho formula M∼c3/(GH). This value is 
independent from the cosmological model and infers a size (radius) of the observable universe close to Hubble 
distance. It has been shown that almost the entire kinetic energy of the observable universe ensues from the 
cosmological expansion. Both, the total gravitational and kinetic energies of the observable universe have been 
determined in relation to an observer at an arbitrary location. The relativistic calculations for total kinetic 
energy have been made and the dark energy has been excluded from calculations. The total mechanical energy 
of the observable universe has been found close to zero, which is a remarkable result. This result supports the 
conjecture that the gravitational energy of the observable universe is approximately balanced with its kinetic 
energy of the expansion and favours a density of dark energy ΩΛ≈ 0.78. 
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1. INTRODUCTION 

The problem for the average density of the universe 
ρ  acquires significance when it has been shown that the 
General Relativity allows to reveal the geometry and 
evolution of the universe by simple cosmological models 
(Friedman, 1922; Lemaitre, 1927; Einstein and De Sitter, 
1932). Crucial for the universe appears dimensionless 
total density  / cpρΩ = where ρc is the critical density of 
the universe. In the case of Ω<1 (open universe) the 
global spatial curvature is negative and the geometry of 
the universe is hyperbolic and in the case of Ω>1 (closed 
universe) the curvature is positive and the geometry is 
spherical. In the special case of Ω = 1 (flat universe) the 
curvature is zero and the geometry is Euclidean. Until 
recently scarce information has been available about the 
density and geometry of the universe. The most 
trustworthy total matter density Ω has been determined by 
measurements of the dependence of the anisotropy of the 
Cosmic Microwave Background (CMB) upon the angular 

scale. The recent results show that Ω ≈ 1±∆Ω, where the 
error ∆Ω decreases from 0.10 (De Bernardis et al., 2000; 
Balbi et al., 2000) to 0.02 (Spergel et al., 2003), i.e., the 
density of the universe is close to the critical one and the 
universe is asymptotically flat (Euclidean). 

The fact that Ω is so close to a unit is not accidental 
since only at Ω = 1 the geometry of the universe is flat 
and the flat universe was predicted from the inflationary 
theory (Guth, 1981). The total density Ω includes 
matter density ΩM = Ωb + Ωc, where Ωb≈0.05 is 
density of baryon matter and Ωc≈0.22 is density of 
cold dark matter (Peacock et al., 2001) and dark 
energy ΩΛ≈0.73 (Hinshaw et al., 2009) producing an 
accelerating expansion of the universe (Riess et al., 
1998; Perlmutter et al., 1999). The found negligible 

CMB anisotropy 5~ 10
T

T

δ −  indicates that the early 

universe was very homogeneous and isotropic 
(Bennett et al., 1996). Three-dimensional maps of the 
distribution of galaxies corroborate homogeneous and 
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isotropic universe on large scales greater than 100 
Mps (Shectman et al., 1996; Stoughton et al., 2002). 

Usually, Einstein pseudotensor is used for 
determination of the total energy of the universe (Rosen, 
1994; Johri et al., 1995). This approach is general for 
open, close and flat anisotropic models, but 
pseudotensorial calculations are dangerous as they are 
very coordinate dependent and thus, they may lead to 
ambiguous results (Banerjee and Sen, 1997). Newtonian 
gravity still works reasonably in practically all 
gravitational problems, starting from earth gravity, space 
flights and star systems and ending to birth of stars and 
star clusters, with exception of extremely compact 
objects like black holes and neutron stars possessing 
strong gravitational field causing non negligible 
curvature of the space. After recent CMB observations 
discovered that the global geometry of the universe is 
flat, some cosmological problems could be solved by 
Newtonian gravity in Euclidean space. This opportunity 
has been used in the paper to estimate total mechanical 
energy of the observable universe.  

To determine gravitational and kinetic energy of the 
observable universe, information of the size and total mass 
of the universe are needed. There are different estimations 
of the mass of the observable universe covering very large 
interval from 3×1050 kg (Hopkins, 1980) to 1.6×1060 kg 
(Nielsen, 1997). Also the estimations of the size (radius) 
of the universe are from 10 Glyr (Hilgevoord, 1994) to 
more than of 78 Glyr (Cornish et al., 2004). 

2. ESTIMATIONS OF THE TOTAL MASS 
AND SIZE (RADIUS) OF THE 

OBSERVABLE UNIVERSE 

Taking into account uncertainties of the estimations 
for the mass and size of the observable universe, an 
original approach for cosmology, namely dimensional 
analysis, has been applied below for estimation of the 
mass and size of the observable universe. The 
dimensional analysis is a conceptual tool often applied in 
physics to understand physical situations involving certain 
physical quantities. It is routinely used to check the 
plausibility of derived equations and computations. When 
the certain quantity, with which other determinative 
quantities would be connected, is known but the form of 
this connection is unknown, a dimensional equation was 
composed for its finding. Most often, the dimensional 
analysis is applied in mechanics where there are many 
problems having a few determinative quantities. The 
quantity of mass dimension in high energy physics is also 

obtained by means of the fundamental constants c, G and 
ħ. This is the famous Planck mass 

8~ / ~ 2.1710Plm c G kg−
h , whose energy equivalent-the 

Planck energy EPl = mPlc
2 ~ 1019 GeV appears unification 

energy of the fundamental interactions. 
The fundamental parameters as the gravitational 

constant G, speed of the light c and the Hubble constant 
H ≈ 70 km s−1 Mps−1 (Mould et al., 2000) determine the 
global properties of the universe. Therefore, by means of 
these parameters, a mass dimension quantity mx related 
to the universe could be constructed: 
 

xm kc G Hα β γ=  (1) 

 
where, k is a dimensionless parameter of the order of 
magnitude of a unit and α, β and γ are unknown 
exponents which have been found by means of analysis. 

Taking into account the dimensions of the quantities 
in Equation 1 we obtain the system of linear equations 
for unknown exponents Equation 2: 
 

3 0 2 0 1α β α β γ β+ = − − − = − =  (2) 

 
The determinant ∆ of the system is Equation 3: 

 
1 3 0

1 2 1 1

0 1 0

∆ = − − − = −
−

 (3) 

 
The determinant ∆≠0, therefore the system has a 

unique solution. We find this solution by Kramer’s 
formulae Equation 4: 
 

1 2 33 1 1α β γ∆ ∆ ∆= = = = − = = −
∆ ∆ ∆

 (4) 

 
Thus, we find the mass mx related to the universe: 

 
3

53~ ~ 10x

c
m kg

GH
 (5) 

 
This value hits in the large interval for the mass of the 

universe mentioned at the end of Section 1 and coincides 
with Carvalho (1995) formula for the mass of the 
observable universe, deduced by totally different approach. 
Thus, the quantity mx, obtained by means of analysis by 
means of the fundamental parameters c, G and H, represents 
acceptable estimation of the mass of the observable 
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universe. It is worthy to note that this value is independent 
from the cosmological model. First estimations of mass of 
the observable universe by means of dimensional analysis 
have been made from Valev (2009a). 

The universe is flat and the total density, including 
dark matter and dark energy, is c c  ρ ρ ρ= Ω ≈ where the 

critical density of the universe ρc determines from 
Equation 6 (Peebles, 1971): 
 

2
27 33

 9.510  
8c

H
kg m

G
ρ

π
− −= ≈  (6) 

 
Since the observable universe is homogeneous and 

isotropic, it appears 3-dimensional homogeneous sphere 
for an observer at arbitrary location. From Equation 5 
and 6 we obtain: 
 

2 3

3

3 3

8 4
x

c

H m c

G V R GH
ρ ρ

π π
Ω= Ω = = =  (7) 

 
From Equation 7 we have estimated the size 

(radius) of the observable universe R close to the 
Hubble distance cH−1: 
 

1/3 1(2 / ) ~
c

R cH
H

−= Ω  (8) 

 
The result, obtained from Equation 8, shows the 

observable universe practically coincides with Hubble 
sphere. The Hubble sphere is the sphere where the 
recessional velocity of the galaxies is equal to the speed 
of the light in vacuum c and according to the Hubble law 
v = c when r = cH−1. Thus, the Hubble sphere appears a 
three-dimensional sphere, centered on the observer, 
having radius r = cH−1 and density cρ ρ≈ . 

The mass of the observable universe would be 
deduced more precisely by means of the recent density 

of the universe 
23

8c

H

G
ρ ρ

π
= Ω = Ω  and radius (size) of the 

observable universe R∼cH−1: 
 

3 3
3

3

4 4

3 3 2c

c c
M R

H GH
π ρ π ρ= ≈ Ω = Ω  (9) 

 
This expression is more accurate than Equation 5, 

since the results of the dimensional analysis are correct 
with accuracy to a coefficient k∼1. This value practically 
coincides with the Fred Hoyle formula for the mass of 

the observable universe 
3

2

c
M

GH
=  (Kragh, 1999). 

Any possible matter beyond the Hubble sphere 
recedes from the observer with superluminal velocity. 
Therefore, it does not affect the observer and it has no 
contribution in the mass and energy of the observable 
universe, calculated in relation to the observer. 

Besides, we can estimate the total rest energy of the 
observable universe from Equation 9 and Einstein equation: 
 

5
2 70

0

1
~ 10

2

c
E Mc J

GH
= = Ω  (10) 

 
3. DETERMINATION OF THE TOTAL 

MECHANICAL ENERGY OF THE 
OBSERVABLE UNIVERSE 

The results of dimensional analysis and CMB 
observations suggest that the observable universe 
appears homogeneous 3-dimensional sphere with 
radius R close to Hubble distance cH−1. Hence, the 
gravitational potential energy U of the observable 
universe is Equation 11: 
 

2
2 2 4

0 0

( ) 16 3

3 5

R RM r dm GM
U G G r dr

r R
π ρ= − = − = −∫ ∫  (11) 

 
where, 0 is an arbitrary location of the observer, R∼cH−1 

is the radius of the observable universe and 
34

( )
3

M r rπ ρ=  is the mass of a sphere with radius r. 

According to the equivalence of mass and energy, 
dark energy also possesses mass and gravitational 
energy. Replacing Equation 8 and 9 in Equation 11 we 
have found the total gravitational energy of the 
observable universe: 
 

5
23

20

c
U

GH
= − Ω  (12) 

 
Similar approach has been used for calculation of the 

total gravitational energy of a body arising from 
gravitational interaction of the body with all masses of 
the universe (Woodward et al., 1975; Valev, 2009b). 

Taking into account Equation 10 and 12 we find 
23

10
U Mc= − Ω , i.e., the modulus of the total 

gravitational energy of the observable universe is close 
to 3/10 of its total rest energy. 
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The estimation of the total kinetic energy of the 
observable universe T is more complicated as a result of 
the diversity of movements of masses in the observable 
universe. We suggest that almost all kinetic energy of the 
observable universe is a result of the cosmological 
expansion since it includes movement of the enormous 
masses (galaxies and clusters of galaxies) with average 
speed of the order of magnitude of c/2. The rotation curves 
of galaxies show that the majority of stars move into the 
galaxies with speed less than v0 = 3×105 m/s (Sofue, 1996). 
Besides, on rare occasions, the peculiar (non-
cosmological) velocities of galaxies exceed this value 
(Strauss and Willick, 1995). On the other hand, the speed 
of medium-distanced galaxies (and their stars), as a result 
of the cosmological expansion is of the order of magnitude 
of c/2 = 1.5×108 m/s. Obviously, the kinetic energy of an 
“average star” in the observable universe, ensuing from its 
peculiar movement, constitutes less than (2v0/c)2 ~ 4×10−6 
part of its kinetic energy, ensuing from the cosmological 
expansion, therefore, former should be ignored. 

Let us estimate the total kinetic energy of the 
observable universe in relation to an observer at arbitrary 
location. The total kinetic energy of the observable 
universe is the sum of the kinetic energy of all masses mi 
moving in relation to the observer with speed vi 
determined from Hubble (1929) law  vi = Hri, where ri ≤ 
cH−1 is the distance between the observer and mass mi 
placed within the Hubble sphere. The linearity of the 
Hubble law has been precise confirmed in (Riess et al., 
1998) by SNeIa observations. Newtonian formula 

21

2 i i
i

T m v= ∑  for kinetic energy was used in (Valev, 

2009a), but the distant masses recede from the 
observer with speeds comparable with the speed of the 
light c. Therefore, the relativistic formula for kinetic 
energy is used below:  

 
2 2 2 1/2[(1 / ) 1]i i

i

T c m v c −= − −∑  (13) 

 
Since, for an arbitrary observer, the observable 

universe appears a 3-dimensional homogeneous 
sphere having radius R~cH−1, Equation 13 can be 
replaced by the integral:  
 

2 2 2 1/2

2 2 2 1/2 2

0

[(1 / ) 1]

4 [(1 / ) 1]
R

T c v c dm

c v c r drπρ

−

−

= − −

= − −

∫

∫
 (14) 

Replacing v ≈ vr with expression from Hubble law vr 
= Hr, Equation 14 transforms into: 
 

2 2 2 2 1/2 2

0

2 2 3

4 [(1 / ) 1]

4
4

3

R

T c H r c r dr

c I c R

πρ

πρ πρ

−= − −

= −

∫
 (15) 

 
Where: 
 

2 2 2 1/2 2

0

(1 / )
R

I H r c r dr−= −∫  

 
The solution of the integral I is given from 

Equation 16: 
 

3
2 2 2 1/2

3
( / ) arcsin

2 2

cr c Hr
I c H r

H H c
= − − +  (16) 

 
Considering Equation 8 and replacing low and upper 

limits of integration we find: 
 

3

34

c
I

H

π=  (17) 

 
Replacing Equation 17 in Equation 15 we obtain: 

 
5 5

2
3 3

4

3

c c
T

H H
π ρ πρ= −  (18) 

 
In consideration of  cρ ρ= Ω and Equation 6 we find 

the total kinetic energy of the observable universe: 
 

5
21 3 3

( 1) ( 1)
2 4 4

c
T Mc

GH

π π= Ω − = −  (19) 

 
Taking into account Equation 12 and 19, the total 

mechanical energy of the observable universe determines 
from Equation 20: 
 

5

2 2 2

1 3 3
( 1 )

2 4 10
3 3

( 1 ) 1.056 ~
4 10

c
E T U

GH

Mc Mc Mc

π

π

= + = Ω − − Ω =

− − Ω ≈
 (20) 

 
Thus, the total mechanical energy of the observable 

universe is found close to its total rest energy. It is 
worthy to note that in the process of deducing the 
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Equation 19 the dark energy was accepted as involved in 
cosmological expansion (Ω = ΩM+ΩΛ). But the dark 
energy has no kinetic energy; therefore it should be 
excluded from calculations of the total kinetic energy of 
the observable universe. In result, the density c ρ ρ= Ω in 

Equation 18 must be replaced with ρM = ΩMρc and taking 
into account Equation 6 we find a relativistic Equation 
21 for the total kinetic energy of the observable universe: 
 

5
2 21 3 3

( 1) ( 1) 1.356
2 4 4M M M

c
T Mc Mc

GH

π π= Ω − = Ω − ≈ Ω  (21) 

 
The recent value of matter density is between ΩM = 0.19 

(Carlberg et al., 1997) and ΩM = 0.27 (Hinshaw et al., 
2009). As a result, the total kinetic energy of the 
observable universe T ≈ (0.26÷0.37) Mc2, i.e., close to 
3/10 of its total rest energy Mc2. 

Finally, from Equation 12 and 21, taking into 
consideration Equation 10 we find the total mechanical 
energy of the observable universe:  
 

( )

5
2

2

2 2

1 3 3
[ ( 1) ]

2 4 10
3 3

[ ( 1) ]
4 10

( 0.04 0.06) 0 0.05

M

M

c
E T U

GH

Mc

Mc Mc

π

π

= + = Ω − − Ω

Ω= − − Ω
Ω

≈ − ÷ ≈ ±

 (22) 

 
It is remarkably, that the total mechanical energy of 

the observable universe is close to zero. This result 
supports the conjecture that the gravitational energy of 
the universe is approximately balanced with its kinetic 
energy of the expansion (Lightman, 1984). According to 
Equation 22, the total kinetic energy of the observable 
universe is strictly equal to zero in case of 

23
 0.22

10(3 / 4 1)M π
ΩΩ = ≈

−
. This value hits in the range of 

the recent estimations of matter density of the universe 
and it should be discussed as a prediction of the 
suggested model, which the future more accurate 
observations are able to test.  

4. CONCLUSION 

The recent astronomical observations indicate that the 
expanding universe is homogeneous, isotropic and 
asymptotically flat. The Euclidean geometry of the 
universe enables to determine the total kinetic and 
gravitational energies of the universe by Newtonian 
gravity in a flat space.  

By means of an original approach for cosmology, 
namely dimensional analysis, a mass dimension quantity 
of the order of 1053 kg, related to the universe, has been 
found close to Hoyle-Carvalho formula for the mass of 
the observable universe. This value is independent from 
the cosmological model and infers the size (radius) of the 
observable universe close to Hubble distance cH−1. 

Both, the total kinetic and gravitational energies of 
the observable universe have been determined in relation 
to an observer at arbitrary location. Based on the simple 
homogeneous and isotropic model of the flat universe 
which expands according to Hubble law, we have found 
equation for the total gravitational energy of the 
observable universe. The modulus of the total 
gravitational energy of the observable universe is 
estimated to 3/10 of its total rest energy Mc2. 

The relativistic calculations for total kinetic energy have 
been made and the dark energy has been excluded from 
examination. The total kinetic energy of the observable 
universe has been found close to the modulus of its total 
gravitational energy. Therefore, the total mechanical energy 
of the observable universe is close to zero, which is a 
remarkable result. This result supports the conjecture that 
the gravitational energy of the observable universe is 
approximately balanced with its kinetic energy of the 
expansion and favours a density of dark energy ΩΛ≈ 0.78. 
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